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Abstract: A proactive model for gathering resource attribute values in large scale distributed systems is proposed and 
analyzed within the context of resource discovery. This model, based on a tree topology, relies on 
information reduction to limit the amount of information collected at each node of the tree structure and to 
minimize information update and query cost. A Markov chain is used to model resource attribute value 
changes. This model is solved using dynamic programming to determine the optimal reduction scheme that 
minimizes the overall cost of updating and querying resource attributes.  

1 INTRODUCTION 

Grid computing (Kaufmann, 2004; Foster et al., 
2001; Foster et al., 2002) enables the virtualization 
of distributed computing and data resources such as 
CPU, network bandwidth and storage including 
memory to create a single system image, granting 
users and applications seamless access to vast IT 
capabilities.  One of the key issues is to maintain 
accurate information about the entities constituting 
the system. Entity state is typically represented by 
attributes, exhibiting values, which change over 
time.  As the system size (i.e. the number of 
resources in the system) grows, maintaining an 
accurate representation of its state becomes a real 
challenge, since the number of messages required to 
maintain this state scales with the number of 
resources. Typical models used for information 
gathering, such as the Globus Toolkit MDS 
(Czajkowski, et al., 2001;  Zhang, Schopf,  2004), 
take a reactive approach. In such models, it is only 
once a query (explicit or implicit) for a resource 
attribute value is submitted that the relevant 
information is fetched. In order to improve the 
latency incurred in answering queries, caching 
techniques are used to store the information in 
aggregator nodes until a pre-defined time-to-live 
period expires. A tree topology is used, where the 
leaves represent the system resources and upper 
level nodes are aggregator nodes. In these models 
however, the amount of information stored at each 
aggregator node grows linearly with the number of 
resources registered to report their attribute values to 

them, and once cached information becomes stale, 
querying it may lead to important latencies.  This 
method is efficient when the query to the system is 
less frequent than the changes of the attribute value. 
In other grid information systems, peer to peer 
interactions are used among aggregator nodes to 
improve scalability (Mastroianni et al., 2005), or 
filtering techniques (Balaton et al, 2002) and 
publish-subscribe mechanisms (Jie, 2004; Cooke et 
al., 2004) allow for the selection of the information 
to be gathered and thus limit the amount of 
information aggregated. However, in these systems, 
depending upon which aggregator is queried, the 
resulting information can vary greatly. 
Ganglia (Massie et al., 2004) is a scalable distributed 
monitoring system for high performance computing 
environment. It is based on a hierarchical design 
targeted at federations of clusters. It relies on a 
multicast-based listen/announce protocol to monitor 
state within clusters and uses a tree of point-to-point 
connections amongst representative cluster nodes to 
federate clusters and aggregate their state. Although 
Ganglia is a monitoring system and while the 
objective of the proposed scheme in this paper is 
data acquisition and resource discovery; the two 
share a common proactive approach for data 
acquisition, and both are concerned with minimizing 
the network load required for this operation. Since 
the objectives of the two systems are different, the 
approaches for load minimization are different. 
While Ganglia uses standard data compression 
techniques, we use an information reduction scheme 
as described in the subsequent sections. 
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In this paper, we propose a proactive model, which 
triggers information updates up the tree structure 
each time the attribute value of a resource changes. 
In addition, we reduce information going up the tree 
by consolidating at each node the values of a given 
attribute from all the nodes reporting to it into a set 
of attribute value intervals.  Upon an explicit or 
implicit user query, the reduction nodes are 
consulted in a hierarchical fashion until the response 
can be formulated.  The introduction of the 
information reduction provides us a mechanism of 
not propagating the un-needed information for the 
queries to the high levels of the topology. The key 
issue becomes the determination of the optimal 
number and ranges of the intervals at each tree level 
to minimize the cost for updating and querying a 
resource attribute.   
This paper is organized as follows. In Section 2, we 
formulate our optimization problem in the case of a 
single attribute. In Section 3, we describe a 
stochastic model where the process of the attribute 
value change is represented as a Markov chain. In 
Section 4, we solve the model to determine the 
update and the query costs associated with a single 
attribute. In Section 5, we demonstrate that the 
determination of the optimal set of attribute value 
intervals at each tree level to achieve least cost is a 
dynamic programming problem, and we propose an 
algorithm to determine the optimal solution. In  
Section 6, we conclude our paper with future plans, 
including the extension of this research into multiple 
attribute scenarios and a comparison with the 
reactive model. 

2 PROBLEM FORMULATION 

As described above, we have a multi-level tree 
topology, in which leaves are system resources and 
upper level nodes are reduction nodes. We assume a 
fully balanced tree, in which each node has a limited 
fixed number of children.  The leaf nodes of our tree 
structure are the system resources and are monitored 
regularly for attribute value changes. Each time an 
attribute value changes, some of the reduced 
information maintained for this attribute by the 
reduction nodes it reports to (directly or indirectly – 
we will refer to these nodes as its reporting branch), 
may have to be updated.  In other words, some of the 
numbers of resources in each attribute value interval 
of the reporting nodes may have to be incremented 
or decremented. We want to minimize the number of 
updates up the reporting branch. Therefore, if we 
were to only look at the update cost, the best 
solution is to use coarse attribute value intervals.  
We must also take in consideration the query cost. 
Unlike updates, which are triggered from leaf nodes 

to the root, queries start at the root. If we only use 
coarse intervals, depending on the attribute value 
query (assumed to be of the form “find all the 
resources for which attr ≤  value”), we may end up 
traversing most of the tree, since most top level 
reduction nodes will have resources reported in each 
attribute value interval. Therefore, the query cost 
may be expensive.  
The whole problem is to find the optimal set of 
attribute value intervals that achieves the best trade-
off between the update cost and the query cost.  We 
define the cost as the number of messages 
exchanged between nodes (either between a resource 
and a reduction node, or between two reduction 
nodes).  

3 OUR MODEL 

Each node has a fixed number of nodes reporting 
directly to it, called n.  K represents the number of 
levels in the tree and N the number of leaf nodes (i.e. 
system resources),  Level 0 always represents the 
leaf nodes and level K the root. Finally,  

NK nlog=     (1) 

3.1 Attribute Change Model 

We assume that the attribute can only have discrete 
numerical values. We let M  represent the number 
of attribute values and the set { }Maaa ,...,, 21  
represent the possible values of the attributes.  We 
model the attribute value change process using 
Markov chain and the changes of the attribute at 
different leaf nodes are identical independent 
distributions. We further assume that the attribute 
value can either stay the same, or increase and 
decrease by one unit within a time interval as a 
birth-and-death process (Leon-Garcia, 1994). This 
assumption is valid if we limit the time interval to an 
arbitrary small value. We denote by )(0 ip  the 
equilibrium probability that the value of the attribute 
is ia , and by )(0 if  and )(0 ir  the forward and 
backward transition probabilities from ia  to 1+ia  
and 1−ia  respectively. The equilibrium probability 

)(0 ip can be deduced from the transition 
probabilities. For our analysis, we assume that these 
transition probabilities are known as prior 
knowledge. 

3.2 Update, Query and Cost Models  

Updates occur at the same regular time intervals as 
attribute changes. Updates are triggered up the tree, 
starting from the system resource whose attribute 
value either increased or decreased, along its 
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reporting branch. The number and identities of 
resources falling into each attribute value interval of 
each reduction node are adjusted when appropriate. 
An update is generated by a leaf node only when the 
change of the attribute would cause a change in the 
attribute value interval where the value falls at the 
parent node. Similarly, an update is generated by a 
reduction node only if the change will cause a 
change of the attribute value interval of its parent 
node.  
The number of attribute value intervals at a given 
level k , is denoted by kl , and the intervals are 
indexed with { }kli ,,1L∈ . The attribute value of a 
given leaf node will belong to one and only one 
attribute value interval at level k . We use kI  to 
represent the random variable corresponding to the 
attribute value interval index that the attribute value 
of a given resource belongs.  It is obvious that the 
changes of kI are Markov birth-and-death processes. 
We use )(ipk  to denote the equilibrium probability 
that )( iI k = . The transition probabilities of  kI  
from interval i  to interval ( )1+i  and ( )1−i  during 
a time interval are denoted by )(ifk and )(irk  
respectively. Based on our earlier assumption, all 
other transition probabilities are null. 
We consider only simple queries of the form “find 
all the system resources for which value of attribute 
x is less or equal to value ja ”, where ja represents 
the jth discrete numerical value that x can have.   
In this study, we only consider the cost related to 
network traffic. We consider the message payload 
cost to be negligible compared to the message 
assembly, transfer, and de-assembly, hence the cost 
will be expressed as the total number of messages 
exchanged between nodes, while accounting for all 
potential attribute value updates and queries.    

4 UPDATE AND QUERY COSTS 

The total number of leaf nodes that are in the subtree 
rooted by a node at level k  is kn . The number of 

nodes at level k  is equal to ⎟
⎠
⎞⎜

⎝
⎛

kn
N . The total 

number of nodes at level k and above is denoted by 
km  and is equal to:  
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Given the attribute value intervals at all levels, and a 
the Markov chain model for the attribute values 
specified by )(0 ip , )(0 if  and )(0 ir , the equilibrium 
probability distribution and the transition 
probabilities at all levels can be computed as 
follows.  Consider the ith attribute value interval 
[ ]

ii yx aa ,  at level k . The probability of the attribute 

value belonging to the ith interval is equal to the sum 
of the probabilities that the attribute has values 
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through 
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The transition probabilities are determined similarly: 
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Each update generates one message, while a query to 
a particular node consists of a request and a 
response. We will take this factor into consideration 
in the following subsections. 
For the purpose of this analysis we are assuming a 
given fixed reduction scheme that specifies the 
attribute value intervals at all levels, a given attribute 
value distribution by )(0 ip , )(0 if  and )(0 ir , a query 
activity model specified by F , the frequency of 
query requests within a given time interval, and jq , 
the probability that the query of the form “find all 
leaf nodes that have the attribute value less than or 
equal to ja ” refer to the particular value ja . 

Update Cost 

Given )(ipk , )(ifk  and )(irk , we can determine the 
update cost by determining the expected number of 
messages exchanged for an update. A given leaf 
node will cause an update to be generated from a 
node at level k  to a node at level )1( +k , if the 
attribute value crosses attribute value interval 
boundaries at level )1( +k . The probability of this 
event is denoted as ku , where 10 −≤≤ Kk , and is 
equal to: 

[ ]∑
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+++ +=

1

1
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kl

i
kkkk irifipu                             (6) 

The probability that a node at level k , 10 −≤≤ Kk ,   
will actually generate an update is equal to the 
probability that at least one of the kn  leaf nodes in 
the subtree rooted at this node causes an update; this 
probability, kU  is: 

( ) kn
kk uU −−= 11                                                   (7) 

The expected number of updates, i.e. the update 
cost CU , is determined by adding these probabilities 
at all nodes: 
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Query Cost 

The query cost is equal to twice the number of nodes 
that need to be visited to respond to the query. In the 
following sections, we consider a simple query of 
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the form “find all leaf nodes that have the attribute 
value less than or equal to ja ”, where ja  is one of 
the numerical values of the attribute. We consider 
two different variations for counting the visited 
nodes. 

Case I:  It is obvious that if the query is 
addressed to a node where ja  is equal to the upper 
bound of one of the attribute value intervals ],[ yx aa , 
i.e. yj aa = , the node can definitely respond to the 
query. Since the attribute value intervals are the 
same for all nodes at a given level, the simplest way 
of counting the nodes visited is to count all the 
nodes down to the level where all the nodes have an 
attribute value interval ],[ yx aa . Let )( jak  denote 
this level, then the total number of nodes visited is 
equal to the total number of nodes from the root, 
level K , down to and including level )( jak . Using 
equation (2), this number is equal to: 

1
11)(

)( −
−

=
+−

n
nm

j

j

akK

ak                                                (9) 

Consequently, the query cost for searching the leaf 
nodes satisfying jax ≤  is: 
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and the weighted total cost for all possible values of  

ja  is 
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where F  is the frequency of query requests within a 
given time interval and jq  is the probability that the 
query refers to a particular ja . 

Case II:  A more interesting and challenging 
case occurs when we consider closely the conditions 
under which we can prune the search space even 
before we reach level )( jak . Obviously, if we 
encounter a node g  at level )()( jakgk > such that 
the attribute value interval ],[ yx aa  that contains ja  
has no resources, node g  can respond to the query 
without consulting its children. Let the index of the 
attribute value interval ],[ yx aa  at this node be 
denoted by )()( ji gk . Note that this index is a 
function of only the level )(gk of the node and not 
of the node itself because all the nodes at a given 
level have the same attribute intervals. The 
probability of this attribute value interval having no 
resources is equal to the probability that none of the 

)( gkn  leaf nodes in the sub-tree rooted by g have an 
attribute in this interval. In our notation this is equal 
to  

 ( )( ) )(

)(1 )()(

gkn
gkgk jip−                           (12) 

where )(ipk  is the probability that the attribute value 
of a leaf node falls in the i th interval of level k . 

In this case, we want to determine the expected 
number of visited nodes given the )(ipk  
distributions at all levels. With the current notation, 
the probability that the children of g  are visited is:  

 ( )( ) )(

)(11 )()(

gkn
gkgk jip−−                      (13) 

and consequently, the expected number of the 
children of g  that are visited is  

 ( )( )( ))(

)(11 )()(

gkn
gkgk jipn −−                  (14) 

Since there are )( gkn
N  nodes at level )(gk and there 

are n children nodes for node g , and the probability 
distributions of these nodes are independent from 
each other, the expected number of visited nodes at 
level   ( )1)( −gk   is: 

 ( )( )( )kn
kkk jip

n
N )(111 −−−                      (15) 

Note that we have dropped the explicit dependence 
of )(gk on  g  since all nodes at level )(gkk =  are 
identical.   
The query starts from the root. It is obvious that the 
root has to be visited with probability one, while for 
the lower levels the expected number of visited 
nodes is given by the equation derived earlier. 
Consequently the total expected number of visited 
nodes is:   
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The corresponding expected cost for a given ja  is:  
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Total Cost 

Case I:  From (8) and (11), we derive: 
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Case II:  From (8) and (18), we derive: 
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5 ANALYSIS OF THE 
OPTIMIZATION PROBLEM 

As described earlier, the optimization problem 
considered in this paper is to determine the attribute 
value intervals at all levels of the hierarchy given the 
attribute value distribution and the query 
probabilities. First, let us consider the possible 
attribute value intervals, called partitions hereafter. 
The total number of possible partitions of an 
attribute with M discrete values is: 

( )
( )∑
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iiM
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0

12
!!1

!1
.                                      (21) 

Let Π  denote the set of all partitions and let us 
define a “coarser or equal to” relationship between 
the partitions. A partition Π∈P  is coarser or equal 
to another partition Π∈′P , denoted PP ′f , if the 
intervals of P  are unions of one or more of 
consecutive intervals of P′ .  
A particular feasible solution consists of a sequence 
of partitions { }011 ,,,, PPPP KK L−  where kP  represents 
the partition of level k , 0P  is always the partition 
consisting of singleton intervals P1 , and ji PP f  for 
all ji ≥ . 
The cost functions { }( )011 ,,,, PPPPC KK L−  that were 
calculated in the previous sections are for a 
particular feasible solution { }011 ,,,, PPPP KK L− , and 
the optimization problem is to determine a solution 
{ }****

011
,,,, PPPP

KK L
−

 that minimizes C . 

5.1 Dynamic Programming 
Formulation 

In the following, we rewrite the cost equations to 
highlight the dynamic programming (Ecker and 
Kupferschmid, 1998) nature of the problem.  We 
will consider the results for Case II of the previous 
section; however the same approach is also valid for 
case I.   
The cost for a particular feasible solution 
{ }011 ,,,, PPPP KK L−  was derived as in equation (20). 
The constant term in that equation has no 
consequence on the solution. Let us consider the last 
term CQ  and change the order of summations: 
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where ( )( )1)( +− jakks  is the step function, i.e.: 

( )( )
⎩
⎨
⎧ +≥

=+−
otherwise0

1 if1
1)(

)k(ak
akks j

j                (24) 

Let us define, for a given k , the set )(kJ  of all 
indices j  such that ja  does not appear as a right 
boundary at level k  or above. )(kJ is equal to: 

{ })( and 1)( jakkMjjkJ >≤≤=                        (25) 
CQ  can then be written as:  
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With these transformations, the cost function can be 
written as: 
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Finally: 
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By definition, )(kJ  can be uniquely determined 
knowing the partitions in the sub-
sequence { }kKK PPP ,,, 1 L− , )( jik  and other terms in 
the second part are uniquely determined by the 
partition kP . Finally, since: 
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1−ku  is uniquely determined by the partition kP . 
These considerations drive us to define the partial 
cost function { }( )iKK PPPC ,,, 1 L− , for Ki ≤≤1 , as: 
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or equivalently: 
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with: 
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where the second term is a function of 
{ }iiKK PPPP ,,, 11 +− L  and none of the partitions kP  
for ik < . 
The following algorithm formalizes the derivation in 
the previous subsections. 
1. For every Π∈P , calculate { }( )PC . 
2.  For 1−= Kk  to 1 do: 

2.a For every Π∈P , identify all partial solutions  
{ }11 ,,, +− kKK PPP L  such that PPk f1+ . 
2.b For every partial solution in step 2.a do: 

2.b.i Calculate { }( )PPPPC kKK ,,, 11 +− L . 

2.b.ii Determine the { }***
11

,,,
+− kKK

PPP L that 
minimizes { }( )PPPPC kKK ,,, 11 +− L . 

2.b.iii  Add { }PPPP
kKK

,,,, ***
11 +−

L  to the set of 
potential solutions of level k . 

6 FUTURE WORK 

In summary, we have introduced a new architecture 
for a scalable grid information service and modeled 
it in order to obtain the optimal parameters of the 
system in the particular case of a single attribute 
with known attribute model and query distribution 
model.  We are working on extending this approach 
to multiple resource attributes. By assuming that 
multiple attributes share the same index topology for 
information update and query, and that the update 
and query messages and their responses for all 
attributes are merged together, we can calculate the 
cost given the aggregation intervals for each 
attribute. The aggregation intervals themselves can 
be found by using the method given in Section 5 as a 
first order of approximation.  
Another avenue for future research is the overall 
cost vs. accuracy comparison with reactive 
information gathering scheme. We believe that there 
is a threshold beyond which the proactive 
information gathering scheme is better than the 
reactive information gathering scheme. This 
threshold depends on 1) how quickly the attribute 

changes; 2) how often queries occur and 3) the time 
to live values of the reactive caching. 
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