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Abstract. In this work, we propose a dynamic task selection scheme for allocat-
ing real-world tasks to the members of a multi-robot team. Tasks in our research
are subject to precedence constraints and simultaneous execution requirements.
This problem is similar to the Resource Constrained Project Scheduling Problem
(RCPSP) in operations research. Particularly, we also deal with the missions that
may change their forms by introducing new online tasks during execution making
the problem more challenging besides the real world dynamism. Unpredictabil-
ity of the exact processing times of tasks, unstable cost values during runtime
and inconsistencies due to uncertain information form the main difficulties of
the task allocation problem for robot systems. Since the processing times of the
tasks are not exactly known in advance, we propose a dynamic task selection
scheme for the eligible tasks instead of scheduling all of them to eliminate the
redundant calculations. In our approach, globally efficient solutions are attained
by the mechanisms for forming priority based rough schedules by tentative coali-
tion commitments and selecting the most suitable tasks from these schedules. The
approach is distributed and computationally efficient.

1 Introduction

In this work, we propose theDynamic Priority-based Task Selection Scheme (DPTSS)
embedded in our framework,Distributed andEfficient Multi Robot - Cooperation
Framework (DEMiR-CF), for allocating complex tasks with precedence constraints
and simultaneous execution requirements by a multi robot team. Robustness is pro-
vided through the integratedPlan B Precaution Routines [1]. DEMiR-CF is evaluated
in three different domains, [2], [3], [4]. In this article, we present the formal details of
our task allocation approach and the simulation scenarios on the US NAVY’s simulator
for dynamic tasks and events.

M+ [5] is one of the earlier cooperation schemes addressing many real time issues
including plan merging paradigms. One of the latest works, Zlot’s [6] task-tree auc-
tion method combined with the combinatorial auction based task allocation scheme,
TraderBots [7], is suitable for the complex tasks represented as and/or trees. Lemarie
et al. proposes a task allocation scheme for multi-UAV cooperation by balancing work-
loads [8]. Gancet [9] proposes a coordination framework addressing the planning and
allocation issues. These systems use the auction based task allocation approach which
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is scalable and robust. However as Dias et al. report, still there are not certain proce-
dures for re-planning, changing decomposition of tasks, rescheduling during execution
[10]. Our main objective is to design the certain componentsin an integrated cooper-
ation framework to deal with these issues and make it usable for as many domains as
possible.

We formulate the general multi-robot multi task allocationproblem as a Resource
Constrained Project Scheduling Problem (RCPSP) [11]. Unpredictability of the exact
processing times of tasks, the unstable cost values during runtime and the inconsisten-
cies due to the uncertain information form the main difficulties of the task allocation
problem for the robot systems. To cope with these issues, we propose a dynamic task
selection scheme for the eligible tasks instead of scheduling all of them to eliminate
the redundant efforts. Particularly, we also deal with the real-world missions that may
change their forms by introducing new online tasks during the execution which makes
the problem more challenging besides the real world dynamism. Our generic task rep-
resentation is suitable for multi-robot teams and relaxes many assumptions for the real
world tasks. DPTSS provides a way to find a solution to the problem from a global
perspective by the mechanisms for forming priority based rough schedules and select-
ing the most suitable tasks from these schedules. Rough schedules are formed by the
tentative coalition commitments which are agreed upon by the robots for the tasks with
simultaneous execution requirements. Therefore since theallocations are not made from
scratch, the scheduling costs are reduced and the communication requirements are kept
at minimum as much as possible.

2 Problem Statement

We formulate the multi-robot task allocation problem for complex missions as a ver-
sion of the well known NP-Hard Resource Constrained ProjectScheduling Problem
(RCPSP) in operations research [11]. The adapted version ofthe formulation for our
multi robot task allocation problem on project tasks is given as follows. A complex
mission consists of a set of tasksT = {t1, ..., tn} which have to be performed by a
team of robotsR = {r1, ..., rm}. The tasks are interrelated by two type of constraints.
First, the precedence constraints are defined between activities. These are given by the
relationsti ≺ tj , meaning that the tasktj cannot start before the taskti is completed.
Second, a taskti requires a certain set of capabilitiesreqcapi and certain number of ro-
bots (resources)reqnoi to be performed. We relax the limitation onreqnoi by allowing
its change during the task execution based on the requirements which provides a more
realistic way of representing the real-world tasks. Therefore different alternative solu-
tions may be found to allocate the tasks to the robots based onthe environmental factors.
Based on the given notation, the Scheduling Problem (ScP ) is defined as determining
starting times of all the tasks in such a way that: the totalreqnoi for each taskti is less
than or equal to the number of available robots(RSj = ∪rj) with reqcapi ⊆ capj

(Condition-1,C1). The given precedence conditions (Condition-2,C2) are fulfilled ,
and the makespanCmax = max(Ci), 1 ≤ i ≤ n (Objective,O) is minimized, where
Ci = Si + pi is assumed to be the completion of taskti, whereSi is the actual starting
time andpi is the actual processing time respectively. It’s not alwayspossible to expect
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the exact processing times(p) of the tasks of real world missions in which robots in-
volve. However to form a complete schedule, it is necessary to make an approximation
in terms of the best knowledge available. Since the schedules are subject to change,
we propose a way to allocate the tasks incrementally to the robots without ignoring the
overall global solution quality instead of scheduling all the tasks. Therefore the main
objective becomes determining which robot should do in a precedence and resource
feasible manner whenever a new task needs to be assigned, instead of scheduling all
the tasks from scratch. Although it is not a concern during the assignments are made,
preemption (i.e. yielding) is possible to maintain the solution quality and to handle the
failures during the execution. The main problem that we try to solve is given as follows:
The Selection Problem (SlP ) is determining the next action to select (either being idle
or executing a task) for each robot in such a way that theC1 and theC2 are fulfilled
and theO is minimized.

Missions can be represented by directed acyclic graphs (DAG) where each node
represents a task (with requirements) and the directed arcs(conjunctive arcs) represent
the precedence constraints among them. A sample graph for a small size mission for
moving the boxes to a stamping machine and dropping them in a given order, then
cleaning the room is given in Figure 1. Before dropping boxesinto the mailbox, they
should first be moved to the stamping machine. The room can only be cleaned after both
boxes are moved. Since the box 1 is heavy, two robots (reqno) are needed to move and
drop the box. Although this graph shows the relationships onthe dependencies among
tasks, it does not show which robot performs which task in sequence.

The following definitions are needed for our formulation to the solution. Intuitively,
robots do not deal with the ineligible tasks(Tφ) as a union of tasks that are already
achieved or that are not eligible from the capabilities perspective. The eligible tasks
(TEj = T \ Tφ) for the robotrj consists of only the considerable tasks that are neither
in execution (Tie) nor achieved.Pi is defined as the set of all predecessor tasks of the
taskti. We define an active task set as:
TAj = {{ti} | reqcapi ⊆ capj , Pi is completed,0 < i ≤ n}, (TAj ⊆ TEj), whereas
an inactive task setTIj = TEj\TAj contains the tasks for which the robotrj , reqcapi ⊆
capj , but the precedence constraints are not satisfied yet. Incremental allocation is
achieved in our system by means of the dynamic selection of a suitable task fromTAj

by taking into consideration of theTEj .

We call a multi-robot group (sub-team) formed to execute a particular task simul-
taneously and synchronously as a coalition [12]. In this research, we particularly deal
with the types of tasks that require same type of capabilities within a coalition to ex-
ecute a task although the overall mission requires a heterogeneous team and diverse
capabilities. Shehory and Krauss [13] present an algorithmfor coalition formation in
cooperative multi agent systems. During the coalition value calculations, the capabili-
ties of agents are taken into consideration. In multi robot systems, the cost values are
a function of not only the capabilities but also the physicalconditions, which change
during execution. Vig and Adams [14] state the differences of the multi-robot and the
multi-agent coalition formation issues from the sensor possessive point of view. Another
important factor in multi-robot systems is the changing cost values during runtime.
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Fig. 1. The Directed Acyclic Mission Graph for dropping the stamped boxes into themailbox in
an order. The boxes (1,2) are moved to the stamping machine and then dropped. After the boxes
are moved to the stamping machine, the room can be cleaned.

3 Proposed Approach

DEMiR-CF is for multi-robot teams that must cooperate/coordinate to achieve complex
missions including tightly coupled tasks that require diverse capabilities and collective
work [1]. It combinesauctions, coalition maintenance and recovery routines calledPlan
B precaution routines to provide an overall system that finds (near-) optimal solutions
in the face of noisy communication and robot failures.

3.1 The Dynamic Priority-based Task Selection Scheme (DPTSS)

In our approach, the instantaneous, precedence and resource feasible decisions are made
by the robots’ global time extended view of the problem from the local perspectives.
While completion of the mission is the highest priority goal objective, additionally
other performance objectives can also be achieved. The timeextended consideration
is achieved through forming the rough schedules by the robots. Since the schedules
are highly probable to change in dynamic environments and furthermore robots also
have the real time burdens of path planning, mapping etc., the schedules formed in our
approach are tentative and constructed by computationallycheap methods.

A critical task is a task that has inflexibility from the resources point of view and
the robot is suitable for that task. Level of a node (task) represents the depth of the node
in the mission graph in reversed order. The level of a node is assigned as the value in-
crementing by one from the maximum level of the the succeeding nodes (connected by
the conjunctive arcs). The coalition reservation tables are built for the critical tasks rep-
resenting the committed robots for the execution. Depending on the number of entries,
the possibility of mission completion can be attained. The reservation tables present
the future commitments although they are roughly determined. Each robot generates its
rough schedule as a dynamic priority queue by considering critical task set (TC), the
coalition reservation entries, the eligible tasks(TE), the conjunctive arcs and the re-
quirements. Since each robotrj has different capabilities, the eligible setsTEj and the
priority queue entries may be different. Sometimes the uncertain information (e.g. re-
lated to a local online task) or the unexpected events (e.g. detection of the fuel leakage)
may result in this difference although the capabilities arethe same. The rough sched-
ule generation is implemented by the Algorithm 1.curcsj represents the remaining
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capacity of robotrj andreqcs(i) represents the required capacity for taskti in terms
of the consumable resources (e.g fuel). The priority queue is formed by first taking into

Algorithm 1 Rough Schedule Generation Algorithm.
ts = φ; R = curcsj ; TRj = φ

C = TEj \TAj prioritized by the level values in descending order (the tie breaking rules:type
priority andreqno)
for eachti ∈ C and ti ∈ TCj do

R = R − reqcs(i)
if R < 0 then

unachievable = true; break
else

TRj = TRj ∪ ti

end if
end for
if (unachievable‖ R − reqcs(top(TAj)) > 0 ‖ top(TAj) ∈ TCj then

ts = top(TAj)
end if

consideration of the conjunctive arcs of the task graph. If there are no online tasks, or
invalidations, the order of the tasks which are connected bythe conjunctive arcs remains
the same in the priority queue although there may be additional intermediate entries in
the queue. The dynamic task selection is implemented by by using the requirements of
the rough schedule (Algorithm 2). The tie breaking rules while forming the active list
(TA) is given from the highest to the lowest importance as follows: The least flexibility
(reqno), the level value of the node, and the id. The fundamental decision that each
robot must make is selecting the most suitable action for a task from a set of active
tasks (TA) by consideringTE . The four different decisions are: keeping execution of
the same task (if any), joining to a coalition, forming a new coalition to perform a free
task and being idle.

In DEMiR-CF, the standard auction steps of CNP [15] are implemented to announce
the intentions on the task execution and select thereqno number of robots for a coalition
in a cost-profitable, scalable and tractable way. Additionally Plan B precaution routines
are added to check validness in these negotiation steps. Each robot intending to execute
a task announces an auction after determining the rough schedules.

Maintaining the coalition reservation entries are implemented by negotiations. The
robots maintain the coalition reservation entries by proposing the coalition commitment
requests to the specific robots that can execute the corresponding task. The coalition
reservations only show the tentative agreements which can be canceled in future.

Each robot keeps the models of the tasks and the other robots in their world knowl-
edge to track the internal and external inconsistencies. The complete set of precaution
routines to handle several contingencies can be found in [1].
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Algorithm 2 DPTSS Algorithm for robotrj .
Determine theTEj , TAj ⊆ TEj andTCj ⊆ TEj

Maintain the coalition reservation entries for the tasks inTEj

Generate the Rough Schedule (TRj)
Select the active tasktS from TAj to process and perform one of the following
if ts 6= φ then

if ts is the current taskthen
Continue to the current execution

else
Offer an auction for forming a new coalition or directly begin execution

end if
else

if R + top(Tie) ≤ curcsj and profitable to join a coalitionthen
Join a coalition

else
Be idle

end if
end if

4 Experimental Results

In our earlier work, we apply the rough schedule generation scheme for the MTSP
(open loop-Multiple Traveling Salesman Problem) on multi-robot systems [3]. Since
the rough schedules are generated tentatively, quality of the solution is improved over
time if the initial quality is degraded. Furthermore, an incremental assignment approach
saves a considerable computation overhead. In this work, weevaluate our approach

Table 1. The Cost Evaluations for the tasks of the application domain.

Task Type Cost Function Taken Action

Search Task Distance to the region interest points [4] In depth analysis is needed.

Intercept Task Expected time to achieve the task:

tE = E[dist(rj , ti)]/E[speed −

diff(rj , ti)]

Immediate response is needed. One step auction or

direct execution is applied.

in the US NAVY’s realistic simulator [16]. Particularly in this experiment, the mission
consists of the online tasks, generation time of which are not known in advance by the
robots (Autonomous Underwater Vehicles). The overall mission is searching a prede-
fined area and protecting the deployment ship from any hostile intents. The initial graph
of the application mission is given in Figure 2. Initially the mission consists of only the
Search Task. Althoughreqno = 1 for this task, since there are no other tasks and the ro-
bots have enough fuel capacities, they execute the task as a coalition and divide the area
to search. The Search Task execution with three robots and the corresponding search
areas are illustrated in Figure 3. The robots patrol the sub-areas which are determined
after the negotiations [4]. Therefore, although there is only one task on the higher level,
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Fig. 2. Initial Mission graph consists of only Search Task.
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Fig. 3. (a) Mission execution begins. The overall area is divided into regions related to the gener-
ated task instances. (b) Robots patrol the area in the corresponding regions.

the robots create instances of the Search Task (Search 1-3) as if each instance is another
separate task. If there are no hostile intentions, the robots only search the area.

Whenever a hostile diver is detected by the robots, a related interception task is
generated. The execution trace after detection of the hostile diver is illustrated in Fig-
ure 4. R2 chases performing the search task and immediately switches to the Intercept
Task. The hostile diver attacks to R2 by using its missiles. Therefore R2 needs to return
back to the deployment area while R1 takes control of the Intercept Task. R1 can deter
the diver but waits until the threat entirely disappears. The evolving mission graph is
illustrated in Figure 5. The robots may need to generate local tasks (e.g. Repair/Refuel
Task,) as in Figure 5 (d) making the graphs different even when theywork cooperatively
for the same objective (Figure 5 (c-d)). In Figure 5 (c), although executing the Intercept
Task, R1 can make a coalition commitment assuming it will succeed in a predefined
time (described as TBD), R2 cannot make any coalition commitment for the search
task because its future operations depend on its recovery time.

Cost evaluation for the tasks are implemented accordingly depending on the task.
While the robots try to optimize the fuel levels for the SearchTask, the Intercept Task
requires immediate response and time minimization (Table 1). Cost evaluation for the
search task is implemented by dividing the search area into regions and evaluating the
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Fig. 4. A sample execution trace under highly dynamic task situations. (a) The robots begin
searching the area. (b) R2 recognizes the hostile intent. After detection, the hostile vehicle at-
tacks to R2. (c) R2 returns to the deployment ship. R1 takes control of theintercept task. (d) R1
and R3 continue to searching the area.

distance values for the interest points [4]. For the intercept task, the expected time to
achieve (intercept the diver) the task is taken as the cost value. The Intercept Task is
assumed to be achieved whenever the hostile threat is believed to be disappeared. The
emergency tasks are directly executed. However, in this case, parallel executions may
occur and should be resolved. This facility is provided in our framework by thePlan
B precaution routines. In a sample scenario with limited communication ranges, the
parallel executions arise for the Intercept Task as in Figure 6. However these inconsis-
tencies are resolved by thePlan B precaution routines whenever robots enter into the
communication range.

5 Conclusion

In this work, we present our dynamic and distributed task selection scheme (DPTSS)
embedded in our generic cooperation framework, DEMiR-CF. The dynamic task selec-
tion scheme ensures that the instantaneous, precedence andresource feasible decisions
are made by the robots’ global time extended views of the problem from the local per-
spectives. The framework combines a distributed auction based allocation method and
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Fig. 5. Mission graph and allocations evolving through time accordingly.
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Fig. 6. Under limited communication ranges, parallel executions may occur to be resolved. R3
switches to the search task while R1 executes the intercept task.

Plan B precaution routines to handle contingencies and realworld limitations and to
maintain the high solution quality with the available resources. The preliminary results
on complex missions, as presented in this paper, reveal the integration of real-world
task allocation and execution; immediate and effective handling of the online tasks and
events and the solution quality maintenance performance ofDEMiR-CF is promising.
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