
A New Joinless Apriori Algorithm for Mining
Association Rules

Denis L. Nkweteyim and Stephen C. Hirtle

School of Information Sciences, 135 N. Bellefield Avenue, University of Pittsburgh,
Pittsburgh, PA 15260

Abstract: In this paper, we introduce a new approach to implementing the
apriori algorithm in association rule mining. We show that by omitting the join
step in the classical apriori algoritm, and applying the apriori property to each
transaction in the transactions database, we get the same results. We use a
simulation study to compare the performances of the classical to the joinless
algorithm under varying conditions and draw the following conclusions: (1) the
joinless algorithm offers better space management; (2) the joinless apriori
algorithm is faster for small, but slower for large, average transaction widths.
We analyze the two algorithms to determine factors responsible for their
relative performances. The new approach is demonstrated with an application
to web mining of navigation sequences.

1 Introduction

Data mining aims to find useful patterns in large databases. Association rule mining is
a data mining technique that finds interesting correlations among a large set of data
items [1]. The mining results are presented as association rules—implications with
one or more items at the antecedent, and one or more at the consequent, of the rule.
Given a database D of transactions T, with each transaction comprising a set of items
(i.e., itemset), an association rule A⇒ B for the database is valid if A⊂T, B⊂T,
A∩B=φ, and A∪B and P(B/A) meet some minimum support and confidence
thresholds respectively.

The apriori algorithm [2, 3] has been influential in association rule mining (see for
example, [4-7]). The algorithm uses the apriori property – which states that all
nonempty subsets of a frequent itemset are also frequent – to reduce the search space
for determining candidate itemsets for inclusion in the rules set. The classical apriori
algorithm uses a join in each of n database scans to determine candidate itemsets for
inclusion in the rules set. Two main drawbacks to the algorithm are: (1) the number of
candidate itemsets generated by the join may be too big to fit into main memory, and
(2) high latency resulting from the need to scan the database during each iteration.
Tackling any of these problems is likely to lead to significant improvement on the
efficiency of the mining process.

In this paper, we introduce a new joinless apriori algorithm that significantly
reduces the search space required to determine frequent itemsets. The key difference
between this and the classical algorithm relates to the stage at which the apriori

L. Nkweteyim D. and C. Hirtle S. (2005).
A New Joinless Apriori Algorithm for Mining Association Rules.
In Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems, pages 234-243
DOI: 10.5220/0002577802340243
Copyright c© SciTePress

property is applied as the transaction database is scanned. In the kth iteration of the
classical algorithm, the apriori property is applied to the results of a join of frequent
(k-1)-itemsets to determine candidate k-itemsets, and the database scanned to
determine which of the candidate itemsets are frequent. In the joinless algorithm, the
join is eliminated: during the kth database scan the apriori property is applied to every
transaction with length l (l ≥ k) to determine candidate k-itemsets, and their support
counts incremented to enable determination of frequent k-itemsets at the end of the
iteration.

The rest of this paper includes:.differences between the two algorithms (Section
2); description of data and adaptation of the new algorithm to the data (Section 3); our
results and discussion (Section 4); and conclusions (Section 5).

2 The Classical and Joinless Apriori Algorithms

The classical apriori algorithm uses prior knowledge (the apriori property) of frequent
k-itemsets to prune the search space for the mining of (k+1)-itemsets. It begins by
finding frequent 1-itemsets L1, L1 used to determine L2, L2 used to determine L3, etc.
The generation of Lk is a 2-step process comprising a join and a prune steps. The join
step determines frequent k-itemsets (Lk) from frequent (k-1)-itemsets (Lk-1) by joining
Lk-1 to itself. This results in k-itemsets to which the apriority property is applied, to
generate candidate k-itemsets (Ck), which may or may not be frequent. The prune
step scans the transactions database to determine which of the candidate itemsets are
frequent; these are added to set Lk.

The join step joins itemsets l1, l2, … lk-1 of Lk-1 to each other, where two itemsets lI,
lJ of Lk-1 are joinable if their first k-2 items are common (i.e., (lI[1] = lJ[1]) ∧ (lI[2] =
lJ[2]) ∧ … ∧ (lI[k-3] = lJ[k-3]) ∧ (lI[k-2] = lJ[k-2]) ∧ (lI[k-1] < lJ[k-1]), where li[j] is
the jth item in itemset li). To illustrate the working of the classical apriori algorithm,
let the database D, of transactions be represented in Figure 1, and minimum support
count be 3. The steps required to generate frequent itemsets are illustrated in Figure
2. As can be seen from the figure, the algorithm iterates through the following steps:

• Determine candidate k-itemsets, Ck
• Scan the database to determine support count for each of the itemsets in Ck
• Compare the support count for each itemset in Ck with minimum support count,

to determine frequent itemsets Lk
• Join Lk to itself and apply the apriori property to determine Ck+1

Consider in greater detail, the application of the join and scan steps to determine
candidate itemsets and their support counts of. Consider for example, the join
between L2 and itself, which generates an initial candidate 3-itemsets C3

′.
1. Join L2 to itself , where L2 = {{AB}{AC}{AE}{BC}{BE}}

• Initial candidate 3-itemsets C3
′: {{ABC}{ABE}{ACE}{BCE}}

2. Determine the 2-itemset subsequences:
• (ABC): {AB}{AC}{BC}
• (ABE): {AB}{AE}{BE}

235

• (ACE): {AC}{AE}{CE}
• (BCE): {BC}{BE}{CE}

3. Use the apriori property to reject all members of C3
′ that have one or more 2-

itemset subsequences that are not present in L2 (i.e., in Lk-1), i.e., whose support
counts are less than the minimum support count. This leaves candidate 3-itemset
subsequences C3 = {{ABC}{ABE}}. In the example, CE does not have sufficient
support and is crossed out.

4. Determine if the itemsets in C3 are frequent by scanning the database for all 3-
itemset subsequences and counting the number of occurrences of each C3 itemsets.
• {ABC}: T001, T006, T007 (3 occurrences)
• {ABE}: T001, T007, T008 (3 occurrences)

We notice that both of the candidate 3-itemsets selected above meet the minimum
support count of 3 in this example, and so they are both included in L3.
The main benefit of the apriori property is the reduction in the number of candidate
itemsets, which leads to a reduction in both the space- and time-complexities of the
algorithm. But the number of candidate itemsets generated may still be too much to fit
into main memory. We now show how steps 1– 4 above are implemented using the
joinless apriori algorithm.
1. Scan the database for transactions involving 3 or more items, and determine an

initial candidate 3-itemsets C3
′.

• T001 (ABCE): {ABC}{ABE}{ACE}{BCE}
• T003 (ABD): {ABD}
• T006 (ABC): {ABC}
• T007 (ABCE): {ABC}{ABE}{ACE}{BCE}
• T008 (ABE): {ABE}

TID Items TID Items TID Items TID Items
T001 A,B,C,E T003 A,B,D T005 B,C T007 A,B,C,E
T002 B,C T004 A,C T006 A,B,C T008 A,B,E

Fig. 1. Sample transactions data used to show the working of the classical and joinless apriori
algorithms

236

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

 C1 Itemset Support L1 Itemset Support
 {A} 6 {A} 6
 {B} 7 {B} 7
 {C} 6 {C} 6
 {D} 1

Compare C1
support count with
minimum support

{E} 3

Scan D to get
candidate 1-itemset

counts

{E} 3
Step 2a: Join L1 to itself and use the Apriori property to generate candidate 2-itemsets C2
Step 2b: Scan database D for count of each C2
Step 2c: Compare C2 itemsets with minimum support & generate L2

Itemset C2 itemset Support L2 Support
{A,B} {A,B} 5 {A,B} 5
{A,C} {A,C} 4 {A,C} 4
{A,E} {A,E} 3 {A,E} 3
{B,C} {B,C} 5 {B,C} 5
{B,E} {B,E} 3 {B,E} 3

Join(L1
L1) &
apply

Apriori

{C,E}

Scan D to get
candidate 2-itemset

counts

{C,E} 2

Compare C2
support count with
minimum support

Step 3a: Join L2 to itself and use the Apriori property to generate candidate 2-itemsets C3
Step 3b: Scan database D for count of each C3
Step 3c: Compare C3 itemsets with minimum support & generate L3

Itemset C3 Itemset Support L3 Itemset Support
{A,B,C} {A,B,C} 3 {A,B,C} 3

Join(L2
L2) &
apply

Apriori
{A,B,E}

Scan D to get
candidate 3-itemset

counts
{A,B,E} 3

Compare C3
support count with
minimum support

{A,B,E} 3

Fig. 2. The mechanics of the classical apriori algorithm applied to the database in Figure 1

2. Determine all the 2-itemset subsequences of the C3

′

• T001 (A,B,C): {AB}{AC}{BC}
• T001 (A,B,E): {AB}{AE}{BE}
• T001 (A,C,E): {AC}{AE}{CE}
• T001 (B,C,E): {BC}{BE}{CE}
• T003 (A,B,D): {AB}{AD}{BD}
• T006 (A,B,C): {AB}{AC}{BC}
• T007 (A,B,C): {AB}{AC}{BC}
• T007 (A,B,E): {AB}{AE}{BE}
• T007 (A,C,E): {AC}{AE}{CE}
• T007 (B,C,E): {BC}{BE}{CE}
• T008 (A,B,E): {AB}{AE}{BE}

3. Use the apriori property to reject all 3-itemsets with one or more 2-itemset

subsequences that do not appear in L2 (i.e., Lk-1), i.e., whose support counts are
less than the minimum support count (recall L2 = {{AB}{AC}{AE}{BC}{BE}}).
In the example, CE and BD do not have support and are crossed out.

4. Count the occurrences of each 3-itemset subsequences that are not rejected in the
previous step to get their support counts. In this example, both {ABC} and {ABE}
meet minimum the support count of 3, and so are added to L3.

We note that the absence of the join step leads to better space complexity in the
joinless algorithm, especially for large transactions databases. This is because the
apriori property is applied to individual transactions, which usually involve much
fewer items than the database has transactions. Figure 3 summarizes the steps

237

involved in finding frequent itemsets for the database of Figure 1 using the joinless
apriori algorithm. Figure 4 presents the joinless apriori algorithm.

3 Data and Simulation

Our presentation of both the classical and joinless apriori algorithms so far has
assumed that the objective is to find association rules that describe the correlations
among all items in the transaction database. But there are situations where the mining
objective is to find the relationships between items in a transaction and only one or a
few other items in the transaction. In our research for example, we are interested in
finding the relationship between user navigation behaviors in hypermedia (as
evidenced by a set of navigation pages they visit, which form the antecedents of
mined association rules), and the Web pages they are presumed to be interested in
(i.e., content pages, which form the rule consequents). This information gives us the
basis for building models for making Web page recommendations to users. For the
rest of this paper, we refer to a database with well-defined consequents (or content
pages) as c-annotated (i.e., consequent-annotated). [8-12] discuss the classification of
Web pages into navigation and content pages.

The procedure to obtain frequent itemsets for a c-annotated transactions database
is identical to the case for a general transactions database, except that: (1) one of the
items in each transaction is annotated as the consequent of the association rules for
that transaction, and (2) candidate and frequent itemsets are generated only for the
non-annotated items of the transactions. For example, Figure 5 shows a c-annotated
transactions database, and Figure 6, the process of obtaining frequent itemsets for the
database.

For the purpose of analyzing the performance of the joinless apriori algorithm, we
used web server logs, but it should be emphasized that the source of the data is
immaterial to the performance of the algorithm. The data comprised the user access
log for the web site of the School of Information Sciences, University of Pittsburgh
for the months of June to August 2004. The raw data were collected in the common
log format [13] and totaled about 500MB.

We followed the heuristics presented in [8, 9, 12, 14, 15] to extract user sessions
from the server logs, and the maximal forward reference (MFR) heuristic [15] to
extract transactions within user sessions, with a transaction comprising one or more
navigation pages and terminating with a content page. In order to reduce the lengths
of very long transactions, we applied a new heuristic we are researching on. This
heuristic PR × ILW (page rank × inverse links to word count ratio) combines the page
rank algorithm [16, 17] and the links:word count ratio of web pages to classify them
as navigation or content pages. The distribution of transactions lengths obtained is
shown in Table 1.

Finally, we ran both the classical and joinless apriori algorithms on the
transactions database for the following values of minimum support count: 1, 2, 3, 12,
24, 59, 118, and 235 (corresponding to the following fractions of the transaction
database size: 0.000001, 0.000005, 0.00001, 0.00005, 0.0001, 0.00025, 0.0005,
0.001), and for different average association rule lengths. Average rule lengths were
controlled by varying the maximum acceptable transaction length Lmax between 5 and

238

10. For each run, all transactions whose lengths were larger than Lmax were ignored.
For the rest of this paper, we use the notation Rn,s to refer to a run with Lmax set to n
and minimum support count set to s. All the simulations were run on a SunBlade 2500
workstation running the Sun Solaris 9 UNIX operating system. The programs were all
written in ANSI C, and compiled using the C compiler that comes with the operating
system.

Table 1. Distribution of transaction lengths using (MFR) and a combination of MFR and a
PR × ILW threshold of 5

Transaction
Lengths 2 3 4 5 6 7 8 9 10 11-

15
16-
20

21-
25

26-
30

31-
40

41-
50

51-
75

76-
100

101-
150

151-
200

Transaction
Count

Mean
Length

MFR
Count 12041 7461 4296 2805 1806 1341 868 615 536 1363 678 510 587 804 551 909 359 222 114 37866 9.53

MFR +
PR × ILW
Count

180377 34203 11183 4926 2735 492 226 155 118 234 106 78 51 58 33 4 0 0 0 234979 2.42

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1
 C1

Itemset Support L1Itemset Support

 {A} 6 {A} 6
 {B} 7 {B} 7
 {C} 6 {C} 6
 {D} 1 {E} 3

Scan D to get candidate 1-itemset counts

{E} 3

Compare
C1

support
count
with

minimum
support

Step 2a: Scan database D for transactions >= 2
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2
Step 2c: Count each subsequence to determine support count for C2
Step 2d: Compare C2 itemsets with minimum support & generate L2

Transaction C2 Itemsets C2
Itemset Support L2

Itemset Support

{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E} {A,B} 5 {A,B} 5
{B,C} {B,C} {A,C} 4 {A,C} 4
{A,B,D} {A,B} {A,E} 3 {A,E} 3
{A,C} {A,C} {B,C} 5 {B,C} 5
{B,C} {B,C} {B,E} 3 {B,E} 3
{A,B,C} {A,B}{A,C}{B,C} {C,E} 2
{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E}

Scan D for
transactions
with 2 or
more items

{A,B,E}

Candidate 2-
itemset = 2-

itemset
subsequences

+ Apriori

{A,B}{A,E}{B,E}

Compare
C2

support
count
with

minimum
support

Step 3a: Scan database D for transactions >= 3
Step 3b: Determine 3-itemset subsequences and apply Apriori property to get C3
Step 3c: Count each subsequence to determine support count for C3
Step 3d: Compare C3 itemsets with minimum support & generate L3

Transaction C3 Itemsets C3
Itemset Support L3

Itemset Support

{A,B,C,E} {A,B,C}{A,B,E} {A,B,C} 3 {A,B,C} 3
{A,B,D} {A,B,E} 3 {A,B,E} 3
{A,B,C} {A,B,C}
{A,B,C,E} {A,B,C}{A,B,E}

Scan D for
transactions
with 3 or
more items

{A,B,E}

Candidate 3-
itemset = 3-
itemset
subsequences
+ Apriori

{A,B,E}

Compare
C3 support
count with
minimum
support

Fig. 3. The mechanics of the joinless apriori algorithm applied to the database in Figure 1

239

Fig. 4. The joinless apriori algorithm

TID Transaction Items Rule Consequent TID Transaction Items Rule Consequent
T001 A,B,C E T005 B C
T002 B C T006 A,B C
T003 A,B D T007 A,B,C E
T004 A C T008 A,B E

Fig. 5. C-annotated transactions database used to illustrate the working of the joinless apriori
algorithm

Step 1a: Scan database D transactions for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

C1 Itemset Consequent Support L1
It t

Consequent Support
{A} C 2 {B} C 3
{B} C 3 {A} E 3
{A} D 1 {B} E 3
{B} D 1
{A} E 3
{B} E 3

Scan D to get candidate
1-itemset counts

{C} E 2

Compare C1
support with min.

support

Step 2a: Scan database D transactions for transactions >= 2
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2
Step 2c: Count each subsequence to determine support count for C 2
Step 2d: Compare C2 itemsets with minimum support & generate L2

Transaction C2 Itemsets Consequent C2
Itemset Consequent Support L2

Itemset Consequent Support

{A,B,C} {A,B}{A,C}{B,C} E {A,B} E 3 {A,B} E 3
{A,B} {A,B} D {A,C} E 2
{A,B} {A,B} C {B,C} E 2

{A,B,C} {A,B}{A,C}{B,C} E {A,B} D 1
{A,B} {A,B} E {A,B} C 1

Scan D for
trans. with
2 or more

items

Candidate 2-
itemset = 2-

itemset
subsequences

+ Apriori

Compare
C2

support
with
min.

support

joinless apriori {
L

1
 = find_frequent_1-itemsets(D);

for (k = 2; L
k-1
 ≠ ∅; k++) {

 /*scan D for transactions ≥ k*/
 for each transaction t ∈ D | t.itemcount ≥ k
 C* = subseq(t,k);

k
C

k
 = joinless_apriori(L

k-1
, C*

k
, min_sup);

L = {c ∈ C
k
⎟ c.count ≥ min_sup}

k

}
return L = ∪

k
L

k

}
procedure joinless_apriori(L : frequent (k-1)-itemsets; C* :

k-1 k
 list of k-itemsets in D min_sup: min. support threshold) {

for each itemset c ∈ C* {
k

 if has_infrequent_subset(c, L) then
k-1

 delete c; /*prune step; remove unfruitful candidate*/
 else
 add c to C

k
;

}

return C

k

}
procedure has_infrequent_subset(c:potential candidate k-itemset; L

k-1
:frequent (k-

1)-itemsets) {
for each (k-1)-subsets s of c
 if s ∉ L then /*apriori property*/

k-1

 return TRUE
 return FALSE

}

Fig. 6. The mechanics of the joinless apriori algorithm applied to the c-annotated database in
Figure 5

240

Fig. 7. Variatio
algorithm and (b
with minimum s

0
10
20
30
40
50
60
70

1 2 3 12
Minimum s

Ex
ec

ut
io

n
tim

e
(s

)
R5,s R6,s R7,s R8,s R9,s R10,s

600
700

 (s
)

R5,s R6,s R7,s R8,s R9,s R10,s

2

de
nt

R5,s R6,s R7,s R8,s R9,s R10,s

0

50

100

150

200

1 2

To
t.

tim
e

(s
)

Classical Apriori Al

ca b

Fig. 7. Variati
rule length for R

4 Results a

Figures 7 show
joinless and cl
in average rul
variation of av
typical variati
and classical a

Figures 7 (
with mean rul
time is fairly
with increase
algorithm), sin
see from Figu
the classical a
number of rul
values of supp

241
n of execution time with minimum support count for (a) join
) classical apriori algorithm. (c) Variation of corresponding average
upport count

24 59 118 235
upport count

0
100
200
300
400
500

1 2 3 12 24 59 118 235
Minimum support count

E
xe

cu
tio

n
tim

e

0

0.5

1

1.5

1 2 3 12 2

Minimum supp

M
ea

n
ru

le
 a

nt
ec

e
le

ng
th

0

1

2

3

4

5

1 2 3 4 5

Rule antecedent length

Ti
m

e
pe

r r
ul

e
(s

)

Joinless Apriori Algorithm Classical Aprio

3 4 5 6 7 8 9

Rule antecedent length

gorithm Joniless Apriori Algorithm

Fig. 9. Variation of average
generation time with rule leng
R10,12

on of execution time with
9,59

nd Discussion

s the distribution of execution time and minimum support co
assical apriori algorithms ((a) and (b)), and the correspondin
e length (c), with minimum support count. Figure 8 shows
erage execution time per rule and the rule length. Figure 9

on of total execution time as a function of rule length for th
priori algorithms.
a), (b), and (c) show that for both algorithms, execution time
e length; this is expected. In the joinless algorithm however,
constant. Intuitively, one would expect the execution time t
in the minimum support count (as is the case with the
ce larger support thresholds translate to fewer rules generate

res 7 (a) and (b) that the joinless apriori algorithm performs
lgorithm for small values of minimum support count (wh
es are generated), but the classical algorithm performs bette
ort threshold. The reason for this is related to the importance

less apriori
 rule length

4 59 118 235

ort count

6

ri Algorithm

 rule
th for

unt for the
g variation
the typical
shows the
e joinless

 increases
 execution
o decrease
 classical

d. We also
better than
en a large
r for large
of the join

step in the classical algorithm: the smaller the number of rules generated, the smaller
the size of the tables resulting from the join, and the better the performance.

Figure 8 shows that for both the joinless and classical apriori algorithms, the time
used to generate a single rule increases exponentially with rule length. Both
algorithms do not suffer from an explosion of computational time for longer rules
however, since the number of these expensive, longer rules is much smaller.

Figure 9 illustrates the relative time efficiencies of both algorithms for different
rule lengths. The classical algorithm performs much worse than the joinless
algorithm for small rule lengths, while the joinless algorithm performs worse for
longer rules. The shape of the classical apriori algorithm curve can be explained as
follows: the first pass is inexpensive, involving only a count of 1-itemsets; the second
pass is very expensive as it involves a join; subsequent passes get less expensive
because the apriori property prunes the input to the join, reducing its cost.

5 Conclusion

In this paper, we have demonstrated a new implementation of the apriori property that
avoids the join step in the classical algorithm that is very expensive in terms of
memory use. This problem is insignificant in the joinless algorithm where the space
requirement is a function of the average transaction record size, which is typically
much smaller than the database size. Our algorithm also outperforms the classical
algorithm for smaller values of minimum support count.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data. ACM Press,
New York (1993) 207–216.

2. Aggarwal, C., Srikant, R.: Fast Algorithms for Mining Association Rules. Proc. 20th Int.
Conf. on Very Large Data Bases, VLDB. Morgan Kaufmann Publishers Inc., San Francisco
(1994) 487–499.

3 Mannila, H., Toivonen, H., Verkamo, I.: Efficient Algorithms for Discovering Association
Rules. AAAI Workshop on Knowledge Discovery in Databases (KDD-94), Seattle, WA
(1994) 181–192.

4 Han J., Kamber M.: Data Mining: Concepts and Techniques. Academic Press, San Diego,
CA, (2001)

5 Bodon, F., A fast APRIORI implementation. In Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, Melbourne, FL (2003)

6. Borgelt, C.: Efficient Implementations of Apriori and Eclat. In Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, Melbourne, FL (2003)

7. Kosters, W.A. and W. Pijls, Apriori, A Depth First Implementation. In Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Melbourne, FL
(2003)

8 Cooley, R., Mobasher, B., and Srivastava, J.: Web Mining: Information and Pattern
Discovery on the World Wide Web. International Conference on Tools With Artificial
Intelligence, Newport Beach, CA (1997) 558–567.

242

9 Cooley, R., Mobasher, B., and Srivastava, J.: Data Preparation for Mining World Web
Browsing Patterns. Journal of Knowledge and Information Systems (1999) 5–32

10 Mobasher, B., Cooley, R., and Srivastava, J.: Automatic Personalization Based on Web
Usage Mining. Communications of the ACM, ACM Press (2000) 142–151

11 Mobasher, B., Dai, D., Luo, L., and Nakagawa, M.: Effective Personalization Based on
Association Rule Discovery from Web Usage Data. Proc. Third Int. Workshop on Web
Information and Data Management, ACM Press, New York (2001) 9–15

12 Pitkow, J.: In Search of Reliable Usage Data on the WWW. Proc. of the Sixth International
WWW Conference (1997)

13 W3C: The Common Logfile Format. Retrieved April 5 2003 from
http://www.w3.org/Daemon/User/Config/Logging.html

14 Pirolli, P.: Computational Models of Information Scent-following in a Very Large
Browsable Text Collection. Proc.SIGCHI Conf. on Human Factors in Computing Systems,
ACM, Atlanta, GA (1997)

15 Chen, M.S., Park, J.S., and Yu, P.S.: Data Mining for Path Traversal Patterns in a Web
Environment. Proc. of the 16th International Conference on Distributed Computing Systems
(1996) 385–392

16 Craven, P.: Google's PageRank Explained and How to Make the Most of it. Retrieved
September 5 2003 from http://www. webworkshop.net/pagerank.html.

17 Rogers, I.: The Google Pagerank Algorithm and How it Works. Retrieved September 5 2003
from http://www.iprcom.com/ papers/pagerank/.

243

244

