
TRANSFORM:
A TRANSACTION SAFE WEB APPLICATION MODEL

Matthias Ihle and Georg Lausen
Institut für Informatik
Universität Freiburg

Georges-Köhler-Allee, 79110 Freiburg i. Brsg.
Germany

Keywords: Web applications, web forms, transactions, concurrency control.

Abstract: Classical models of database-driven web applications follow thin-client architectures, i.e., all data processing
and business logic resides on the server while the client’s role is to arrange and display the user interface.
When transactions come into play, which may naturally span several consecutive interactions between client
pages and server actions, problems arise since transactions cannot exceed the boundaries of server actions.
We address this issue by proposing a novel architecture for web applications, where a webservice-based data
access component is integrated directly in the markup of a client page. Our approach guarantees ACID trans-
action properties and generates serializable histories in the sense of conflict serializability. In contrast to past
efforts to transaction management in web applications, our architecture does not necessitate the existence of
an additional, external transaction server.

1 INTRODUCTION

Enterprise applications which are generally data-
centric and transaction-based are often form-based
systems with a submit/response style interface (Dra-
heim and Weber, 2004). A proven architecture for
such interfaces are thin client web applications, where
the browser forms the interface tier and the applica-
tion logic is implemented in different actions on the
web server. These server actions deliver pages to the
client and, eventually handle a database connection.

The human-computer-interaction works via the ex-
change of messages between client pages and server
actions. In a typical scenario, some initial values are
read from a database during a server action and dis-
played in web forms of a corresponding client page.
Now a user can edit the data in the forms and send it
to another server action that writes the changed values
back to the database and displays the result in another
client page.

Such a web form lifecycle, intended to happen in
a single transaction, spans several transitions between
client pages and server actions. Unfortunately it is not
possible to embed the whole form processing into one
single transaction of the underlying database system,
since such transactions cannot exceed the boundaries
of a server action.

The reason for this is that each server action needs
a new database connection, since it is unpredictable in
which process, respectively thread on the web server
it is executed. Even persistent connections that pro-
vide a pool of open database connections cannot grant
the assignment of the same connection in two consec-
utive server actions.

Usually, the problem is resolved by adoption of ex-
ternal transaction servers or an application specific so-
lution.

The contribution of this paper is a novel model for
web applications that provides a web service based
database interface. Thereby we utilize the AJAX
(Garrett, 2005) technologies of current browsers and
access this interface via HTTP (Fielding et al., 1998)
requests from within javascript. The access to this
interface is defined directly in the markup of a web
page.

The benefit of our model is that we can bundle
all data access operations within a client page into
a transaction satisfying the ACID properties (Härder
and Reuter, 1983). For that, we do not even need ad-
ditional components beside the web server.

In our model a transactional web page is created by
a server action independently of the database state.
Hence, a transaction in a client page is completely
self-contained and there is no need to consider the

164 Ihle M. and LausenLausen G. (2006).
TRANSFORM: A TRANSACTION SAFE WEB APPLICATION MODEL.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 164-171
DOI: 10.5220/0001253101640171
Copyright c© SciTePress



Figure 1: The classical form processing mechanism.

preceding server action.
As it is typical, we assume that all data access hap-

pens via our interface. Otherwise the transaction man-
ager of the database system interferes with that of our
web service.

The remainder of this paper is organized as follows:
section 2 presents the different parts of the TransForm
model in detail, while section 3 describes the sched-
uler we have implemented in our prototype. Section
4 summarizes the field of research and finally, section
5 concludes the paper.

2 TRANSFORM

In TransForm, the data access during the lifecycle of
a web page is enclosed in a transaction with the well
known ACID properties. Actions of such a transac-
tion, for instance, read initial values of form fields or
write them back to the database, when edited. Addi-
tionally, there are actions that begin, abort or commit
a transaction.

Therefore we do not use the standard form process-
ing mechanism, depicted in figure 1. Here, several
server actions and client pages are needed to process
a form. A first server action creates a client page con-
taining form values read from the database. Then, af-
ter changing the values, a user submits the form to
a second server action which writes the new values
back to the database and displays the result in another
client page.

On the other hand, the TransForm procedure is
shown in figure 2. The complete processing of the
form is done within a single client page. The corre-
sponding transaction is not influenced by the server
action delivering the page, since the page generation
happens independently of the database state. There-
fore, in the figure this server action is depicted in grey.

Figure 2: The processing of forms in TransForm.

We can simply assume a static web page with
empty form fields containing definitions of the
database objects that the form fields are associated
with. After the page is loaded in the browser, a
javascript program starts the transaction and reads the
initial form values from the specified database ob-
jects. With the help of javascript event handlers this
program now propagates user actions to the database,
whenever a form field changes or the commit, respec-
tively abort of the transaction is requested.

All these transaction operations happen via a state-
less web service that constitutes the interface to the
database in our TransForm model. Beside the re-
quested operation a transaction identifier must be
specified in every service invocation. This identifier
is generated by the operation starting the transaction
and hold by the javascript program in the client page.
The web service now wraps all operations with the
same identifier into a single transaction for which the
ACID properties are guaranteed. Now, if the access to
the database happens exclusively with this web ser-
vice interface, TransForm produces conflict serializ-
able schedules only. If other database interfaces are
used simultaneously, the transaction manager of the
database interferes with that of the web service. This
way non serializable schedules may occur.

Behind the web service interface different sched-
uler strategies can be deployed. In our implementa-
tion we have opted for an optimistic strategy that is
considered in detail in section 3.

All the information to access the web service, e.g.
the connection of a form element to a database field
or the URL of the service, in our model needs to
be defined within a client page. Therefore, Trans-
Form defines custom tags that are interleaved with the
HTML tags in the markup of the web page. Every
tag contains the database object it is connected with
and stands for a particular HTML representation in
the web page.

TRANSFORM: A TRANSACTION SAFE WEB APPLICATION MODEL

165



The benefit of this tag based data access facility is
that it can be easily embedded into web application
modelling frameworks, like (Ceri et al., 2000), that
generate HTML pages in their output, since a Trans-
Form page basically is an ordinary web page con-
nected with an additional javascript program.

We will see in the remainder of this section how
this works in detail. Therefore, we first present the
data and transaction model before we describe the
web service and the client interface in the following
subsections.

2.1 Data Access Model

TransForm establishes an additional layer on top of
the database system implementing its own data man-
ager and transaction manager. The data manager ad-
dresses objects in the database and identifies conflicts
among them.

Therefore it represents the actual database in XML.
Now, objects in the database are addressed by XPath
expressions (W3C, 1999). Although this additional
layer certainly has its impact on performance, there
are some incitements to do so:
• If we connect a web form element with a relational

database field with the help of an XPath expression,
the respective SQL statement can be automatically
generated for read and write operations. Otherwise,
we would have to state separate select and update
statements for every form element.

• With this abstraction layer we can support not only
relational backends but also native XML or docu-
ment databases. We can even use storage facilities
that come without native transaction support like
regular file systems.

• Performance is in the majority of cases not a big
issue because the system is mainly idle waiting for
user inputs.
With the help of XPath expressions we now de-

tect conflicts among the database objects, even when
they occur because referential integrity constraints are
defined among the tables in an underlying relational
database. However, it would go beyond the scope of
this paper to describe this functionality in detail.

Hence, for the remainder of this paper we sim-
ply assume a page model for the transactions where
database object, specified by XPath expressions, are
read and written.

Here, a data access operation simply is of the form
r(x) or w(x, v). Thereby x is an XPath expression on
the XML representation of the database specifying a
database object. Furthermore, v is a value of the type
of x. So, r(x) reads and returns the value of x while
w(x, v) writes v to x.

The write operation covers insert, delete and update
in the following way: an empty v means a delete of x

while a non empty v is an update and an x that is not
in the instance graph is interpreted as an insert.

2.2 Transaction Model

Besides the data manager, TransForm provides its
own transaction manager that wraps single opera-
tions, called actions, into transactions.

In this model, an action is a pair (t, a). Thereby, t is
a transaction identifier and a is either r(x) or w(x, v),
the data access operations of the previous subsection,
or one of the following transaction control operations:

• begin: starts a new transaction.

• abort: aborts the transaction.

• commit: tries to commit the transaction.

Now, a transaction t is an ordered sequence of ac-
tions that all share the same transaction identifier. Ev-
ery transaction has exactly one begin action as its first
step and either abort or commit as its last step.

2.3 Web Service Architecture

As we have defined transactions and their enclosed
actions in the previous subsection we now need to
adapt them in the web service. In essence, an action
corresponds to an invocation of the web service.

The transaction identifier is thereby not an inherent
part of the service, it is rather specified as argument
by the service caller. So, a transaction is basically
a subsumption of service invocations with the same
transaction identifier.

With every service invocation, operations on the
underlying database system are carried out. These
operations depend on the actual protocol used by the
scheduler. Thereby, it is important that the operations
of a service invocation occur in a serial, non inter-
leaved order with respect to the underlying database
system. Additionally, the service call should happen
in an atomic fashion. The simplest way to achieve this
is to embed all steps performed during a service call
in a native transaction of the database system. This is
possible, because all the steps are executed during a
single server action. If the database system does not
have its own transaction facilities, some kind of lock-
ing mechanism needs to be provided.

Because we utilize the AJAX technology of cur-
rent browsers to invoke the web service via HTTP
requests in javascript, the use of the SOAP protocol
(W3C, 2000) is inappropriate. We rather follow the
REST (Fielding, 2000) web service design which has
the following characteristics:

• The service is comprised of a resource which is
named using a URL.

• The resource is accessed through a generic inter-
face, in this case HTTP via the GET method.

WEBIST 2006 - INTERNET TECHNOLOGY

166



• It is stateless, i.e. each request from the browser
to service must contain all the information neces-
sary to understand the request, and cannot take ad-
vantage of any stored context on the server. For
instance, the identifier of the transaction a service
invocation belongs to must be contained in a call
argument.

• The response is an XML document. In our case, it
contains information about success of operations,
requested values or detected conflicts that lead to
transaction aborts.

So the service is basically a HTTP call to the ser-
vice URI where the requested action is specified in
the GET variable action. Depending on the con-
crete action, further arguments are required. For the
allowed actions this is as follows:
• begin: No further argument is needed. This action

returns the transaction id.

• abort: The transaction id must be specified in the
additional argument tid.

• commit: Here also the tid must be specified. The
return value is either success or failure.

• read: In addition to the tid the object to be
read needs to be given. The value of this object is
returned.

• write: It takes the same arguments as read plus the
value of the object via the value argument.

Example The following service invocation requests
the commit of the transaction with the id 3. The
service is located at the host serviceurl under
the path servicepath.

http://serviceurl/servicepath
?action=commit&tid=3

The respective response to the above request could
be the following XML document:

<response action="commit" tid="3">
failed
<conflict>563</conflict>

</response>

The response signals that the commit has failed due
to a conflict with another transaction.

2.4 Browser Tags

Having the web service available, we need to embed
it in web sites. Therefore, we introduce special tags
in the page markup that encode all the necessary in-
formation like the database objects they are connected
with in their attributes. These tags are converted into
suitable HTML elements by a javascript program that
is invoked when the browser has loaded the page. To-
gether with normal HTML these tags build the skele-
tal structure of TransForm web pages.

The javascript program is additionally responsible
for the following tasks:

• It first parses the document to identify all Trans-
Form tags. Therefore it uses the DOM representa-
tion of the web page, an interface with whom the
various page components can be accessed and ma-
nipulated.

• It starts a transaction for every tf:form element that
it finds during the initial parse with a begin request.
In the response to this request it gets an identifier
for every transaction. Because this id is needed in
all further service requests it is stored during the
lifetime of the transaction.

• It takes care of the complete processing of the ser-
vice requests. Therefore, event handlers are set ac-
cordingly and AJAX objects are created when such
an event triggers. Furthermore, it handles the ser-
vice response messages. Retrieved values are writ-
ten to form elements and, in case of conflicts, trans-
action aborts are triggered.

In the following we present some selected tags that
are used in the example in figure 3:

<tf:form serv="url"> This tag forms the
boundaries of a transaction. All further TransForm
tags inside it belong to the same transaction. Addi-
tionally, it specifies the URL of the web service in
the serv argument. With this mechanism we can
define access to several databases in a single web
page. This leads to distributed transactions that are
explained in section 3.2.
This is similar to the ordinary HTML form element
that specifies a server action and contains all the
elements of the form.

<tf:input xpath="x"> This tag is converted
into an ordinary HTML input form element. It re-
trieves its initial value by a read request for object x.
Additionally, an event handler is set that requests a
write operation whenever a user changes the value
in the form.

<tf:abort> Here, the javascript program creates
a button with whom the user can explicitly request
the abort of the current transaction. In such a case, a
new transaction is started and the values of the form
fields are retrieved once again from the database.

<tf:commit> This tag is also converted into a
HTML button with whom the user can request the
commit of the current transaction. Every tf:form
tag must contain a commit button, otherwise the
user can never request the commit of the transac-
tion.

Figure 3 shows an example of a TransForm page. It is
an ordinary HTML page with some custom tags that
a browser does not display when rendering the page.
In the page header a javascript file is included that

TRANSFORM: A TRANSACTION SAFE WEB APPLICATION MODEL

167



<html>
<head>

<script src="transform.js">
</head>
<body onload="transform()" onunload="abort()">

<div>
<tf:form service="url" protocol="opt">

<tf:input xpath="a[b=2]/a">
<tf:input xpath="a[b=2]/c">
<tf:commit/>

</tf:form>
</div>

</body>
</html>

Figure 3: An example of an HTML document interleaved with TransForm tags.

contains the aforementioned program. The body el-
ement defines an onload event handler that invokes
the transform() function. This function now converts
the TransForm tags according to the above description
and starts a transaction for the contained tf:form ele-
ment. It sets the event handler for the tf:input and the
tf:commit tags accordingly, for instance, an onclick
event for the submit button.

For every event an appropriate handler is defined
in the script. This handler creates an AJAX object
for every request that asynchronously invokes the web
service. Therefore, a callback function is defined that
handles the response of the request.

Example scenario Suppose two users, X and Y ,
each load the above example page and edit the form
fields depicted by the tf:input tags. In each browser
a transaction is started and the initial values are re-
trieved via respective begin and read service calls.
Let user X change the values of both input forms
while user Y simply changes the value of the object
a[b = 2]/a.
A scheduler would now detect a conflict because
both transactions write the same object (a[b =
2]/a). Depending on the order of the commits
requested by pressing the commit button and the
particular scheduler strategy one transaction is ac-
cepted and committed into the underlying database
while the other one is rejected and all its write op-
erations are discarded.

At the end of this section it is clear that a TransForm
page only makes use of standard web technology and
therefore still is an ordinary HTML page with some
non-standard tags and a dedicated javascript program.
This has the benefit that it integrates well into web
application frameworks that normally produce web
pages in their output. Thereby, it provides them with a
transaction safe data access component. It must solely
be taken care that the generation of the web pages
still is independent of the database that is used within

the page. Otherwise the transaction safety cannot be
guaranteed anymore.

3 SCHEDULER

Behind the interface presented in the previous section
different scheduler strategies are possible.

Thereby, it is not necessarily clear that the same
strategies proven for classical databases are also well
suited in the context of the web environment.

Here we deal with online transactions where it is
not possible to simply rerun a failed transaction. In
such a case, the user needs to specify the values to be
written in the database again depending on different
read values.

Hence, we first gather the requirements of sched-
ulers in the context of web applications and dis-
cuss the pros and cons of several classical schedulers
strategies found in (Weikum and Vossen, 2001):

• The scheduler protocol must not constrict the form
editing when several users work with the same
database objects. It should only interfere when the
current transaction cannot be committed anymore.

• If transactions are in conflict with each other the
accepted transaction should be chosen after a ’first
come first serve’ principle.

• On the other side, if a page processing cannot be
commit ed because unresolvable conflicts have oc-
curred, the scheduler should not defer a conflict no-
tification until a user requests the commit opera-
tion.

• Read-only transactions must not affect transaction
aborts for writing transactions.

Locking schedulers require the explicit locking of
database objects for both reading and writing. Be-
cause we do not know when a user has finished the

WEBIST 2006 - INTERNET TECHNOLOGY

168



work on a form field we would have to hold the locks
from the begin of the transaction when the initial val-
ues are read until the commit. This could lead to a se-
rial transaction execution and reduce parallelism dras-
tically.

The timestamp ordering protocol evades locks by
use of totally ordered, unique timestamps that are
assigned to each transaction. This protocol has the
drawback that among several conflicting transactions
only the one with the highest timestamp successfully
commits. This is not compatible with requirements
two and four.

In our implementation, we have opted for an opti-
mistic protocol (Härder, 1984; Kung and Robinson,
1981) where newly arriving operations simply pass
and the burden of concurrency control is deferred un-
til the end of the transaction. Thereby, detected con-
flicts are resolved by aborting transactions.

The execution of a transaction is divided into two
phases, the read phase and the valwrite phase. During
the read phase all read operations are logged in the
readset RS and all write operations are performed in
a private workspace, the writeset WS. So the writ-
ten values are not visible to other transaction before a
transaction successfully commits.

The valwrite phase is initiated with the commit op-
eration. It tests whether the transaction execution has
been correct in the sense of conflict serializability. If
so, the writeset of the transaction is transferred to the
database, otherwise the transaction is aborted.

This protocol meets best the previously formulated
requirements. It is only perceivable in the case of con-
flicts and favours the transaction which initiates the
commit first.

3.1 The FOCC Scheduler

Our scheduler protocol follows the forward oriented
optimistic concurrency control presented in (Weikum
and Vossen, 2001), where a transaction is validated
against all concurrent transactions.

Here, a transaction tj is validated at the time n if
the following holds for all concurrent transactions ti:

WS(tj) ∩ RSn(ti) = ∅
Thereby, RS(t) and WS(t) are the readset and write-
set of transaction t.

Hence, the scheduler makes sure that no values
other concurrent transactions have read are overwrit-
ten, and thereby outdated, by the validating transac-
tion. This is immediately satisfied if the validating
transaction is read-only.

Since these transactions are not yet committed we
gain some flexibility in handling a detected conflict.
In order to satisfy the second requirement we follow
the ’kill and commit’ scheme presented in (Härder,

1984), where a non validating transaction neverthe-
less commits and the conflicting transactions abort.

To sketch the proof that our scheduler produces
conflict serializable schedules only we show that the
produced conflict graph is acyclic.

With the commit of transaction tj we insert the new
node tj into the so far acyclic conflict graph. If the
graph became thereby cyclic the node tj had to be
involved in the cycle. Therefore, the node tj had in-
coming and outgoing edges. For an incoming edge
tj would have read values that were written by an al-
ready committed transaction. That would have lead to
an abort of tj . So, only outgoing edges are possible
and the conflict graph remains acyclic.

Beside the readset and the writeset our scheduler
has to hold the status of all running transactions in an
internal table. Thereby, the status of a transaction is
either running, committed, aborted or in conflict.

In the following we resume the actions taken by our
scheduler for each possible request:

• begin: The scheduler generates a new unique trans-
action id and inserts it in the status table as running.

• abort: The readset and writeset of the transaction
is deleted and the status of the transaction is set to
aborted.

• commit: The transaction is validated and the write-
set is transferred to the database. If the valida-
tion was not successful the status of the conflicting
transactions is set to in conflict.

• read: First, it is checked whether the transac-
tion status is set to in conflict. In this case the
browser is signaled to abort the transaction, other-
wise the value of the requested object is read from
the database and the readset is updated.

• write: Similar to the read request either the writeset
is updated or a conflict is signaled.

Example An example for the execution of a schedule
under this protocol is shown in figure 4.
At time of the commit of transaction 1 its writeset
and the readset of the only concurrent transaction
2 are disjoint, so the validation is successful and
transaction 1 is written to the database.
The next transaction to commit is the second. Its
writeset is only disjoint with the readset of concur-
rent transactions 4 and 5 while it overlaps with the
readset of transaction 3 (RS(3) = z, WS(2) = z).
So, the status of transaction 3 is set to in conflict
and with its next operation, here r(x), a conflict is
signaled and consequently the transaction aborts.
The next committing transaction is the read-only
transaction 5. It has an empty writeset and thus suc-
cessfully validates. The validation of transaction 4
now trivially succeeds, since there are no more con-
current transactions.

TRANSFORM: A TRANSACTION SAFE WEB APPLICATION MODEL

169



Figure 4: An Example schedule.

3.2 Distributed Transactions

As we have already seen in section 2.4, TransForm
even supports distributed transactions (Bernstein and
Goodman, 1981). There, several services working on
different databases were addressed in one web page.
Of course, global serializability must be guaranteed.
Therefore, the subtransactions at each site, respec-
tively service, either commit or abort altogether.

Fortunately, the following holds for distributed
transaction over several sites (Lewis et al., 2002): If
the concurrency control at each site uses an optimistic
algorithm and the system uses a two-phase commit
protocol, every global schedule is serializable.

The two-phase commit protocol (Lampson and
Sturgis, 1979) is easily adapted in our system. We
therefore just need the additional transaction control
operations prepare, ready and done. The javascript
program naturally takes the role of the coordinator.

4 RELATED WORK

Concurrency control is a well known problem in the
domain of web applications.

A typical approach to solve this problem is the one
taken in JPernLite (Yang and Kaiser, 1999) that sup-
ports advanced transactional features for web applica-
tions. Unlike TransForm, JPernLite is a middleware
approach where an external transaction server that op-
erates independently of web servers provides the con-
currency control capabilities to client applications.

Cheetah (Pardon and Alonso, 2000) is a java-based

set of tools for building composite components that
interact transactionally. Its main contribution is the
composite system architecture and the support for
nested transactions that are not addressed in our ap-
proach.

Besides the use of external components there have
been attempts to build transactional capabilities into
the existing WWW infrastructure. In contrast to
TransForm, in (Lyon et al., 1998) web servers must
be extended to be compliant to the protocol that pro-
vides the concurrency control functionality. Then, a
client can explicitly submit operations as part of trans-
actions.

WebDav (E. James Whitehead and Goland, 1999)
is an HTTP extension for web servers that intend to
support locking of their web pages. In (Shadgar and
Holyer, 2004) the authors make use of WebDAV to
provide a methodology for accessing and authoring
databases.

Though this last approach comes close to our sys-
tem in addressing a database object via an URL,
TransForm is to the best of our knowledge unique in
that it provides transaction safe data access for web
application without the need for additional compo-
nents besides the web server.

5 CONCLUSION

In this paper we have presented TransForm, a novel
model for web applications that specifies the access
to data sources directly in the markup of a web page
and executes it with the help of a javascript program in

WEBIST 2006 - INTERNET TECHNOLOGY

170



the browser and a web service that forms the interface
to the data sources.

We have shown that this data access happens in a
transaction safe way. Thereby transactions span the
whole lifecycle of a web page and are independent of
the preceding server action if this server action gener-
ates the page without dependency on the database.

Hence, TransForm integrates well into other web
application frameworks providing them with a con-
currency control component.

We have presented the scheduler of our implemen-
tation, following an optimistic approach, as one of
several possible scheduler strategies. Optimistic con-
currency control schemes were designed under the
explicit assumption that conflicts among transactions
are rare events. This does not hold generally in the
context of web applications. So, our scheduler may
not be the best in all circumstances and therefore we
plan to examine other strategies and test them under
different server workloads.

Another field we are working on is the resource op-
timization. Currently only the transaction id is stored
in the browser while the service manages the bulk of
context information for all running transactions. In
order to increase the server performance we try to
shift parts of this context information to the browser,
which in turn submits it back to the service when re-
questing a transaction commit.

In this paper we have mainly presented the parts
of TransForm that deal with form processing. Albeit
an important part, it is only one aspect of the com-
plete framework. TransForm provides support for ar-
bitrary services that can be included into a web page
in a transaction safe way. They range from the inte-
gration of dynamically created parts of the application
to the embedding of commercial off-the-shelf compo-
nents (COTS).

REFERENCES

Bernstein, P. A. and Goodman, N. (1981). Concurrency
control in distributed database systems. ACM Comput.
Surv., 13(2):185–221.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web mod-
eling language (webml): a modeling language for de-
signing web sites. In Proceedings of the 9th interna-
tional World Wide Web conference on Computer net-
works : the international journal of computer and
telecommunications netowrking, pages 137–157, Am-
sterdam, The Netherlands, The Netherlands. North-
Holland Publishing Co.

Draheim, D. and Weber, G. (2004). Form-Oriented Analy-
sis: A New Methodology to Model Form-Based Appli-
cations. Springer Verlag.

E. James Whitehead, J. and Goland, Y. (1999). Webdav:
a network protocol for remote collaborative author-

ing on the web. In Proceedings of the Sixth Euro-
pean conference on Computer supported cooperative
work, pages 291–310, Norwell, MA, USA. Kluwer
Academic Publishers.

Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H., Masin-
ter, L., Leach, P., and Berners-Lee, T. (1998). Hyper-
text Transfer Protocol – HTTP/1.1. Technical Report
Internet RFC 2616, IETF. http://www.ietf.
org/rfc/rfc2616.txt.

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures.

Garrett, J. J. (2005). Ajax: A new approach to web
applications. http://www.adaptivepath.
com/publications/essays/archives/
000385.php.

Härder, T. (1984). Observations on optimistic concurrency
control schemes. Inf. Syst., 9(2):111–120.

Härder, T. and Reuter, A. (1983). Principles of transaction-
oriented database recovery. ACM Comput. Surv.,
15(4):287–317.

Kung, H. T. and Robinson, J. T. (1981). On optimistic meth-
ods for concurrency control. ACM Trans. Database
Syst., 6(2):213–226.

Lampson, B. W. and Sturgis, H. E. (1979). Crash recovery
in a distributed data storage system. Technical report.

Lewis, P. M., Bernstein, A., and Kifer, M. (2002).
Databases and Transaction Processing. Addison-
Wesley.

Lyon, J., Evans, K., and Klein, J. (1998). Trans-
action Internet Protocol. Technical Report Inter-
net RFC 2371. http://www.ietf.org/rfc/
rfc2372.txt?number=2372.

Pardon, G. and Alonso, G. (2000). Cheetah: a lightweight
transaction server for plug-and-play internet data
management. In VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases,
pages 210–219, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Shadgar, B. and Holyer, I. (2004). Adapting databases
and webdav protocol. In WWW ’04: Proceedings of
the 13th international conference on World Wide Web,
pages 612–620, New York, NY, USA. ACM Press.

W3C (1999). XML Path Language (XPath) Version 1.0.
Technical report.

W3C (2000). Simple Object Access Protocol (SOAP) 1.1.
Technical report.

Weikum, G. and Vossen, G. (2001). Transactional infor-
mation systems: theory, algorithms, and the practice
of concurrency control and recovery. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Yang, J. and Kaiser, G. E. (1999). Jpernlite: Extensible
transaction services for the www. IEEE Transactions
on Knowledge and Data Engineering, 11(4):639–657.

TRANSFORM: A TRANSACTION SAFE WEB APPLICATION MODEL

171


