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Abstract. This paper presents fast optimal algorithm for approximation of a
shape boundary with a polygon having minimum number of vertices for a given
maximum tolerable approximation error. For this purpose, the directed acyclic
graph (DAG) formulation of the polygonal approximation problem is considered.
The reduction in computational complexity is achieved by reducing the num-
ber of admissible edges in the DAG and speeding up the process of determining
whether the edge distortion is within the tolerable limit. The proposed algorithm
is compared with other optimal algorithms in terms of the execution time.

1 Introduction

Representation of shape boundaries is of great interest in a number of fields such as
object-based video coding, video content retrieval based on object descriptions, object
recognition etc. The efficient way to represent shape boundaries is the polygonal ap-
proximation. The optimality of polygonal representation with respect to number of ver-
tices is relevant in applications involving pattern analysis, recognition, matching and
search and retrieval because in these applications, the speed of algorithms is propor-
tional to the number of vertices of the polygon.

The classical method for polygonal approximation is the iterative refinement method
(IRM) [1][2] in which a shape boundary is recursively split into polygon edges until the
maximum deviation between the boundary and the polygon lies below a predefined
error threshold. However, IRM is not the optimal solution because it does not always
yield the minimal number of polygon vertices. Several methods have been proposed for
polygonal approximation that provide strictly optimal solutions according to a certain
optimization criterion. A scan-along algorithm for optimum polygon approximation
of planar curves that yields the minimal number of edges is presented in [3]. A dy-
namic programming algorithm for optimal polygon approximation is presented in [4].
Recently in [5], the rate-distortion optimized polygonal approximation is obtained by
formulating the problem as finding the shortest path in a single source weighted directed
acyclic graph (DAG). The optimal approaches are in general computationally intensive
and are not suitable for real-time applications. Therefore, reducing the computational
complexity of optimal approaches is very important.
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In the DAG formulation of the optimal polygonal approximation problem, the com-
putational complexity can be decreased by reducing the number of edges in the DAG.
In the sliding window method proposed in [6], the number of edges in the DAG formu-
lation are reduced by considering only those edges from eachvertex which lie within a
window of predefined size starting from that vertex. However, the ad-hoc window size
may yield sub-optimal results as demonstrated through our experimental results pre-
sented in Section 6. Another method for reducing the edges inthe DAG formulation is
proposed in [7]. This method utilizes the fact that, as we scan-along a shape boundary,
there can no longer be any admissible edge beyond the boundary scan-point at which
the edge distortion exceeds twice the value of the error threshold.

This paper presents an algorithm for optimal polygonal approximation of shape
boundaries that yields significantly better speed-up performance as compared to other
optimal algorithms. The main idea of the proposed algorithmis to reduce the complexity
associated with the computation of edge distortion in addition to the reduction of the
number of edges.

The paper is organized as follows. Section 2 states the problem of optimal polygo-
nal approximation. The DAG formulation of the problem is introduced in Section 3. In
Section 4, the reference algorithms for optimal polygonal approximation are explained.
The proposed algorithm is described in Section 5. The performance of the proposed al-
gorithm is compared with that of the reference algorithms inSection 6. The conclusions
are given in Section 7.

2 Problem Statement

Suppose a shape boundary is represented by a closed digital contour denoted by the
ordered setC = {c0, c1, c2, . . . cNC

}, wherec0 = cNC
. GivenC and an error threshold

δ, we are required to obtain a polygonP with minimal number of vertices such that
P ⊆ C and the maximal distance betweenP andC is less than or equal toδ. We
denote such a polygon by the ordered setP = {p0, p1, p2, . . . pNP

}. At this stage, it is
assumed thatp0 = c0.

Let −−−−−→pk−1, pk be the polygon edge that approximates the partial contour{ci =
pk−1, ci+1, ...ci+L = pk} containing(L + 1) points as shown in Fig. 1. The edge
distortion of

−−−−→pk−1 pk, denoted byd(pk−1 − pk), is defined as the maximum distance
between

−−−−→pk−1 pk from the partial contour which it approximates. Mathematically,

d(pk−1, pk) = max
cj∈{ci=pk−1,ci+1,...ci+1=pk}

d′ (pk−1, pk, cj) , (1)

whered′(pk−1, pk, cj) denotes the distance of the contour pointcj from the edge−−−−→pk−1pk.
Let D(P ) denote the maximal distance of the polygon P from the contourC. We

can expressD(P ) as the function of polygon edge distortions, as follows.

D(P ) = max
k∈{1,... Np}

d (pk−1, pk) . (2)
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Fig. 1.Computation of edge distortion.

The optimization problem can be stated as,

min Np

subject to
D(P ) ≤ δ (3)

3 Formulation of the problem in the form of directed acyclic graph

Let a weighted directed acyclic graph with the set of graph verticesV and the set of
graph edgesE be denoted asG = (V,E). A directed graph edge is denoted by the
ordered pair(vi, vj) ∈ E, which implies that the edge starts at the vertexvi and ends
at vertexvj . Let the graph edge setE consist of every possible combination of (vi, vj)
such thati < j. The optimal polygonal approximation problem can be formulated using
a DAG such that the vertices and edges of the DAG correspond topossible vertices and
edges of the polygonal approximation, respectively. Consider a DAG withV = C such
that a directed graph edge(vi, vj) represents the polygon edge−−→cicj . Furthermore, let
the weightw(vi, vj) of a graph edge(vi, vj) depend on the edge distortiond(ci, cj) of
the polygon edge−−→cicj as follows.

w(vi, vj) =

{

∞, if d(ci, cj) > δ;

1, if d(ci, cj) ≤ δ.
(4)

An edge is called an admissible edge if its weight is equal to one; otherwise it is
called an inadmissible edge. The length of a path in this DAG becomes infinity if that
path includes an inadmissible edge (i.e., an edge corresponding to the polygon edge
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distortion greater thanδ). Therefore the DAG shortest path algorithm will not select
these paths. As a result, every path that starts atc0 and ends atcNc

and has finite length
represents a valid polygonal approximation. Therefore, the shortest of all these paths
corresponds to the polygon approximation with smallest number of vertices, which is
the solution to the problem in (3).

4 Reference Algorithms

The conventional algorithm (CA) for the determination of the optimal polygon approx-
imation is through exhaustive search for the single source shortest path within the DAG
[5][7]. Let Ri represent the minimum number of vertices that connect the initial ver-
tex v0 to ith vertexvi in the DAG. The conventional optimal algorithm [7] is given as
follows.

R0 = 0;
for (i = 1, . . . NC) {

Ri = ∞

}
for (i = 0, . . . NC − 1) {

for (j = i + 1, . . . NC) {
calculate edge distortiond(ci, cj);
if (d(ci, cj) > δ) continue j;
if (Ri + 1 < Rj)

{Rj = Ri + 1;βj = i; }
}

}

After execution of the above algorithm, a(Rj , βj) pair would have been stored at
each vertex position. The optimal polygonP = {p0 = c0, p1, ...pNP

= cNC
} is then

obtained by tracing back the pointers starting fromβNC
as follows.

NP = RNC
;

pNP
= cNC

;
k = NC ;
for (i = NP , . . . 0) {

pi−1 = cβk

k = βk

}

The edge distortiond(ci, cj) of the edge connectingci ≡ (xi, yi) to cj ≡ (xj , yj) is
computed using (1) as follows. Letck ≡ (xk, yk) be a boundary point betweenci and
cj . The distance ofck from the edge−−→cicj is given by [6],
d′(pk−1, pk, cj)

=
|(xk − xi)(yj − yi) − (yk − yi)(xj − xi)|

√

(xi − xj)2 + (yi − yj)2
. (5)
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The edge distortiond(ci, cj) is then computed as the maximum distance of the boundary
points that lie betweenci andcj , from the edge−−→cicj . If there areL boundary points
between the two end points of an edge, thenL distances need to be computed using (5)
while determining the edge distortion of that edge. The conventional algorithm involves
the determination ofNC(NC−1)

2 number of edge distortions. Therefore, the conventional
algorithm is computationally intensive.

In [6], a sliding window is employed to reduce the numbers of edges in the DAG and
thereby reduce the total number of edge distortions that need to be computed. The main
idea is to restrict the number of admissible edges for each vertex within a window of
fixed length. The length of the window is predefined with an ad-hoc value; the smaller
the size of the window, the higher the speed-up. However, smaller window size may not
include all the admissible edges and therefore, it is less likely to yield optimal number
of vertices. The sliding window algorithm (SWA) provides improvement in speed at the
cost of being sub-optimal.

Another fast algorithm called Modified Schuster & Katsaggelos algorithm (MSK)
is presented in [7]. The main idea in this algorithm is to declare all the edges that lie
beyond the graph vertex at which the polygon edge distortionexceeds twice the error
threshold as inadmissible edges. This is equivalent to adapting the window size as we
scan along the graph based on the edge distortion observed atthe current vertex.

5 Proposed Computationally Efficient Optimal Algorithm

The reference fast algorithms described in the previous section focus only on reducing
the number of edges in the DAG; thus, they do not reduce the complexity associated
with the computation of edge distortion to determine if thatedge is a valid edge. In
order to achieve higher speed-up performance, we employ a different approach called
cone intersection method to the problem of determining whether an edge is a valid edge.

Suppose we wish to determine the set of all admissible edges starting from a vertex
ci. Consider the pointci+1. Let Ti+1 be the cone of straight lines formed by a disk of
radiusδ centered atci+1. The set of the straight lines fromci that lie within a distance
δ from ci+1 are within the coneTi+1. Considering the next scan-point on the boundary,
ci+2, the set of the admissible straight lines fromci that lie within a distanceδ from
bothci+1 andci+2 are within the cone,Ti+1

⋂

Ti+2. For a boundary pointcj , the cone
of admissible straight lines that lie within a distance ofδ from all the boundary points
in the current scan isSj = (Ti+1

⋂

Ti+2 . . .
⋂

Tj). At each stage, we test if the current
boundary pointcj lies within the coneSj . If the test succeeds, then the edge−−→cicj is an
admissible edge; otherwise, it is an inadmissible edge.

Proposed Algorithm:

R0 = 0;
for (i = 1, . . . NC) {

Ri = ∞

}
for (i = 0, . . . NC − 1) {
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for (j = i + 1, . . . NC) {

calculate the coneSj of admissible
straight lines;
if Sj is empty, breakj;
if −−→cicj does not belong toSj continue j;
if (Ri + 1 < Rj)

{Rj = Ri + 1;βj = i; }

}

}
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Fig. 2. Illustration of cone intersection method.

We propose the following procedure to calculate the coneSj of admissible straight
lines starting fromci, and to test if−−→cicj belongs toSj . The first step is to calculate
the angle of cone of straight lines shown in. Fig. 2. The angles are measured from a
reference vector−−→cicr, wherecr is the first point along the scan that lies at a distance
greater thanδ from ci. The edges that lie before the reference vector are all admissible
edges.

Let ci ≡ (xi, yi), cr ≡ (xr, yr), andcj ≡ (xj , yj). We define,(xj
′, yj

′) = (xj −
xi, yj − yi) and(x′

r, y
′
r) = (xr − xi, yr − yi). From Fig. 2, we have,

γ2 = arc tan

(

δ
√

x′
j
2 + y′

j
2 − δ2

)

(6)

α = arc tan

(

x′
ry

′
j − y′

rx
′
j

x′
rx

′
j + y′

ry
′
j

)

(7)
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(a) (b)
Fig. 3.Original Boundaries: (a)Kid1 and (b)Kid2.

Sincearc tan is in the principal range between−π/2 andπ/2, the appropriate value of
α under special cases is calculated as follows. We addπ to α to get new value ofα if
any of the following are true: (a)α < 0 and(x′

ry
′
j − y′

rx
′
j) > 0 (this condition true ifα

is in the 2nd quadrant), (b)α > 0 and(x′
ry

′
j − y′

rx
′
j) < 0 (this condition true ifα is in

the 3rd quadrant). The anglesθ1 andθ2 are calculated as follows.

θ2 = α + γ2 (8)

θ1 = α − γ2 (9)

The algorithm for determining the coneSj of admissible straight lines starting fromci,
and testing if−−→cicj belongs toSj is given as follows.

Si = ∞;
if (j < r) {

Sj = ∞;
−−→cicj ∈ Sj

}
else{

T = [θ1, θ2];
Sj = T

⋂

Sj−1.

if (α ∈ Sj)
(−−→cicj ∈ Sj);

else(−−→cicj /∈ Sj);

}

6 Experimental Results

The proposed and the reference algorithms are evaluated using the shape boundaries
Kid1 andKid2 consisting of 486 and 609 points, respectively. The shape boundaries are
shown in Fig. 3. The tolerable approximation error threshold δ is varied in steps from
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Fig. 4.Comparison of speed-up of proposed optimal algorithm with other algorithms forKid1.

0 to 10. Two separate tests are performed for MSK algorithm bysetting window size
to 5 and 20. The execution times of each algorithm is obtainedfrom the profiling in-
formation generated using the Rational’s Quantify (now part of IBM’s Purify) profiling
tool. The simulations are carried out on a desktop PC with 866MHz Intel Pentium III
processor.

The execution time for CA changes by only negligibly small value when the value
of δ is varied. In our experiments, the execution time for CA is approximately 2751
milliseconds forKid1 and 6086 milliseconds forKid2. We compare the performance of
MSK, SWA and proposed algorithms for fast polygonal approximation with respect to
that of CA. The performance is measured in terms of number of polygonal vertices and
speed-up factor. Speed-up factor of a fast polygonal approximation algorithm is defined
as the ratio of the execution time of the conventional optimal algorithm (CA) to the that
of the fast algorithm.

Fig. 4 and Fig. 5 show the comparison of speed-up performanceof the proposed
algorithm with that of other fast algorithms forKid1 andKid2, respectively. Table 1
shows the number of vertices obtained with each algorithm. As compared to CA, the
proposed algorithm is more than 350 times faster atδ = 1 and more than 200 times
faster atδ = 2. In our experiments, the proposed algorithm is more than 2 times faster
than the MSK forδ > 0.3. For δ less than or equal to 0.3, the MSK is about 1.2
times faster than the proposed algorithm; this is because the number of edge distortion
computations in the MSK is small when the value ofδ is very small. For SW=5, the
SWA is always faster than the proposed algorithm; but the results of SWA are always
sub-optimal (i.e., the number of vertices are more than those obtained with the optimal
algorithms) as shown in Table 1. For SW=20, the SWA is slower than the proposed
algorithm for lower values ofδ and is faster for higher values ofδ; again the results of
SWA are sub-optimal forδ ≥ 1.0 as shown in Table 1. Due to the fixed window size,
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Fig. 5.Comparison of speed-up of proposed optimal algorithm with other algorithms forKid2.

the speed-up of SWA remains nearly the same for all values ofδ. Whereas, the speed-up
of proposed and MSK algorithms decreases with increasing value of δ.

The polygon approximations of the boundaries obtained withthe proposed algo-
rithm are shown in Fig. 6.

7 Conclusion

The proposed algorithm for optimal polygonal approximation is computationally very
efficient over a wide range of approximation error. On an average, it is about 450 times
faster than the conventional optimal algorithm and about 5 times faster than the MSK
algorithm [7]. Due to high speed-up performance, the proposed algorithm is suitable
for real-time shape representation and coding applications.
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Table 1.Number of vertices in the polygonal approximation.

Tolerable Number of vertices in the
error polygonal approximation

threshold Kid1 Kid2
(δ) CA, MSK, SWA SWA CA, MSK, SWA SWA

Proposed Algo.( SW=5) ( SW=20)Proposed Algo.( SW=5) ( SW=20)

0 246 257 246 308 327 308

0.3 211 222 211 254 278 254

0.5 96 133 96 138 182 138

1.0 45 96 47 57 126 59

1.5 30 94 34 42 123 47

2.0 21 94 29 34 122 40

5.0 11 94 24 17 122 31

10.0 6 94 24 10 122 31

(a) (b) (c) (d) (e) (f)
Fig. 6. Polygonal approximations using proposed optimal algorithm. (a)-(c):Kid1 at δ = 0.5,
δ = 1, andδ = 2, respectively. (d)-(f):Kid2 at δ = 0.5, δ = 1, andδ = 2, respectively.
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