
WEB FEDERATES - TOWARDS A MIDDLEWARE FOR HIGHLY
SCALABLE PEER-TO-PEER SERVICES

Ingo Scholtes and Peter Sturm
University of Trier

Department of Computer Science, Systemsoftware and Distributed Systems, D-54286 Trier, Germany

Keywords: Web Service, Peer-To-Peer, Web Federate, WSDL, SOAP, Middleware, Message Exchange Patterns, Code
Generation, Request/Response, One-Way, Solicit/Response, Notification, Publish/Subscribe, Scalability,
Light-Weight Hosting, Service Oriented Architecture.

Abstract: Starting from the classical Client/Server paradigm, in the last couple of years Peer-To-Peer approaches have
evolved and proven their power. Currently we see an evolution from the distributed object access paradigm
represented e.g. by middleware architectures like CORBA, DCOM or RMI towards Service Oriented Archi-
tectures (SOA), entailing a retrogression to the Client/Server paradigm. In this paper we want to present how
Peer-To-Peer Applications can to a large extend benefit from intrinsic Web Service properties like loose cou-
pling, declarative interface definition and interoperability, thus incorporating advantages from SOA and the
Peer-To-Peer approach, opening new fields of application to both of them. For this purpose, WebFederate, a
prototype middleware based on Microsoft’s .NET Framework has been implemented and will be presented in
this paper.

1 INTRODUCTION

Starting from the classical Client/Server paradigm, in
the last couple of years Peer-To-Peer approaches have
evolved into a serious alternative. Prominent exam-
ples like Skype or notorious file-sharing applications
but also scientific prototypes like Freenet (Clarke
et al., 2000) or Oceanstore (Rhea et al., 2003) show
the power of this approach in regard to scalability
and availability. While these accomplishments of the
Peer-To-Peer paradigm are widely accepted, currently
one can see an evolution from classical distributed
object access technologies like CORBA, DCOM and
RMI towards Service Oriented Architectures (SOA),
entailing a retrogression to the Client/Server para-
digm. This retrogression is to a large extend based
on the idea, that Web Services are hosted by heavy-
weight Web or Application servers, which automat-
ically results in an asymmetric relationship between
caller and callee. Apart from that this deployment
model usually implies, that Web Service providers are
passive, reacting only to requests from active service
consumers. These properties are however no intrin-
sic characteristics of the underlying standards. Light-
weightiness and usability in a decentralized distrib-
uted environment are two key design goals which
have been respected in the definition of the SOAP

standard. Apart from simple Web Service usage sce-
narios adopted today - Web Services being mainly
used as interconnection between back-end servers
and presentation front-end - which primarily use the
Client/Server paradigm, the SOAP standard defines
the SOAP Intermediary role which is suitable for mul-
tihop scenarios. These are very likely to be applied
when Web Services will need to be deployed in global
scale.

Furthermore, the WSDL standard, in addition to
the commonly used One-Way and Request/Response
message exchange patterns, also defines two others:
Solicit/Response and Notification. In most Web Ser-
vice implementations however, these additional mes-
sage exchange patterns remain unused for reasons
which will be discussed in a separate section.

Regarding declarative service description, loose
coupling, late binding and interoperability, Peer-To-
Peer applications can to a large extend benefit from
these intrinsic Web Service qualities, henceforth in-
corporating advantages from Service Oriented Archi-
tectures and the Peer-To-Peer approach and opening
new fields of application to both of them. One funda-
mental step towards this goal is a light-weight way to
create, deploy and host Web Services.

The remainder of this paper is organised in the fol-
lowing way: Section 2 discusses the Solicit/Response

13Scholtes I. and Sturm P. (2006).
WEB FEDERATES - TOWARDS A MIDDLEWARE FOR HIGHLY SCALABLE PEER-TO-PEER SERVICES.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 13-20
DOI: 10.5220/0001253800130020
Copyright c© SciTePress



and Notification message exchange patterns, reasons
why these are commonly unused, some code gen-
eration technique and related multicast considera-
tions. Having examined scalability issues of the gen-
eral Web Service technology in section 3, section 4
presents work in progress on a prototype middleware,
which remedies Web Services from the aforemen-
tioned deficiency of asymmetric role association. Fi-
nally, after having done a presentation of related work
in section 5, a conclusion will be drawn along with an
outlook to future work. For the course of this paper
we introduce the term ”Web Federate”, which hence-
forth denotes a computing node running applications
based on this middleware, since these nodes may act
in the roles of service provider and consumer simul-
taneously and swarms of them may federate in order
to host superordinate services collaboratively.

2 SOLICIT/RESPONSE AND
NOTIFICATION MESSAGE
EXCHANGE PATTERNS

There are several reasons why most Web Service im-
plementations do not use the Solicit/Response and
Notification message exchange patterns:
• The WSDL-To-Code mapping is more complicated

than for the Request/Response or One-Way pat-
terns

• They require service providers to become active,
a behavior not foreseen in most container deploy-
ment models

• They require some kind of Publish/Subscribe
model

• They do not scale in the number of subscribers due
to the lack of multicast communication schemes
available on the public Internet

• They exhibit concurrency difficulties at the service
consumer side

• The most widely used HTTP protocol binding does
not make use of Solicit/Response and Notification

• Requirement R2303 of WS-I Basic Profile 1.0 and
1.1 precludes their usage

One reason why these additional message exchange
patterns are currently not supported by the WS-I
Basic Profile, is that one can describe them also at
the consumer’s side in terms of Request/Response
or One-Way. Although a Notification operation
certainly can be seen as a reverse One-Way operation
and a Solicit/Response operation is nothing more than
a Request/Response from the callee’s point of view,
it does however make sense to use them. In Peer-To-
Peer application scenarios we are addressing, a peer

may not know what kinds of notifications are avail-
able and what it is interested in beforehand. It does
however know which notifications it can provide. So
it seems natural to describe such a service at the side
of the notification provider in terms of a Notification
rather than describing it at the service consumer’s
side in terms of a One-Way pattern. A similar argu-
ment is true for Solicit/Response operations. At the
time when a peer needs a service there may e.g. be no
appropriate peer providing such a service in terms of
Request/Response. The peer searching for a service
however does know what he desires thus he can
ask for it explicitly by exposing a Solicit/Response
operation, so accessory peers which are able to satisfy
this desire will learn about it. Admittedly the term
”service provider” may be misleading in this case, as
in the case of a Solicit/Response operation, the actual
service (in the sense of an attendance) is done by the
service consumer. So in many cases the usage of a
Solicit/Response service may require some form of
altruism on the consumer side in order to use it.

2.1 Code Generation Techniques

As mentioned before, the mapping from WSDL doc-
ument to proxy and stub code is more complicated
for the Solicit/Response and Notification message ex-
change patterns than for Request/Response or One-
Way which can be mapped to (possibly void) methods
in a very natural and straight-forward way. Regarding
a WSDL document mixing Request/Response, Noti-
fication and Solicit/Response message exchange pat-
terns the primary reason for this additional complex-
ity is the fact, that the clear division in proxy and stub
code gets lost. At the service provider side, instead
of having a stub class with abstract methods to be im-
plemented by the application programmer, due to So-
licit/Response and Notification schemes stub classes
may now contain additional method implementations
that need to be callable by the user. This naturally
precludes the container deployment model from be-
ing used. Regarding proxy classes at the service con-
sumer side, the deprivation of this division is even
more painful, as these become abstract too.
Traditional code generation techniques can however
be applied, if middleware tools are allowed to gen-
erate several classes for a single service. Instead of
the straight-forward approach described above, tools
might also generate:

WEBIST 2006 - INTERNET TECHNOLOGY

14



• a traditional proxy class for Notification and So-
licit/Response operations at the service provider
side

• a traditional stub class for Request/Response and
One-Way operations at the service provider side

• a traditional stub class for Notification and So-
licit/Response operations at the service consumer
side

• a traditional proxy class for Request/Response and
One-Way operations at the service consumer side

An example for a Web Service framework which
makes use of this code generation technique is LEIF1,
a C++ framework for service-oriented applications
which supports all message exchange patterns
defined in WSDL, including Solicit/Response and
Notification.
Apart from generating proxy and stub code from
WSDL documents, state-of-the art middleware also
allows automatic generation of WSDL documents
from service implementations. In case of the Re-
quest/Response and the One-Way message exchange
pattern application programmers commonly sim-
ply provide a service implementation inheriting a
service’s base class, tagging methods they want to
expose as service operations (e.g. the WebMethod
attribute in the .NET context) - the Middleware
can then generate the WSDL document along with
the code, which actually receives SOAP envelopes,
unmarshals the arguments and invokes the methods
provided by the application programmer.
Using the Solicit/Response and Notification patterns,
the situation is again more complicated as it requires
application programmers to provide an abstract class
with some abstract methods. Code generation tools
would now need to create a class which inherits the
user’s abstract class and provides implementations
for all abstract methods. In these implementations,
marshalling of arguments and the actual sending to
the subscribers needs to be done. As the subscribers
list has to be known in order to actually send notifica-
tions and soliciting requests, there need to be means
of making this list available to the middleware.
Comparing the aforementioned abstract service
class from which middleware shall generate a
WSDL document and the stub code that would have
been generated from the same WSDL document,
abstract qualifiers are transposed. Actually this
transposition becomes evident, if one looks at an
abstract qualifier as a ”request for implemen-
tation” for this method. Starting with a WSDL
description, in the case when a stub class has been
generated from the WSDL document, the middleware
requests the application programmer to provide
service operation implementations it can not provide

1http://www.roguewave.com/products/leif/

itself. In the latter case, starting with the implemen-
tation, a WSDL document being generated from it,
the application programmer requests the middleware
to provide marshalling operations he does not want
to provide himself.

2.2 Achieving Multicast
Communication

As the public Internet lacks true multicast communi-
cation schemes, the sending of Notification and So-
licit/Response messages to a large number of sub-
scribers does not scale. One possible solution to over-
come this problem in case of the Notification message
exchange pattern is the usage of distribution trees,
playing on the federate role of the subscribers. Instead
of shipping a Notification message to all subscribers,
the service provider sends it to a constant number of
federates, these redistributing messages in an overlay
distribution tree. This allows the shipping of notifica-
tions to all subscribers with only a constant number
of subscriptions per federate although it induces addi-
tional latency depending on the position of a federate
in the tree. A similar scheme has been implemented in
the ATLAS Event Monitoring System, which will be
used in order to distribute collision event data among
physicists’ monitoring processes in a scalable manner
at CERN’s forthcoming LHC particle accelerator ex-
periment. A more detailed discussion and evaluation
of this content distribution scheme can be found in
(Scholtes, 2005) and (Kolos and Scholtes, 2005).
In case of Solicit/Response message exchange pat-
terns the solution is however not that simple, as re-
sponse messages have to be routed back to the service
provider, thus leading to an implosion problem. Data
aggregation techniques may find application along the
path in order to solve this problem, presumably re-
quiring domain-specific knowledge.

3 WEB SERVICE SCALABILITY

Today mostly major companies like Amazon, Google
or eBay are involved in large-scale deployment of
Web Services and a lot of time and effort is being
put into making them scale. Although vulnerability
for attacks and sabotage as well as laborious scalabil-
ity and fault tolerance are intrinsic properties of cen-
tralised Client/Server architectures, for the reasons set
forth in section 1 it is the one which is most widely
spread in the context of Web Services. In his recent
article (Birman, 2005) Ken Birman argues, that in the
future all sorts of companies and organisations will be
interested in deploying Web Services at a large scale.
Many of those will not have the means Amazon, eBay

WEB FEDERATES - TOWARDS A MIDDLEWARE FOR HIGHLY SCALABLE PEER-TO-PEER SERVICES

15



or Google have.
While also big players might benefit from Peer-To-
Peer approaches, relieving them from cost-intensive
scalability and fault tolerance efforts, Peer-To-Peer
technology is likely to become inevitable for smaller
institutions willing to deploy Web Services at large
scale. The success of a small start-up company like
Skype2 could hardly have ever been imagined if rather
than relying on Peer-To-Peer technology they had had
to set up cost-intensive network infrastructure in the
first instance. Similar scenarios are also imaginable
for Web Service technologies. Furthermore, regard-
ing a scenario of Web Services becoming the primary
communication architecture across the Internet, even
individuals might want to offer scalable Web Ser-
vices. Today, Weblogs are one example of Web Ser-
vice technology that is already used by a still-growing
number of millions of individuals. While currently
for example RSS feeds are implemented using pull
model technology simulating a push model behavior,
technologies like Trackback also today make use of a
push model similar to WSDL’s Notification commu-
nication scheme, requiring Weblogs of individuals to
offer and consume Web Service in a federate manner.
Taking into account the tremendous increase in band-
width, computing power and storage capacity observ-
able in home computing devices over the past cou-
ple of years, today the application of Peer-To-Peer
technology appears more promising than ever. Future
technologies like network filesystems similar to pro-
totypes like Oceanstore (Rhea et al., 2003) but also
mobile devices with limited storage and computing
power are therefore very likely to rely on Peer-To-
Peer technology and the means provided by Web Ser-
vices.
Apart from mere scalability, in the future Web Ser-
vices might find application in critical domains which
require a high level of immunity against failures and
deliberate breakdowns. Regarding scalability and de-
centralism being intrinsic properties of Peer-To-Peer
approaches and interoperability being a key charac-
teristic of Web Services, it seems to be evident that
a marriage between these techniques is about to hap-
pen. Power-law obeying overlay networks similar to
those used in today’s Peer-To-Peer applications might
be utilised in the future to create swarms of Web
Federates providing superordinate services in a fault-
tolerant, self-organising and scalable way. For this
purpose means like those introduced in (Devlin et al.,
1999) seem to be appropriate.

2http://www.skype.com

4 WEBFEDERATE
MIDDLEWARE

In order to empower developers to achieve the
goals presented above, a prototype middleware
based on Microsoft’s .NET Framework and Mi-
crosoft’s Web Services Enhancement Toolkit has
been implemented, which provides the following key
functionality:

• Lightweight and stateful in-process hosting of Web
Services

• Lightweight and stateless container model hosting
of Web Services

• Dynamic Web Service discovery, proxy-generation
and invocation at run-time

• Dynamic Composition of Web Services at run-time
• Automatic exposition of a simple discovery service

on start-up
• Automatic service discovery of Web Federates ac-

cessing a service

4.1 Overall Architecture

The middleware prototype consists of three li-
braries: WebFederate, WebFederate.Visualization
and Cassini. The purpose of these libraries will be
described in the following paragraphs.

WebFederate Visualization Library This library
may be used in order to visualise Web Federates along
with the services they expose in a graphical manner.
It is used by the example application presented in 4.2
in order to illustrate the middleware’s dynamics and
allow GUI driven interaction with Web Services and
Web Federates.

WebFederate The public application pro-
grammer’s interface of the library’s main class
WebFederate is shown in figure 1. Lightweight
Web Service hosting is achieved by using a library
which has been implemented on top of Microsoft’s
shared-source Cassini project, Web Service hosting
capabilities offered by ASP.NET and the in-process
Web Service hosting provided by Microsoft’s Web
Service Enhancements (WSE3). Web Services are
published using SOAP’s TCP and/or HTTP binding
according to the application programmer’s settings.
The Cassini project is an easy-to-use Web Server
library with a small memory footprint published as
a shared-source project by Microsoft3. Along with
ASP.NET it is used for lightweight and stateless

3http://www.asp.net/Projects/Cassini/Download/Default.aspx

WEBIST 2006 - INTERNET TECHNOLOGY

16



Figure 1: The WebFederate API.

Web Service hosting following the container model
and using HTTP as transport. Similar lightweight
hosting approaches can be found in the UNIX world
e.g. using combinations of lightweight Web Server
implementation like abyss 4 or NanoHTTP 5 and the
eSOAP6 toolkit. As ASP.NET Web Service hosting
follows the container model using a per-request
instance creation, it is per-default stateless leaving
state management to the application programmer.
Stateful Web Service hosting is provided by using
Microsoft’s Web Service Enhancements (WSE),
which in this regard pretty much allows a glance at
Microsoft’s upcoming service-oriented Communi-
cation Foundation (codename Indigo). Rather than
creating object instances on a per-request basis as
done by ASP.NET, instantiation is done on applica-
tion start-up, the lifetime of object instances being
managed by the WebFederate middleware. Federate
Services using this hosting facility are therefore
inherently stateful. Apart from TCP and HTTP which
can be used as transport mechanisms according to the
application programmer’s preference, the usage of a
UDP transport for true asynchronous communication
schemes is at the planning stage.
The development procedure commonly used for
Web Service implementations and Web Service
consuming applications is, even though WSDL offers
declarative service descriptions, to a large extend still
influenced by distributed object access middleware
like CORBA or DCOM. Stub and skeleton classes

4http://www.aprelium.com
5http://www.cwc.oulu.fi/nanoip/
6http://esoap.ultimodule.com

are generated from a WSDL service description by
WSDL parsers (like the wsdl tool in Visual Studio,
WSDL2Java tool in AXIS or the leifgen tool in
LEIF) at - or actually even before - compile-time,
functionality then being added to these generated
stubs and skeletons by the application programmer,
just like it used to be done with traditional IDL
compilers in the distributed object access middleware
approaches mentioned above. In order to allow
dynamic invocation, creation of and binding to Web
Services at run-time, the WebFederate middleware
presented in this paper makes use of the declarative
service description and .NET’s reflection and run-
time compile facilities. At run-time proxy code will
be generated from the WSDL description of a Web
Service, the resulting proxy code will be dynamically
compiled and invoked in the background. A wrapper
class offers dynamic access to the Web Service meth-
ods, which are queried from the generated proxy via
the reflection mechanism. All of the above steps are
done transparently for the application programmer,
so all he has to specify is the WSDL document’s URI
or the IP address of the Web Federate machine along
with the name of the service, enabling him to obtain
an object instance at run-time which he may utilise in
order to use a service.
In order to discover Web Services running at a Web
Federate computing node, on installation-time a
straightforward discovery Web Service is automati-
cally created, which in the prototype simply returns
a list of all services hosted by a Web Federate. This
list can then be used by the requesting Web Federate
application in order to dynamically create a specific
Web Service proxy as described above. As this
discovery service is exposed using a preassigned
service name, it can easily be accessed by other
Web Federate applications. In emphasis of the
symmetric role of Web Federates, hooks have been
embedded into the discovery service which will
trigger an event whenever a Web Federate performs
a discovery request, so the users of the middleware
can immediately discover and make use of services
provided by the calling federate.
The prototype middleware offers a dynamic deploy-
ment mechanism of Web Services. C# Code can
be submitted to the middleware, which will try to
compile, instantiate and publish the service imme-
diately at run-time. For this purpose a class library
along with an asmx file is produced, providing the
WSDL description of the new Web Service. The
service itself is then published by instantiating the
service class and registering it with Microsoft’s WSE
runtime. In order to simplify service development, an
abstract class FederateService may be used as
base class for custom services, it’s public interface
being shown in figure 2. The high-level architecture
of the middleware can be seen in figure 3. Apart

WEB FEDERATES - TOWARDS A MIDDLEWARE FOR HIGHLY SCALABLE PEER-TO-PEER SERVICES

17



Figure 2: The FederateService interface.

Figure 3: Middleware Architecture.

from traditional service implementations, application
programmer’s may use the abstract service base class
FederateService for dynamic Web Service
implementations which call back application code
on request. The connection between Web Service
implementation and application code is achieved
making use of .NET’s delegate/event mechanism.
The implementer of applications based on the mid-
dleware may register event handlers dynamically
which will be called on reception of requests. The
application code handler can then satisfy the request
itself or even pass it on to the user.

4.2 Example Application

On top of the middleware presented in chapter 4 a
simple graphical test application, the ”Web Federate
Demonstrator” has been implemented. While this ap-
plication does not serve a special purpose justified
by practical needs, it has mainly been implemented
in order to test the middleware and demonstrate how
dynamic Web Services can be implemented and de-
ployed using it. A screen shot of this application can
be seen in figure 4.

In the address box, a user of this application
may enter the URI of a Web Federate or a con-

Figure 4: Screen shot of the Web Federate Demonstrator
Application.

ventional Web Service’s WSDL document. If a
WSDL document’s address has been entered, a graph-
ical symbol for this Web Service will appear in a
panel, if a Web Federate’s IP address has been en-
tered a service discovery will be performed, show-
ing all available services on the selected Feder-
ate. The user may then select services and add
graphical symbols for them to the panel. In or-
der to interact with Web Services added earlier,
users may add so-called interface nodes to the panel,
connecting them to Web Services dynamically and
graphically for invocation using the above-mentioned
WebFederate.Visualization library. Web
Services can simply be published by pushing a sin-
gle button and completing a service skeleton based on
the FederateService class. When an interactive
Web Service has been published by the Web Federate
node and a request to this service has been performed
which requires a user’s feedback, a window pops up,
asking for the user’s response and delivering this re-
sponse to the caller. Using the Web Federate Demon-
strator application, it is a question of only a minute to
implement e.g. a simple chat application at run-time
in a graphical manner.

4.3 Usage Scenarios

In this section some example usage scenarios for mid-
dleware approaches like WebFederate will be pre-
sented.

E-Learning Although not being the original inten-
tion, the ”Web Federate Demonstrator” application

WEBIST 2006 - INTERNET TECHNOLOGY

18



presented in section 4.2 can be used right-away as an
E-Learning application for introductory programming
courses. One might think of a scenario where the lec-
turer assigns a task to his students, every student using
a computer running the ”Web Federate Demonstra-
tor” application. In order to solve the task a Web Ser-
vice has to be implemented at a specific Web Feder-
ate which provides a certain given functionality. It is
the student’s job to collaboratively compose this ser-
vice possibly combining publicly available Web Ser-
vices and services they need to implement themselves
just as described in the above paragraph. Taking into
account the wide variety of Web Services which are
publicly available at no charge e.g. listed by (Fan
and Kambhampati, 2005), comprehensive and expe-
dient yet feasible tasks can be easily defined. This
scenario boosts the student’s domain decomposition,
teamwork and programming skills and it early in-
troduces collaborative thinking, distributed program-
ming and the RPC paradigm without needing knowl-
edge about the technical details this usually requires.
The early introduction of Web Service programming
in CS1/CS2 classes has been earlier proposed by (Lim
et al., 2005).

Scalable Web Services As pictured in section 3, in
the future Peer-To-Peer approaches will become more
important in the context of Web Services. This re-
quires special middleware architectures which are ca-
pable of providing a self-organisational and scalable
infrastructure. The WebFederate middleware repre-
sents one step towards this goal as it provides basic
techniques for light-weight Web Service hosting and
dynamic invocation.

Ubiquitous Computing Light-weight Web Service
hosting techniques are crucial for ubiquitous comput-
ing scenarios, regarding small devices with their very
limited processing power and memory layout. Al-
though the WebFederate middleware is based on Mi-
crosoft .NET and provides Web Service hosting with
a very small memory footprint, it can not be used for
.NET enabled mobile devices right-away as it relies
on the hosting capabilities of the ASP.NET frame-
work, which are not included in the .NET Compact
framework available for these appliances. In the fu-
ture, investigation shall be done how to overcome this
deficiency as the availability of such a middleware for
mobile devices might enforce the emergence of ubiq-
uitous computing applications.

5 RELATED WORK

(Harrison and Taylor, 2005a) and (Harrison and Tay-
lor, 2005b) introduce WSPeer, a JAVA-based Web

Service middleware for Peer-To-Peer applications.
Just like the middleware presented in this paper, in
WSPeer deployment of Web Services does not fol-
low the container model or require a Web Server. As
it relies on the classic RPC paradigm, it does how-
ever not support advanced message exchange pat-
terns like Solicit/Response or Notification. Regarding
ubiquitous computing application scenarios, some re-
search on light-weight means of Web Service hosting
for embedded devices has been made by (Pratistha
et al., 2003), proposing the Micro-Services frame-
work. EIRI, a JAVA based approach for a lightweight
Web Service deployment framework from the year
2002 as presented by (Gergic et al., 2002), does not
make use of standards like SOAP or WSDL and there-
fore lacks interoperability. Today however the term
Web Service is commonly associated with these stan-
dards. Besides that, asymmetry is an intrinsic fea-
ture of the framework, as it has been designed in or-
der to support information retrieval of light-weight
devices like PDAs, telephones or information termi-
nals from heavy-weight back end database systems.
Apache’s Web Service Invocation Framework (WSIF)
and the AXIS toolkit from the Java world allow dy-
namic proxy generation and invocation of Web Ser-
vices. Furthermore WSIF supports Solicit/Response
and Notification message exchange patterns at the ser-
vice consumer side.

6 CONCLUSION AND FUTURE
WORK

In this paper we argue that Peer-To-Peer scenarios
can be of great use for Web Services. In order to
investigate means for light-weight Web Service host-
ing based on currently available techniques, a simple
and generic Peer-To-Peer middleware has been imple-
mented and - along with some use cases - presented.
In a future version of this middleware the usage of
SOAP intermediaries for the creation of highly scal-
able and self-organising Web Service Federate net-
works which act like a single superordinate service
provider will be investigated. It seems to be evident,
that forthcoming technologies like Microsoft’s Win-
dows Communication Foundation middleware (code-
name Indigo) will boost the emergence of Web Fed-
erates, as they will propagate simple-to-use and light-
weight techniques for in-process Web Service host-
ing. While it is common to look at Web Services as
the next generation distributed object access, SOAP
being a new declarative RPC protocol, we think that
this reduction to the RPC paradigm is a fatal under-
estimation of the standard’s potential. RPC-like com-
munication schemes provide only a small portion of
the Web Service standards’ capabilities and - as they
often make assumptions about the underlying imple-
mentation - even are counterproductive regarding the

WEB FEDERATES - TOWARDS A MIDDLEWARE FOR HIGHLY SCALABLE PEER-TO-PEER SERVICES

19



original intention of Service Oriented Architectures.
An important fact presented in this paper is, that
Web Services are not inherently associated with the
Client/Server paradigm, just because they are com-
monly hosted by Web or Application servers in a
traditional 3-tier architecture that separates program
logic, data and presentation. In order to build highly
scalable systems, Peer-To-Peer approaches to Web
Services are required and can actually be imple-
mented using state-of-the-art techniques as proven by
the WebFederate middleware prototype.

REFERENCES

Birman, K. P. (2005). Can Web Services Scale Up? IEEE
Computer, 38(10):107–110.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2000).
Freenet: A distributed anonymous information stor-
age and retrieval system. In Workshop on Design Is-
sues in Anonymity and Unobservability, pages 46–66.

Devlin, B., Gray, J., Laing, B., and Spix, G. (1999). Scal-
ability terminology: Farms, Clones, Partitions, Packs,
Racs and Raps. CoRR, cs.AR/9912010.

Fan, J. and Kambhampati, S. (2005). A snapshot of public
Web Services. SIGMOD Record, 34(1):24–32.

Gergic, J., Kleindienst, J., Despotopoulos, Y., Soldatos,
J., Patikis, G., Anagnostou, A., and Polymenakos, L.
(2002). An approach to lightweight deployment of
Web Services. In SEKE, pages 635–640.

Harrison, A. and Taylor, I. (2005a). Dynamic Web Ser-
vice Deployment Using WSPeer. In Proceedings of
13th Annual Mardi Gras Conference - Frontiers of
Grid Applications and Technologies, pages 11–16.
Louisiana State University.

Harrison, A. and Taylor, I. (2005b). WSPeer - an interface
to Web Service hosting and invocation. In HIPS Joint
Workshop on High-Performance Grid Computing and
High-Level Parallel Programming Models. To be pub-
lished.

Kolos, S. and Scholtes, I. (2005). Event Monitoring Design.
Technical report, CERN.

Lim, B. B. L., Jong, C., and Mahatanankoon, P. (2005).
On integrating web services from the ground up into
CS1/CS2. In SIGCSE, pages 241–245.

Pratistha, I. M. D. P., Nicoloudis, N., and Cuce, S. (2003).
A micro-services framework on mobile devices. In
ICWS, pages 320–325.

Rhea, S. C., Eaton, P. R., Geels, D., Weatherspoon, H.,
Zhao, B. Y., and Kubiatowicz, J. (2003). Pond: The
OceanStore prototype. In FAST.

Scholtes, I. (2005). A reimplementation of the CORBA-
based Event Monitoring System for the ATLAS LHC
Experiment at CERN. Diploma thesis, University of
Trier.

WEBIST 2006 - INTERNET TECHNOLOGY

20


