
A Workflow-based Environment to manage
Software-Testing Process Executions

Duncan Dubugras A. Ruiz, Karin Becker, Bernardo Copstein,
Flavio Moreira de Oliveira, Angelina Torres de Oliveira,

Gustavo Rossarolla Forgiarini, Cristiano Rech Meneguzzi
and Rafaela Lisboa Carvalho

Computer Science Post-Graduate Program
Faculty of Informatics

Pontifical Catholic University of RS
Av. Ipiranga, 6681, Predio 16, Sala 106-FACIN

Porto Alegre - RS, Brazil

Abstract. This work describes a workflow-based environment that manages the
execution of software-testing processes. Testing processes require that human and
computer resources be handled as dedicated resources, previously scheduled for
testing activities, with no overlapping. Two striking features of this environment
are: a) the efficient handling of resources by taking into account the capabilities
offered by resources required by testing activities, and b) it provides a broader
view of all execution steps in a software-testing plan. Hence, it enables a better
planning of software-testing process executions, as well as of human and com-
puter resources involved.

1 Introduction

Quality assurance in software products has increased the interest on software testing
processes. New software development life cycles have stressed the importance of start-
ing testing as early as possible in the software development life cycle [18]. It also de-
mands increasingly efficient tools and techniques for the description and management
of testing processes, as well as qualified staff to execute them, with various profiles.

Testing software means running it in an effort to find errors [6,11]. Testing a soft-
ware product implies the definition of the Software Test Plan (STP), which defines a
sufficiently encompassing number of test cases. According to [11], an STP should de-
scribe: (1) the computing environment in which the tests will run, (2) the capabilities
required from the testing team, and (3) the sequence of test cases execution, as well as
the procedures to handle errors. To properly execute STP, software testing centers are
composed of appropriate computing and human (testers and test engineers) resources.
Test engineers define and manage the execution of STP, and create the corresponding
test reports. Testers develop the individual test cases, according to their competences.
For a better management of the testing process, test centers usually split each STP in
blocks of test cases, referred to as test activities, which are distributedd among testers.

Dubugras A. Ruiz D., Becker K., Copstein B., Moreira de Oliveira F., Torres de Oliveira A., Rossarolla Forgiarini G., Rech Meneguzzi C. and Lisboa
Carvalho R. (2005).
A Workflow-based Environment to manage Software-Testing Process Executions.
In Proceedings of the 2nd International Workshop on Computer Supported Activity Coordination, pages 66-74
DOI: 10.5220/0002575300660074
Copyright c© SciTePress



Independent test activities may be allocated to different testers, enabling a parallel exe-
cution of these activities, and, consequently, saving STP elapsed time.

To properly manage a test center, there must be a deep understanding of its main
characteristics: (1) resources are limited; (2) many of these resources need previous
configuration or set-up before use; (3) tests described in the STP must be run in a pre-
defined sequence; (4) distinct test sequences from the same STP can be executed in
parallel; (5) unexpected results in a specific test may abortthe test, a sequence or the
entire test plan; and (6) delays caused by software development teams can significantly
impact in all schedule planning of tests of the test center. As a result, the test manager
should be aware of (a) which test plans are being executed andat which test activity
each test plan is, (b) which resources are currently allocated and which are free to be
utilized; (c) what the future resource schedule is; (d) which test plans are waiting to
be run; (e) the average time taken to configure a computing system for the execution
of a test; and (f) which test plans are waiting for developer feedback before resuming
execution. All this information is important to achieve theoptimized use of (limited)
resources, agility in test execution, as well as to identifybottlenecks in the process. To
achieve such level of control, it becomes necessary to provide adequate tools that allow
test engineers or process managers to manage its execution and use of resources.

An important aspect that software testing processes share with production processes
[24] is the need of full and exclusive dedication of human andcomputing resources to
their respective test activities, durig the whole process.The Enterprise Reference Ar-
chitecture CIMOSA1 (Computer-assisted Industry Management - Open System Archi-
tecture) states that “Enterprise Activities of a particular enterprise define elementary
tasks to be performed in the enterprise which consume inputsto produce outputs and
need allocation of time and resources for the full duration of their execution”. In other
words, neither the tester nor the computing system allocated to run a test can perform
other activities concomitantly. Workflow management systems (WfMS) are targeted at
handling the execution business process activities [8,12].However, workflow technol-
ogy fail to provide support for handling human and computingresources as resources
in production-processes [4].

This paper presents a workflow-based environment for the management of the soft-
ware testing processes, which regards human and computing resources as production-
process resources, in the context of the CWf-Flex project. The main contributions of
this environment are: (1) the efficient management of resources for the execution of test
activities in view of the competences required; (2) efficiency, reliability and an encom-
passing view of the entire course of the STP by a workflow automation standpoint; and
(3) the use of open-source software tools and solutions.

2 A Motivating Scenario

In 1999, our University and a major IT company launched a partnership which estab-
lished a software test center (STC). This center has been able to identify the specific
needs of this kind of process, like the need to work with limited resources with varied

1 http://cimosa.cnt.pl/Docs/Primer

67



capabilities. As indicated by the characteristics alreadymentioned, workflow technol-
ogy presents an advantageous solution to all these needs.

Between 1999 and 2000, an experiment was made in this test center, using a WfMS
to support test management. The WfMS chosen was Changengine [9], and the following
evaluation of the advantages and disadvantages of using a workflow approach showed
that WfMS did not provide two important characteristics in a test process: the support
for human and computing resources as production- process resources and the STP as
single execution instance for each process model. Before the effecting of an STP, the
computing system to be used must be configured with the properoperational system
and a clean software environment. This is necessary in orderto ensure the detection
of errors happening strictly in the software being tested, and not errors in anything
unrelated with the test specification. When identifying bugsand non-conformities, it
must be possible to isolate and replicate the error, not onlyby the testing team but also
by the development team. This is essential to ensure the quality of the testing. Since
it is impossible to cover all possible hardware and softwareconfigurations at the same
time in a test center, a prior setup time is frequently neededto reconfigure the machines
before running a different set of tests.

A study was also conducted to identify if the standards for the description of work-
flows and the modeling of production-processes met the requirements of a software test
center. The result was the proposition of the conceptual reference CWf [4,20], which
merges the WfMC interface 1 [22] with the CIMOSA standard [24]in the description
of production-processes. For the design of CWf models, a UML-extension was pro-
posed to support CWf additional concepts: Workflow Activity Diagrams WAD [5]. The
CWf-Flex project is a direct evolution of the union of these research efforts.

3 Environment Architecture and Description

The main goal of theCWf-Flex project is to specify and implement an open, flexible
environment for the description of software-testing process, and management of ex-
ecutions, providing support for definition and management of human and computing
resources. This environment is composed of three parts: (1)design module, (2) formal
description model and (3) execution environment. The design module allows to model
testing processes using WAD (Workflow Activity Diagram) [5]WAD is an extension
of UML-Activity diagrams and aims at supporting CWf designs.The prototype of the
design module [21] is able to generate a corresponding XML specification from a WAD
test process modeling.

The formal description model is the standard by which the twoparts (description
and execution) communicate. A test process specification ismade by using XPDL [23],
with extensions proposed by CWf [4], in the form of a XML-Schema named XCWf.
The main extensions present in XCWf are: (a) capability and capability-set, which may
be associated to activities (required capabilities) and resources (available capabilities),
(b) the definition of machines as a resource type, and (c) definition of synchronous tran-
sitions for the synchronized start of parallel activities or sub-processes. Inherited from
CIMOSA, XCWf introduces the synchronized start (S-AND-split) as an additional rout-
ing construct besides AND-split, AND-join, OR-split and OR-join. An XCWf+XPDL

68



Table 1.Table 1 Partial Use Case Description

Use Case Actor Description

Insert Project Test Engineer Loading of the XPDL+XCWf (text file) specification.
Process and resource consistency is verified.

Schedule Ac-
tivities

Test Engineer Allocates and schedules testers and computing resources
for every activity of a new project. These resources should
fulfill the capabilities required by the activities. This
scheduling takes into account the work calendar and avail-
ability of the human participants. The activity scheduling
must abide by the sequence of their execution, as defined
by the XML specification.

Execute
Project

Test Engineer Enables the execution of the process. Activities which can
be executed are inserted in the allocated participants work-
lists.

Review
Project

Test Engineer This interface is provided to enable the managing of the
test process itself. Its progress can be checked at any time
during execution, and the engineer may view which activ-
ities are scheduled, which are ready to execute, currently
running or complete.

Review Work-
list

Tester Displays the worklist, informing which test activities are
ready to be executed and which are currently being exe-
cuted.

Review
Schedule

Tester Displays the schedule for human and computing resources
according to their planned activities.

Execute
Activities

Tester Either sets an activity for execution or notifies that it is
concluded. The environment evaluates the specification
and enables the execution of the subsequent activities.

specification complies with XPDL using the XPDL extended-attributes option. This al-
lows an XCWf+XPDL specification to be executable by an WfMS according to the
XPDL, Interface1 of the WfMC reference model [8]. S-AND-split can be roughly sim-
ulated by the use of AND-split plus a set of deadline constraints. In fact, this solution
does not guarantee the simultaneous start of activities.

The execution environment, described in the remaining of this section, is a workflow
engine that enables the management of software testing processes. Its striking feature
is the ability of effectively allocating human and computing resources, besides imple-
menting the typical routines of a STC.

3.1 Overview of the Workflow Execution Engine

Table 1 presents use cases representing the main functionalities of the execution work-
flow engine. The maintenance of the STC basic data-sets and ofhuman and computing
resources is not shown. Only information pertaining directly to the process is kept by
the environment, such as work schedule, capabilities (for human resources) and basic
configuration (for computing systems).

69



Activity scheduling is a crucial functionality, since it supports the resource alloca-
tion planning activity. In the current prototype it is performed manually by the test engi-
neer, but an automated allocation tool is under consideration, based on the M-DRAP ap-
proach [3]. M-DRAP is a multi-agent resource allocation approach where every single
resource is managed by an intelligent agent, which, in turn,negotiates its commitments
to test activities with the other agents. The data model for the execution environment
was designed so as to easily perform this extension, such that only very exceptional
cases would require the assistance of a test engineer duringscheduling.

3.2 Execution Engine Data Model

The execution environment data model extends the model presented in [14] in two ways:
a) it provides support the extensions proposed by the CWf reference model, and b) to
persist data related to the work calendar of human resources, their capabilities and the
resource activity schedule. Figure 1 shows the class diagram with the main abstractions.
Human and computing resources, with their respective capabilities, are represented by
the Human, Machine, Capability and Configuration classes. They represent the work
force and computational infra-structure the STC has at its disposal.

When a specification is loaded, objects referencing the control flow are created in
the Process, Activity and Transition classes. Each activity is associated to one or more
Capability, to reference the required set of capabilities from a Human, and to one or
more Configuration to reference the required system configurations. Each configuration
corresponds to a different machine that will be employed in the activity. There is a
special type of activity, named route activity, with no association to Capability and
Configuration. It serves only to describe the control flow when its description is not
possible in common activities. The activity schedule is established through the Schedule
class, where the period in which the activity will be executed is defined, also associating:
a Human with all required capabilities, and one or more Machines corresponding to
each configuration.

During a process execution, the ProcessHistoric and ActivityHistoric classes store
all state transitions of Process and Activity, including the starting states when a speci-
fication is loaded. The TransitionHistoric class stores theactual passage of the process
through a transition in the model. The state diagrams adopted for Process and Activity
are described in [8,12]. Activities ready to be executed aremade available to their re-
spective participants through their worklists, taken fromthe activity states and schedul-
ing, which are stored in Schedule. Every time an activity is completed, the execution
environment checks what are the next activities to be executed, according to the corre-
sponding specification. Each process has its set of relevantdata, visible to the execution
environment, to select which paths are enabled on an Or-splitting activity.

3.3 Implementation Architecture

A client-server architecture has been adopted, where the client is a Java-enabled In-
ternet browser, and the server side is composed of three tiers: presentation, business
rules and data persistence. The J2EE technology has been used in the development of
environment as a whole. The presentation and business ruleslayers are enclosed in the

70



Fig. 1.Partial Class Diagram

Web server, along with the Java Server Pages (JSP). The presentation layer is based
on the Model-View-Controller standard. The WebWork2 framework has been used in
this layer, mainly because it offers better functionalities for the validation and conver-
sion of types when compared to other solutions. For the business rules, the Hibernate3

framework was adopted because it provides abstraction mechanisms for database ac-
cess, which allows an easier migration among data persistence tools. The use of these
frameworks has made possible a better standardization in the source code, and also
allowed greater efficiency and quality in the development process. For the data persis-
tence layer, the PostresSQL4 DBMS was chosen for both its transaction support and
level of conformity to the SQL standard.

Figure 2 shows a typical Web page, the commitments of a tester, with the visual
standard adopted. The upper menu in the screen belongs to thebrowser being used. The
left side menu presents a hierarchic structure consistent with the modeled functionali-
ties, and allows the easy access to the different system functions. These menus options
may vary from user to user, depending on the logged users profile. Through this menu,
all data relevant to the STP may be retrieved, including testplans being executed and
completed, and resource commitments to the STP (by reviewing participants schedules
and worklists, etc).

3.4 Innovative aspects of the Execution Environment

The implementation solution presented here fulfills the needs identified in section 2
above. It is a system that offers an efficient management of the test processes and the
commitment of resources to these executions. In order to do that, the environment en-
ables the resource scheduling for the entire process even before it starts its execution.
Such scheduling takes into consideration testers capabilities and work calendars and
previously scheduled activities of other STP. This permitstest engineers to predict the
involvement of the work force with test activities, to size up their test teams and com-
putational infra-structure and to properly plan the growing of the test center. Besides, it
guarantees the simultaneous start of activities, when specified in the model.

2 http://www.opensymphony.com/webwork/wikidocs/Documentation.html
3 http://www.hibernate.org/5.html
4 http://www.postgresql.org/docs/

71



Fig. 2.Screen showing commitments of a Tester.

4 Related Work

[13] presents many WfMS development projects using open-source software, which
supports XPDL at various degrees of conformance. Our approach, based on [4], looks
at resources as production-process resources, which is notsupported by the [23] and
[16] specifications. Likewise, it is not supported by eitherother open-source projects
such as YAWL [1] or commercial tools such as AQdevTeam [2].

TestDirector [15] is a leading workflow-based tool that addresses the management
of software testing processes. It support resource allocation, permitting to view resource
skills, assignments and load rates. Our approach works withexclusive use of resources
by activities and not with load rates. Testlog [17] is a tool that permits the definition of
resources similar to our approach: testers, hardware platforms, test configurations, etc.
In addition, it permits the assignment of resources to test cases. However, it supports
neither the testers capability description nor resource scheduling, as opposed to what
our approach proposes.

[19] introduces a multi-agent approach for the modeling andscheduling of resources
in activity coordination. Two types of resources are discussed, schedulable and not
schedulable. An abstract resource model and four basic operations for its manipula-
tion are presented: identification, reservation, acquisition and release. Even though the
schedulable resources are adequately typified, the authorsdo not explore them fully.

72



They state that even in a process with a previously defined order, the agents will manage
their appointments and execute activities at their own discretion. Our solution keeps the
global scheduling of activities e supervises their execution, according to the test process
specification, which is essential to the execution of testing activities.

[7] presents a WfMS for grid computing, named GridFlow, and address the work-
flow scheduling problem using a fuzzy timing technique. Similar to [3] approach, Grid-
Flow is an agent-based resource manager, but oriented to grid resources. Grid comput-
ing means the execution of multiple parallel tasks with maximum resource utilization.
[7] states that WPDL [22] is sophisticated and too generalized for grid computing. Re-
sources have different capabilities and should be allocated properly in our approach, as
opposed to GridFlow. However, the fuzzy timing technique can be useful to improve
our resource management.

5 Conclusions

This work has detailed the research made in the context of theCWf-Flex project, for the
specification and implementation of the execution environment. The characteristics and
problems of test process management were described, and, inparticular, the necessity
to adequately support human and computing resources, especially during test activity
scheduling. Besides that, it also references the adoption of the XPDL standard for work-
flow description, along with the extensions proposed by [4],such as the procedures for
test process specifications exchange. The environment was developed using only open-
source software tools, which allows its portability to different operational systems. The
addition of new modules is to be considered for future versions. The main contributions
are (1) the previous scheduling of resources to the activities, even before the execution
of the test process, (2) the consideration of the capabilities of testers when selecting
activities for them, (3) the control of collisions in the schedule, and (4) the beforehand
knowledge of resource commitment in the test center.

The project’s current stage is the installation of the environment in an STC, with the
intention of assessing requirements compliance, accessible use and the quality of gener-
ated productivity information. Apart from that, the implementation of the [3] dynamic
resource allocation approach in the project core, as well asa method for the definition
of workflow processes, with resource allocation, is being considered in a near future.
This method will be based on the description and execution environment specification
and the formalization of the description model.

Acknowledgment

This work has been supported by CNPq - Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico, a Brazilian Federal Research Agency.

References

1. Aalst, W.M.P.v.d.; Aldred, L.; Dumas, M.; Hofstede, A. (2003)Design and Implementation
of the YAWL System. Queensland University of Technology (FIT-TR-2003-07).

73



2. AutomatedQA Corp. (2004) AQdevTeam. http://www.automatedqa.com/prod-
ucts/aqdevteam.asp

3. Bastos, R. M., Oliveira, F. M., Oliveira, J. P. M. (1998) Decentralised Resource Allocation
Planning through Negotiation In: Inteligent Systems for Manufacturing: Multi-Agent System
and Virtual Organization. Kluwer Academic Publishers, p. 67-76.

4. Bastos, R. M.; Ruiz, D. D. A. (2001) Towards an Approach to Model Business Processes
using Workflow Modeling Techniques in Production Systems. In: HICSS-34, Proceedings.
IEEE Computer Society.

5. Bastos, R. M.; Ruiz, D. D. A. (2002) Extending UML Activity Diagram for Workflow Mod-
eling in Production Systems. In: HICSS-35. Proceedings. IEEE Computer Society.

6. Beizer, B. (1990) Software Testing Techniques. New York: Van Nostrand Einhold.
7. Cao, J.; Jarvis, S.A.; Saini, S.; Nudd, G.R. (2003) GridFlow: Workflow Management for

Grid Computing. In: 3rd IEEE/ACM CCGrid 2003. Proceedings. IEEE Computer Society.
8. Hollingsworth, D. (1995) The Workflow Reference Model. Hampshire, UK: WfMC.
9. Hewlett-Packard Company. (2000) HP Process Manager: (former Changengine v. 4.2).

http://www.ice.hp.com/ cyc/af/00/index.html
10. Jacobson, I.; Booch, G.; Rumbaugh, J.(1999) The Unified Software Development Process.

Addison-Wesley.
11. Kaner, C.; Falk, J.; Nguyen, H.Q. (1999) Testing Computer Software. John-Wiley & Sons.
12. Leymann,F.; Roller,D. (2000) Production workflow: concepts and techniques. Prentice Hall.
13. Manageability.org (2004). Open-source workflow engines writtenin Java.

http://www.manageability.org/blog/stuff/workflow_in_java
14. Meneguzzi, C.R. (2002) TC-Wf: Applying Workflow Technology on Software-Testing Plan-

ning. Porto Alegre-RS, Brazil, PPGCC-PUCRS. (MSc. Dissertation, in Portuguese)
15. Mercury Interactive Corp. (2003) Implementing an Effective Test-Management Process.

White Paper. http://www.mercuryinteractive.com
16. Object Management Group.(2000) Workflow Management FacilitySpecification, V1.2.

www.omg.org/docs/formal/00-05-02.pdf
17. PassMark Software (2003) Testlog User Guide. www.testlog.com/ftp/TestLogUserGuide.pdf
18. Pressman, R. S. (1997) Software Engineering A Practitioners Approach. McGraw-Hill.
19. Podorozhny, R.M.; Lerner, B.S.; Osterweil, L.J. (1999) Modeling Resources for Activity

Coordination and Scheduling. In: COORDINATION99. Proceedings. LNCS 1594.
20. Ruiz, D. D.; Bastos, R. M. (2002) C-Wf: a Model to Represent Workflow Business Processes

in Production Systems. Journal of Applied System Studies, Cambridged,England, v.3, n.1.
21. Velasco, L.H. (2004) Workflow Designer: A workflow-processdesign tool. Porto Alegre,

FACIN-PUCRS (Undergraduate conclusion project, in Portuguese).
22. Workflow Management Coalition. (1998) Interface 1: Process Definition Interchange Process

Model. Hampshire, UK: WfMC. (Official Release 7.04)
23. Workflow Management Coalition. (2002) Workflow Process Definition Interface XML

Process Definition Language. Hampshire, UK: WfMC. (TC-1025, Final Draft 1.0)
24. Zelm, M.; Vernadat, F.B.; Kosanke, K. (1995) The CIMOSA business modelling process.

Computers in Industry, v. 27, n. 2, p.123-142. October.

74


