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Abstract: In this paper, we introduce a new approach to implementing the 
apriori algorithm in association rule mining.  We show that by omitting the join 
step in the classical apriori algoritm, and applying the apriori property to each 
transaction in the transactions database, we get the same results.  We use a 
simulation study to compare the performances of the classical to the joinless 
algorithm under varying conditions and draw the following conclusions: (1) the 
joinless algorithm offers better space management; (2) the joinless apriori 
algorithm is faster for small, but slower for large, average transaction widths.  
We analyze the two algorithms to determine factors responsible for their 
relative performances.  The new approach is demonstrated with an application 
to web mining of navigation sequences. 

1   Introduction 

Data mining aims to find useful patterns in large databases. Association rule mining is 
a data mining technique that finds interesting correlations among a large set of data 
items [1]. The mining results are presented as association rules—implications with 
one or more items at the antecedent, and one or more at the consequent, of the rule. 
Given a database D of transactions T, with each transaction comprising a set of items 
(i.e., itemset), an association rule A⇒ B  for the database is valid if A⊂T, B⊂T, 
A∩B=φ, and A∪B and P(B/A) meet some minimum support and confidence 
thresholds respectively. 

The apriori algorithm [2, 3] has been influential in association rule mining (see for 
example, [4-7]). The algorithm uses the apriori property – which states that all 
nonempty subsets of a frequent itemset are also frequent – to reduce the search space 
for determining candidate itemsets for inclusion in the rules set. The classical apriori 
algorithm uses a join in each of n database scans to determine candidate itemsets for 
inclusion in the rules set. Two main drawbacks to the algorithm are: (1) the number of 
candidate itemsets generated by the join may be too big to fit into main memory, and 
(2) high latency resulting from the need to scan the database during each iteration.  
Tackling any of these problems is likely to lead to significant improvement on the 
efficiency of the mining process. 

In this paper, we introduce a new joinless apriori algorithm that significantly 
reduces the search space required to determine frequent itemsets.  The key difference 
between this and the classical algorithm relates to the stage at which the apriori 
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property is applied as the transaction database is scanned.  In the kth iteration of the 
classical algorithm, the apriori property is applied to the results of a join of frequent 
(k-1)-itemsets to determine candidate k-itemsets, and the database scanned to 
determine which of the candidate itemsets are frequent.  In the joinless algorithm, the 
join is eliminated: during the kth database scan the apriori property is applied to every 
transaction with length l (l ≥ k) to determine candidate k-itemsets, and their support 
counts incremented to enable determination of frequent k-itemsets at the end of the 
iteration. 

The rest of this paper includes:.differences between the two algorithms (Section 
2); description of data and adaptation of the new algorithm to the data (Section 3); our 
results and discussion (Section 4); and conclusions (Section 5). 

2   The Classical and Joinless Apriori Algorithms 

The classical apriori algorithm uses prior knowledge (the apriori property) of frequent 
k-itemsets to prune the search space for the mining of (k+1)-itemsets.  It begins by 
finding frequent 1-itemsets L1, L1 used to determine L2, L2 used to determine L3, etc.   
The generation of Lk is a 2-step process comprising a join and a prune steps.  The join 
step determines frequent k-itemsets (Lk) from frequent (k-1)-itemsets (Lk-1) by joining 
Lk-1 to itself.  This results in k-itemsets to which the apriority property is applied, to 
generate candidate k-itemsets (Ck), which may or may not be frequent.  The prune 
step scans the transactions database to determine which of the candidate itemsets are 
frequent; these are added to set Lk.  

The join step joins itemsets l1, l2, … lk-1 of Lk-1 to each other, where two itemsets lI, 
lJ of Lk-1 are joinable if their first k-2 items are common (i.e., (lI[1] = lJ[1]) ∧ (lI[2] = 
lJ[2]) ∧ … ∧ (lI[k-3] = lJ[k-3]) ∧ (lI[k-2] = lJ[k-2]) ∧ (lI[k-1] < lJ[k-1]), where li[j] is 
the jth item in itemset li).  To illustrate the working of the classical apriori algorithm, 
let the database D, of transactions be represented in Figure 1, and minimum support 
count be 3.  The steps required to generate frequent itemsets are illustrated in Figure 
2.  As can be seen from the figure, the algorithm iterates through the following steps: 

• Determine candidate k-itemsets, Ck 
• Scan the database to determine support count for each of the itemsets in Ck 
• Compare the support count for each itemset in Ck with minimum support count, 

to determine frequent itemsets Lk 
• Join Lk to itself and apply the apriori property to determine Ck+1 

Consider in greater detail, the application of the join and scan steps to determine 
candidate itemsets and their support counts of.  Consider for example, the join 
between L2 and itself, which generates an initial candidate 3-itemsets C3

′. 
1. Join L2 to itself , where L2 = {{AB}{AC}{AE}{BC}{BE}} 

• Initial candidate 3-itemsets C3
′:  {{ABC}{ABE}{ACE}{BCE}} 

2. Determine the 2-itemset subsequences: 
• (ABC): {AB}{AC}{BC} 
• (ABE): {AB}{AE}{BE} 
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• (ACE): {AC}{AE}{CE} 
• (BCE): {BC}{BE}{CE} 

3. Use the apriori property to reject all members of C3
′ that have one or more 2-

itemset subsequences that are not present in L2 (i.e., in Lk-1), i.e., whose support 
counts are less than the minimum support count.  This leaves candidate 3-itemset 
subsequences C3 = {{ABC}{ABE}}.  In the example, CE does not have sufficient 
support and is crossed out. 

4. Determine if the itemsets in C3 are frequent by scanning the database for all 3-
itemset subsequences and counting the number of occurrences of each C3 itemsets. 
• {ABC}: T001, T006, T007 (3 occurrences) 
• {ABE}: T001, T007, T008 (3 occurrences) 

We notice that both of the candidate 3-itemsets selected above meet the minimum 
support count of 3 in this example, and so they are both included in L3. 
The main benefit of the apriori property is the reduction in the number of candidate 
itemsets, which leads to a reduction in both the space- and time-complexities of the 
algorithm. But the number of candidate itemsets generated may still be too much to fit 
into main memory. We now show how steps 1– 4 above are implemented using the 
joinless apriori algorithm. 
1. Scan the database for transactions involving 3 or more items, and determine an 

initial candidate 3-itemsets C3
′. 

• T001 (ABCE): {ABC}{ABE}{ACE}{BCE} 
• T003 (ABD): {ABD} 
• T006 (ABC): {ABC} 
• T007 (ABCE): {ABC}{ABE}{ACE}{BCE} 
• T008 (ABE): {ABE} 

TID Items TID Items TID Items TID Items 
T001 A,B,C,E T003 A,B,D T005 B,C T007 A,B,C,E 
T002 B,C T004 A,C T006 A,B,C T008 A,B,E 

Fig. 1. Sample transactions data used to show the working of the classical and joinless apriori 
algorithms 
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Step 1a: Scan database D for count of each candidate 1-itemset C1 
Step 1b: Compare C1 itemsets with minimum support & generate L1 

 C1 Itemset Support L1 Itemset Support 
 {A} 6 {A} 6 
 {B} 7 {B} 7 
 {C} 6 {C} 6 
 {D} 1

Compare C1 
support count with 
minimum support

{E} 3 
 

Scan D to get 
candidate 1-itemset 

counts 

{E} 3  
Step 2a: Join L1 to itself and use the Apriori property to generate candidate 2-itemsets C2 
Step 2b: Scan database D for count of each C2 
Step 2c: Compare C2 itemsets with minimum support & generate L2 

Itemset C2 itemset Support L2  Support  
{A,B} {A,B} 5 {A,B} 5 
{A,C} {A,C} 4 {A,C} 4 
{A,E} {A,E} 3 {A,E} 3 
{B,C} {B,C} 5 {B,C} 5 
{B,E} {B,E} 3 {B,E} 3 

Join(L1 
L1) & 
apply 

Apriori 

{C,E} 

Scan D to get 
candidate 2-itemset 

counts 

{C,E} 2

Compare C2 
support count with 
minimum support

Step 3a: Join L2 to itself and use the Apriori property to generate candidate 2-itemsets C3 
Step 3b: Scan database D for count of each C3 
Step 3c: Compare C3 itemsets with minimum support & generate L3 

Itemset C3 Itemset Support L3 Itemset Support 
{A,B,C} {A,B,C} 3 {A,B,C} 3 

Join(L2 
L2) & 
apply 

Apriori 
{A,B,E} 

Scan D to get 
candidate 3-itemset 

counts 
{A,B,E} 3 

Compare C3 
support count with 
minimum support

{A,B,E} 3 

Fig. 2. The mechanics of the classical apriori algorithm applied to the database in Figure 1 
 
2. Determine all the 2-itemset subsequences of the C3

′ 

• T001 (A,B,C): {AB}{AC}{BC} 
• T001 (A,B,E): {AB}{AE}{BE} 
• T001 (A,C,E): {AC}{AE}{CE} 
• T001 (B,C,E): {BC}{BE}{CE} 
• T003 (A,B,D): {AB}{AD}{BD} 
• T006 (A,B,C): {AB}{AC}{BC} 
• T007 (A,B,C): {AB}{AC}{BC} 
• T007 (A,B,E): {AB}{AE}{BE} 
• T007 (A,C,E): {AC}{AE}{CE} 
• T007 (B,C,E): {BC}{BE}{CE} 
• T008 (A,B,E): {AB}{AE}{BE} 

 
3. Use the apriori property to reject all 3-itemsets with one or more 2-itemset 

subsequences that do not appear in L2 (i.e., Lk-1), i.e., whose support counts are 
less than the minimum support count (recall L2 = {{AB}{AC}{AE}{BC}{BE}}).  
In the example, CE and BD do not have support and are crossed out. 

4. Count the occurrences of each 3-itemset subsequences that are not rejected in the 
previous step to get their support counts.  In this example, both {ABC} and {ABE} 
meet minimum the support count of 3, and so are added to L3. 

We note that the absence of the join step leads to better space complexity in the 
joinless algorithm, especially for large transactions databases.  This is because the 
apriori property is applied to individual transactions, which usually involve much 
fewer items than the database has transactions.  Figure 3 summarizes the steps 
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involved in finding frequent itemsets for the database of Figure 1 using the joinless 
apriori algorithm.  Figure 4 presents the joinless apriori algorithm. 

3   Data and Simulation 

Our presentation of both the classical and joinless apriori algorithms so far has 
assumed that the objective is to find association rules that describe the correlations 
among all items in the transaction database.  But there are situations where the mining 
objective is to find the relationships between items in a transaction and only one or a 
few other items in the transaction.  In our research for example, we are interested in 
finding the relationship between user navigation behaviors in hypermedia (as 
evidenced by a set of navigation pages they visit, which form the antecedents of 
mined association rules), and the Web pages they are presumed to be interested in 
(i.e., content pages, which form the rule consequents).  This information gives us the 
basis for building models for making Web page recommendations to users.  For the 
rest of this paper, we refer to a database with well-defined consequents (or content 
pages) as c-annotated (i.e., consequent-annotated). [8-12] discuss the classification of 
Web pages into navigation and content pages. 

The procedure to obtain frequent itemsets for a c-annotated transactions database 
is identical to the case for a general transactions database, except that: (1) one of the 
items in each transaction is annotated as the consequent of the association rules for 
that transaction, and (2) candidate and frequent itemsets are generated only for the 
non-annotated items of the transactions.  For example, Figure 5 shows a c-annotated 
transactions database, and Figure 6, the process of obtaining frequent itemsets for the 
database. 

For the purpose of analyzing the performance of the joinless apriori algorithm, we 
used web server logs, but it should be emphasized that the source of the data is 
immaterial to the performance of the algorithm. The data comprised the user access 
log for the web site of the School of Information Sciences, University of Pittsburgh 
for the months of June to August 2004.  The raw data were collected in the common 
log format [13] and totaled about 500MB. 

We followed the heuristics presented in [8, 9, 12, 14, 15] to extract user sessions 
from the server logs, and the maximal forward reference (MFR) heuristic [15] to 
extract transactions within user sessions, with a transaction comprising one or more 
navigation pages and terminating with a content page.  In order to reduce the lengths 
of very long transactions, we applied a new heuristic we are researching on.  This 
heuristic PR × ILW (page rank × inverse links to word count ratio) combines the page 
rank algorithm [16, 17] and the links:word count ratio of web pages to classify them 
as navigation or content pages.  The distribution of transactions lengths obtained is 
shown in Table 1. 

Finally, we ran both the classical and joinless apriori algorithms on the 
transactions database for the following values of minimum support count: 1, 2, 3, 12, 
24, 59, 118, and 235 (corresponding to the following fractions of the transaction 
database size: 0.000001, 0.000005, 0.00001, 0.00005, 0.0001, 0.00025, 0.0005, 
0.001), and for different average association rule lengths. Average rule lengths were 
controlled by varying the maximum acceptable transaction length Lmax between 5 and 
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10. For each run, all transactions whose lengths were larger than Lmax were ignored.  
For the rest of this paper, we use the notation Rn,s to refer to a run with Lmax set to n 
and minimum support count set to s. All the simulations were run on a SunBlade 2500 
workstation running the Sun Solaris 9 UNIX operating system. The programs were all 
written in ANSI C, and compiled using the C compiler that comes with the operating 
system. 

Table 1. Distribution of transaction lengths using (MFR) and a combination of MFR and a 
PR × ILW threshold of 5 

Transaction 
Lengths 2 3 4 5 6 7 8 9 10 11-

15 
16-
20

21-
25

26-
30

31-
40

41-
50

51-
75

76-
100

101-
150

151- 
200

Transaction 
Count 

Mean 
Length 

MFR 
Count 12041 7461 4296 2805 1806 1341 868 615 536 1363 678 510 587 804 551 909 359 222 114 37866 9.53 

MFR + 
PR × ILW 
Count 

180377 34203 11183 4926 2735 492 226 155 118 234 106 78 51 58 33 4 0 0 0 234979 2.42 

 
 
Step 1a: Scan database D for count of each candidate 1-itemset C1 
Step 1b: Compare C1 itemsets with minimum support & generate L1 
  C1 

Itemset Support L1Itemset Support 

  {A} 6 {A} 6 
  {B} 7 {B} 7 
  {C} 6 {C} 6 
  {D} 1 {E} 3 
  

Scan D to get candidate 1-itemset counts 

{E} 3 

Compare 
C1 

support 
count 
with 

minimum 
support   

Step 2a: Scan database D for transactions >= 2 
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2 
Step 2c: Count each subsequence to determine support count for C2 
Step 2d: Compare C2 itemsets with minimum support & generate L2 

Transaction C2 Itemsets C2 
Itemset Support L2 

Itemset Support 

{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E} {A,B} 5 {A,B} 5 
{B,C} {B,C} {A,C} 4 {A,C} 4 
{A,B,D} {A,B} {A,E} 3 {A,E} 3 
{A,C} {A,C} {B,C} 5 {B,C} 5 
{B,C} {B,C} {B,E} 3 {B,E} 3 
{A,B,C} {A,B}{A,C}{B,C} {C,E} 2   
{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E}     

Scan D for 
transactions 
with 2 or 
more items 

{A,B,E} 

Candidate  2-
itemset = 2-

itemset 
subsequences 

+ Apriori 

{A,B}{A,E}{B,E}   

Compare 
C2 

support 
count 
with 

minimum 
support

 
Step 3a: Scan database D for transactions >= 3 
Step 3b: Determine 3-itemset subsequences and apply Apriori property to get C3 
Step 3c: Count each subsequence to determine support count for C3 
Step 3d: Compare C3 itemsets with minimum support & generate L3 

Transaction C3 Itemsets C3 
Itemset Support L3 

Itemset Support 

{A,B,C,E} {A,B,C}{A,B,E} {A,B,C} 3 {A,B,C} 3 
{A,B,D}  {A,B,E} 3 {A,B,E} 3 
{A,B,C} {A,B,C}     
{A,B,C,E} {A,B,C}{A,B,E}     

Scan D for 
transactions 
with 3 or 
more items 

{A,B,E} 

Candidate  3-
itemset = 3-
itemset 
subsequences 
+ Apriori 

{A,B,E}   

Compare 
C3 support 
count with 
minimum 
support

  

Fig. 3. The mechanics of the joinless apriori algorithm applied to the database in Figure 1 
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Fig. 4. The joinless apriori algorithm 
 

TID Transaction Items Rule Consequent TID Transaction Items Rule Consequent 
T001 A,B,C E T005 B C 
T002 B C T006 A,B C 
T003 A,B D T007 A,B,C E 
T004 A C T008 A,B E 

Fig. 5. C-annotated transactions database used to illustrate the working of the joinless apriori 
algorithm 

Step 1a: Scan database D transactions for count of each candidate 1-itemset C1 
Step 1b: Compare C1 itemsets with minimum support & generate L1 

C1 Itemset Consequent Support L1 
It t

Consequent Support 
{A} C 2 {B} C 3 
{B} C 3 {A} E 3 
{A} D 1 {B} E 3 
{B} D 1    
{A} E 3    
{B} E 3    

 

Scan D to get candidate 
1-itemset counts 

{C} E 2 

Compare C1 
support with min. 

support 

   
Step 2a: Scan database D transactions for transactions >= 2 
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2 
Step 2c: Count each subsequence to determine support count for C  2
Step 2d: Compare C2 itemsets with minimum support & generate L2 

Transaction C2 Itemsets Consequent C2 
Itemset Consequent Support L2 

Itemset Consequent Support 

{A,B,C} {A,B}{A,C}{B,C} E {A,B} E 3 {A,B} E 3 
{A,B} {A,B} D {A,C} E 2    
{A,B} {A,B} C {B,C} E 2    

{A,B,C} {A,B}{A,C}{B,C} E {A,B} D 1    
{A,B} {A,B} E {A,B} C 1    

Scan D for 
trans. with 
2 or more 

items 

 

Candidate  2-
itemset = 2-

itemset 
subsequences 

+ Apriori 

     

Compare 
C2 

support 
with 
min.  

support

   

joinless apriori { 
L

1
 = find_frequent_1-itemsets(D); 

for (k = 2; L
k-1
 ≠ ∅; k++) { 

 /*scan D for transactions ≥ k*/ 
 for each transaction t ∈ D | t.itemcount ≥ k 
  C*  = subseq(t,k); 

k
C

k
 = joinless_apriori(L

k-1
, C*

k
, min_sup); 

L  = {c ∈ C
k
⎟ c.count ≥ min_sup} 

k

} 
return L = ∪

k
L

k
 

} 
procedure joinless_apriori(L : frequent (k-1)-itemsets; C* : 

k-1 k
 list of k-itemsets in D min_sup: min. support threshold) { 

for each itemset c ∈ C*  {
k  

 if has_infrequent_subset(c, L ) then 
k-1

  delete c; /*prune step; remove unfruitful candidate*/ 
 else 
  add c to C

k
; 

}
 
return C

k
 

} 
procedure has_infrequent_subset(c:potential candidate k-itemset; L

k-1
:frequent (k-

1)-itemsets) { 
for each (k-1)-subsets s of c 
 if s ∉ L  then  /*apriori property*/ 

k-1

  return TRUE 
 return FALSE 

} 

Fig. 6. The mechanics of the joinless apriori algorithm applied to the c-annotated database in 
Figure 5 
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step in the classical algorithm: the smaller the number of rules generated, the smaller 
the size of the tables resulting from the join, and the better the performance. 

Figure 8 shows that for both the joinless and classical apriori algorithms, the time 
used to generate a single rule increases exponentially with rule length. Both 
algorithms do not suffer from an explosion of computational time for longer rules 
however, since the number of these expensive, longer rules is much smaller. 

Figure 9 illustrates the relative time efficiencies of both algorithms for different 
rule lengths.  The classical algorithm performs much worse than the joinless 
algorithm for small rule lengths, while the joinless algorithm performs worse for 
longer rules.  The shape of the classical apriori algorithm curve can be explained as 
follows: the first pass is inexpensive, involving only a count of 1-itemsets; the second 
pass is very expensive as it involves a join; subsequent passes get less expensive 
because the apriori property prunes the input to the join, reducing its cost. 

5   Conclusion 

In this paper, we have demonstrated a new implementation of the apriori property that 
avoids the join step in the classical algorithm that is very expensive in terms of 
memory use.  This problem is insignificant in the joinless algorithm where the space 
requirement is a function of the average transaction record size, which is typically 
much smaller than the database size.  Our algorithm also outperforms the classical 
algorithm for smaller values of minimum support count. 
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