Model-checking Inherently Fair Linear-time Properties*

Thierry Nicola, Frank Nie3ner and Ulrich Ultes-Nitsche

telecommunicationsetworks& securityResearch Group
Department of Computer Science, University of Fribourg
Chemin du Muge 3, 1700 Fribourg, Switzerland

Abstract. The concept of linear-time verification with an inherent fairness con-
dition has been studied under the narapproximate satisfactiorsatisfaction up

to livenessandsatisfaction within fairnesis several publications. Even though
proving the general applicability of the approach, reasonably efficient algorithms
for inherently fair linear-time verificatiofiFLTV) are lacking. This paper bridges

the gap between the theoretical foundation of IFLTV and its practical application,
presenting a model-checking algorithm based on a structural analysis of the syn-
chronous product of the system and propertydB) automata.

1 Introduction

To be able to verify liveness properties of a system [1], it is almost always necessary
to include a fairness hypothesis in the system description [3]. Indeed, introducing a
fairness hypothesis makes it possible to ignore behaviors that correspond to extreme
execution scenarios and that, in any case, would not occur in any reasonable implemen-
tation. Even though this intuition is clear, making fairness precise is somewhat more
complicated: should one be “weakly” or “strongly” fair, “transition” or “process” fair,

or isn’t “justice” or even “compassion” what fairness should really be [6]? Intuitively,
the notion to be formalized is that of a property being true provided one is given “some
control” over the choices made during infinite executions. In other words, one wants to
characterize the properties that can be made true by “some fair implementation” of the
system.

Such a characterization has been given in previous years, leading to the exploring
linear-time verification with an inherent fairness conditibrherently fair linear-time
verification (IFLTV) has been studied under the naaggproximate satisfactiofiL0],
satisfaction up to livened4 1], andsatisfaction within fairnesgl2, 14, 15]. All men-
tioned papers deal with the general concept of IFLTV [11] as well as the relation of
IFTLV to abstraction [10, 11] and partial-order methods [4, 16], and the combination
of the two state-space reduction techniques [15]. What has not yet been considered is
the actual implementation of IFLTV by means of a reasonably efficient model-checking
algorithm. Here, "reasonably efficient” refers to algorithms behaving not too badly on

* Supported by th&wiss National Science Foundatiander grant number 200021-103985/1
and by theHasler Foundatiorunder grant number 1922.

Nicola T., NieBner F. and Ultes-Nitsche U. (2005).

Model-checking Inherently Fair Linear-time Properties.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 3-8
DOI: 10.5220/0002574300030008

Copyright © SciTePress



4

practical examples, since the general model-checkingl@molis PSPACE-complete
[11].

In this paper, we present a model-checking algorithm foilTNflbased on a struc-
tural analysis of the synchronous product of the twicBi automata representing sys-
tem and property respectively. The system will always beasmted by a labeled tran-
sition system (deterministici&hi automaton in which all states are accepting) where
the property, in the most general case, will requird@a-deterministi&ichi automaton
to represent it. We will start with the case in which the prypautomaton isleterminis-
tic, and develop the IFLTV model-checking algorithm for thiseaDeterministic Bchi
automata cover already all safety and many liveness piiepéit, 7]. We will then dis-
cuss how to extend the result for the deterministic casehtergntly non-deterministic
properties. Finally we will comment on the additional effof IFLTV of inherently
non-deterministic properties.

2 Motivation

The motivation for IFLTV is twofold: first, IFLTV possessen mherentfairnesscon-
dition, and second, IFLTV related tservablaifferences in system behavior.

2.1 Inherent Fairness

Consider the following “telecommunications” system: tvgets of the system may call
one another; if the called user is not busy, the call will reher/him; otherwise the
call is rejected. A calling user has no control of whetherdhked user is engaged in
another call (busy) or not. Such a system is normally modkled nondeterministic
choice: whenever a user attempts to call another user, gtersymodel decides non-
deterministically whether the called user is busy or nosuoh a scenario, there exists
the extreme execution in which, whenever a user is calledusier is busy. Such exe-
cutions are normally ignored by using explicit fairness assumptid] restricting the
allowed executions of the system. Applying IFLTV frees oraf the need of finding
an explicit fairness restriction on the system model by hgna fairness assumption
inherentin its definition.

2.2 Observability

Assume two systems, both randomly selecting initially ahaumded positive integer
n. The first system will operate steps and then stop. The second system will either
operaten steps and stop, or decide nondeterministically to operat/ér. An outside
observer will never be able to distinguish the two systerha: system has stopped,
it may be either system; if it has not stopped, it may again ileee system. Only
infinite observations could distinguish the two systems which isaegly practically
impossible. So, system one is as good as system two fromahetgs view. Linear-time
verification, however, distinguishes the two systems assgatem does not satisfy the
property “performing only finitely many operations” whetetother one does. IFLTV
is as powerful as linear-time verification, but insensitiwvelifferences requiring infinite
observations. We therefore consider IFLTV the more prattierification technique.



3 Preliminaries

Thebehaviorof a distributed system is a set of infinitely long sequenéestionsfrom

a finite setX of actions. Thus behaviors aselanguages ort'. Since each (infinite)

behavior is the infinite continuation of finite behaviors bé tdistributed system, and

since each prefix of a finite behavior is itself a finite behawiothe system, the set of

behaviors of a distributed system is tgenberg-limit[2] of a prefix-closedanguagé-
Let X* be the set of all finitely long sequences &n let >* be the set of all

infinitely long sequences, and I&f° = X* U Y. Let L C X*.

—pre(M) = {v € X¥* | Jx € ¥ : vx € M} is the set of all finite prefixes of
M C X¥°°. Thenpre(z) = pre({z}) is that ofz € X*°.

— L is prefix-closed if and only ipre(L) = L.

— lim(L) = {z € X¥ | 3*°w € pre(x) : w € L} is the Eilenberg-limit of language
L[2,13]?

— ApropertyP on X' is a subset of«. Behaviouriim (L) satisfies property (writ-
ten: “lim(L) E P”) if and only if lim(L) C P [1].

— cont(w, M) = {v € ¥ | wv € M} is the leftquotient of\f C X by w € X*.

To introduce an implicit fairness assumption into the $atigon relation relative
liveness propertiefb, 11] are defined as a satisfaction relation of properti€s 11].
This satisfaction relation is callédherently fair linear-time verificatiolFLTV) rela-
tion in this paper. There are three different ways of definigrV. Two are important
regarding this paper and are presented subsequently:

1. lim(L) satisfies inherently faiP C X* (written: “lim(L) I P”) if and only if
Yw € pre(lim(L)) : 3z € cont(w,lim(L)) : wx € P.
2. lim(L) IF Pifand only if pre(lim(L)) = pre(lim(L) N P).

From the second definition it follows that we can check the¥kelation by exam-
ining the automaton representitign (L) N P. Sincepre(lim(L)) 2 pre(lim(L)NP is
always true, we only have to find a condition ensugng(lim (L)) C pre(lim(L)NP.
Will we examine this condition subsequently for the case lmclv P is represented by
adeterministidBuchi automaton. We usB as a shorthand for behavitit (L), which
is always deterministic.

We construct subsequently the automatgp~p representing the intersection of
behavior and property (the so-called synchronous produtcingaton) for the case of
deterministicP. This yields an IFLTV model-checking algorithm for the daténistic
case.

11t is important to note that dealing only with languages is not a restriction dinite au-
tomata carcompletely(including state information) be encoded by their local languages [2]
(the languages over transition triplegate, event, successorstate)).

2Read 9°°... : ...” as “there exist infinitely many different ... such that ...".



6
4 Construction of #/gAp

It must be guaranteed during construction of the produatraaton thatB I+ P re-
mains valid. It is necessary to modify the classic algorithfrthe synchronous product
construction. The additional feature ensures that thdtragtomaton does not violate
B IF P, orif it does that it is detected. Lets = (@5, Y, qo, F5, Ap) the automaton
representing the behaviour and> = (Qp, X, po, Fp, Ap) the one of the properties.
The construction creates first the new initial st&jg, po) of the product automaton
“pnp. Then for every transitiofiqo, a, ¢;) € Ap, whereg is the initial stateq € X
andg; € @p, there must be a transitiqpo, a, p;) € Ap, wherep, the initial state of
“/p,a € ¥ andp; € @Qp. If that does not hold, we abort, becaudey P. Otherwise
we add the statéy;, p;) and the transitiori(qo, po), a, (¢;, p;)) 10 LBnp.

We continue that process of adding new states and transitiotil the product au-
tomatona/pnp is complete (no more states and transistions can be addesl, lnave
found that for a statéq, p) in &/p~p, there is a transitiorig, a, ¢') € Ap without a
matching transition(p, a,p’) € Ap. The accepting stateg, p) in «/pnp are those
whereg is an accepting state @z andp is an accepting state afp.

Only if the above construction could be completéd]/ P potentially holds true
and we have to continue exploring the graph structure/gf p.

5 Model Checking IFLTV by Exploring Strongly Connected
Components ofa/gnp

Our algorithm is based on a structural analysis of the graphesentingzg~p. We
partition the graph into its maxim&trongly Connected ComponeatsdStrongly Con-
nected Bottom Components

— A strongly connected compong{8CC) is a set of nodes of a graph such that for
any two node®; andv, in the SCC are paths from to v, and vice versa.

— An SCC is maximal if and only if by adding any addition node he SCC, the
resulting set of nodes is not an SCC anymore.

— A strongly connected bottom compon€B€CBC) is an SCC such that no node out-
side the SCBC can reached from nodes within the SCBC. NoteSG8C are
always maximal.

The model-checking algorithm that we aiming at can now btedthay the following
theorem:

Theorem 1. B I+ P if and only if &7~ p can be constructed as described in the previ-
ous section and all SCBC ef~p contain at least one accepting state.

Proof. '=": We assume that ifZg~p cannot be constructed as defined in the previous
chapter or it contains at least one SCBC without any accgtisite, therB I P:

Let (¢, p) be a state produced during the constructions@f~p which causes the
construction to stop. Then there is a transiti@na, ¢’) in /5 without a matching
transition (p, a,p’) in «/p. Let w be a string along a path froifyy, pg) to (¢,p) in



the partially constructed?snp. Thenwa is in pre(B) but not inpre(B N P). Hence
BIf P.

If the construction ofZp~p completed, but it contains an SCBC without accepting
states, then lewy be a string along a path iwp~p leading into that SCBC. Themn is
in pre(B) but notinpre(B N P). HenceB Iy P.

"< We assumeB ¥ P and show that either/z~p cannot be constructed as
defined in the previous chapter or it contains at least one(GG@®@Bhout any accepting
state:

If B I P then there exists a string which is inpre(B) but not inpre(B N P).
Hencew either does not exist along a path from the initial statesjs » at all — then
the construction of/g~p did not complete — ot cannot be continued withi/g p
to reach infinitely often an accepting state — which implieattthere is an SCBC
without accepting states in which continuings trapped. O

6 The Non-deterministic Case

As in general, there exist properties requiring non-deitgigtic Biichi automata to rep-
resent them, the model checking algorithm resulting froengirevious section does not
cover all cases. It seems to be likely that the loss of infdionawvhen determinising
Apnp IS insignificant with respect to IFLTV, i.e. we probably cagtekminises/znp
and then decid® I P as presented in the previous section. This is, however, @nly
conjecture that we have not proved yet.

7 Conclusion

We presented a model-checking procedure for inherentiylifa@ar-time verification
(IFLTV) based on an analysis of strongly connected comptnienthe synchronous
product automaton for the behavior and property. We coutsvdhat model checking
with repsect to IFLTV can, in the case in which the property ba represented by a
deterministic Bichi automaton, be reduced to checking that constructiagyhchro-
nous product automaton does not ignore any transitiongpt@sthe automaton of the
behavior, and that the product automaton does not containgdy connected bottom
components without accepting states.

For the case of non-deterministidiBhi properties we conjectured that the con-
struction should be similar — however, a proof of this cotjee is part of future work.
Additional future work will be experiments with an implentation of the discussed
algorithm.

References

1. B.Alpernand F. B. Schneider. Defining livendsgormation Processing Letter1(4):181—
185, October 1985.

2. S. EilenbergAutomata, Languages and Machingslume A. Academic Press, New York,
1974.



~w

10.

11.

12.

13.

14.

15.

16.

. N. FrancezFairness Springer Verlag, New York, first edition, 1986.

P. Godefroid and P. Wolper. Using partial orders for the efficienification of deadlock
freedom and safety propertifgrmal Methods in System Desidt(2):149-164, April 1993.

. T. A. Henzinger. Sooner is safer than laténformation Processing Letterd3:135-141,

1992.

. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems—

Specification Springer Verlag, New York, first edition, 1992.

. F. NieBner, U. Nitsche, and P. Ochsenégit. Deterministicw-regular liveness properties.

In S. Bozapalidis, editoRroceedings of the 3rd International Conference on Developments
in Language Theory (DLT'97pages 237-247, Thessaloniki, Greece, 1998.

. U. Nitsche. Application of formal verification and behaviour abstractmthe service in-

teraction problem in intelligent networkdournal of Systems and Softwa#é®(3):227—-248,
March 1998.

. U. Nitsche. Verification of Co-Operating Systems and Behaviour Abstractiolume 7 of

GMD Research SeriesGMD, Sankt Augustin, Germany, 1998. Publication of PhD thesis.
ISBN: 3-88457-331-4.

U. Nitsche and P. Ochsensatér. Approximately satisfied properties of systems and simple
language homomorphismbiformation Processing Letter6§0:201-206, 1996.

U. Nitsche and P. Wolper. Relative liveness and behavior abstigetibended abstract).
In Proceedings of the 16th ACM Symposium on Principles of Distributed Cargpu
(PODC'97), pages 45-52, Santa Barbara, CA, 1997.

S. St James and U. Ultes-Nitsche. Computing property-preseveinaviour abstractions
from trace reductions. IRroceedings of the 20th Annual ACM Symposium on Principles of
Distributed Computing (PODC 200pages 238-245. ACM Press, August 2001.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, e&tamal Models and Se-
mantics volume B ofHandbook of Theoretical Computer Scienpages 133-191. Elsevier,
1990.

U. Ultes-Nitsche and S. St James. Testing liveness propertiesoXipyating liveness prop-
erties by safety properties. In M. Kim, B. Chin, S. Kang, and D. Leépes] Formal Tech-
niques for Networked and Distributed Systems, FORTE 2001, IFIP TO6W@ B! Inter-
national Conference on Formal Techniques for Networked and Distidb8testems, August
28-31, 2001, Cheju Island, Koregolume 197 o FIP Conference Proceedingpages 369—
376. Kluwer, 2001.

U. Ultes-Nitsche and S. St James. Improved verification of lineariroperties within fair-
ness — weakly continuation-closed behaviour abstractions computadraoce reductions.
Software Testing, Verification and Reliability (STYpgges 241255, 2003.

P. Wolper and P. Godefroid. Partial-order methods for tempendfication. In E. Best,
editor, CONCUR’93 volume 715 ofLecture Notes in Computer Sciengages 233-246.
Springer Verlag, 1993.



