
Model-checking Inherently Fair Linear-time Properties⋆

Thierry Nicola, Frank Nießner and Ulrich Ultes-Nitsche

telecommunications, networks& securityResearch Group
Department of Computer Science, University of Fribourg

Chemin du Muśee 3, 1700 Fribourg, Switzerland

Abstract. The concept of linear-time verification with an inherent fairness con-
dition has been studied under the namesapproximate satisfaction,satisfaction up
to liveness, andsatisfaction within fairnessin several publications. Even though
proving the general applicability of the approach, reasonably efficient algorithms
for inherently fair linear-time verification(IFLTV) are lacking. This paper bridges
the gap between the theoretical foundation of IFLTV and its practical application,
presenting a model-checking algorithm based on a structural analysis of the syn-
chronous product of the system and property (Büchi) automata.

1 Introduction

To be able to verify liveness properties of a system [1], it is almost always necessary
to include a fairness hypothesis in the system description [3]. Indeed, introducing a
fairness hypothesis makes it possible to ignore behaviors that correspond to extreme
execution scenarios and that, in any case, would not occur in any reasonable implemen-
tation. Even though this intuition is clear, making fairness precise is somewhat more
complicated: should one be “weakly” or “strongly” fair, “transition” or “process” fair,
or isn’t “justice” or even “compassion” what fairness should really be [6]? Intuitively,
the notion to be formalized is that of a property being true provided one is given “some
control” over the choices made during infinite executions. In other words, one wants to
characterize the properties that can be made true by “some fair implementation” of the
system.

Such a characterization has been given in previous years, leading to the exploring
linear-time verification with an inherent fairness condition.Inherently fair linear-time
verification (IFLTV) has been studied under the nameapproximate satisfaction[10],
satisfaction up to liveness[11], andsatisfaction within fairness[12, 14, 15]. All men-
tioned papers deal with the general concept of IFLTV [11] as well as the relation of
IFTLV to abstraction [10, 11] and partial-order methods [4, 16], and the combination
of the two state-space reduction techniques [15]. What has not yet been considered is
the actual implementation of IFLTV by means of a reasonably efficient model-checking
algorithm. Here, ”reasonably efficient“ refers to algorithms behaving not too badly on

⋆ Supported by theSwiss National Science Foundationunder grant number 200021-103985/1
and by theHasler Foundationunder grant number 1922.

Nicola T., Nießner F. and Ultes-Nitsche U. (2005).
Model-checking Inherently Fair Linear-time Properties.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 3-8
DOI: 10.5220/0002574300030008
Copyright c© SciTePress



practical examples, since the general model-checking problem is PSPACE-complete
[11].

In this paper, we present a model-checking algorithm for IFLTV based on a struc-
tural analysis of the synchronous product of the two Büchi automata representing sys-
tem and property respectively. The system will always be represented by a labeled tran-
sition system (deterministic B̈uchi automaton in which all states are accepting) where
the property, in the most general case, will require anon-deterministicBüchi automaton
to represent it. We will start with the case in which the property automaton isdeterminis-
tic, and develop the IFLTV model-checking algorithm for this case. Deterministic B̈uchi
automata cover already all safety and many liveness properties [1, 7]. We will then dis-
cuss how to extend the result for the deterministic case to inherently non-deterministic
properties. Finally we will comment on the additional effort of IFLTV of inherently
non-deterministic properties.

2 Motivation

The motivation for IFLTV is twofold: first, IFLTV possesses an inherentfairnesscon-
dition, and second, IFLTV related toobservabledifferences in system behavior.

2.1 Inherent Fairness

Consider the following “telecommunications” system: two users of the system may call
one another; if the called user is not busy, the call will reach her/him; otherwise the
call is rejected. A calling user has no control of whether thecalled user is engaged in
another call (busy) or not. Such a system is normally modeledby a nondeterministic
choice: whenever a user attempts to call another user, the system model decides non-
deterministically whether the called user is busy or not. Insuch a scenario, there exists
the extreme execution in which, whenever a user is called, the user is busy. Such exe-
cutions are normally ignored by using anexplicit fairness assumption[3] restricting the
allowed executions of the system. Applying IFLTV frees one from the need of finding
an explicit fairness restriction on the system model by having a fairness assumption
inherentin its definition.

2.2 Observability

Assume two systems, both randomly selecting initially an unbounded positive integer
n. The first system will operaten steps and then stop. The second system will either
operaten steps and stop, or decide nondeterministically to operate forever. An outside
observer will never be able to distinguish the two systems: if a system has stopped,
it may be either system; if it has not stopped, it may again be either system. Only
infinite observations could distinguish the two systems which is apparently practically
impossible. So, system one is as good as system two from that point of view. Linear-time
verification, however, distinguishes the two systems as onesystem does not satisfy the
property “performing only finitely many operations” where the other one does. IFLTV
is as powerful as linear-time verification, but insensitiveto differences requiring infinite
observations. We therefore consider IFLTV the more practical verification technique.

4



3 Preliminaries

Thebehaviorof a distributed system is a set of infinitely long sequences of actionsfrom
a finite setΣ of actions. Thus behaviors areω-languages onΣ. Since each (infinite)
behavior is the infinite continuation of finite behaviors of the distributed system, and
since each prefix of a finite behavior is itself a finite behavior of the system, the set of
behaviors of a distributed system is theEilenberg-limit[2] of a prefix-closedlanguage.1

Let Σ∗ be the set of all finitely long sequences onΣ, let Σω be the set of all
infinitely long sequences, and letΣ∞ = Σ∗ ∪ Σω. Let L ⊆ Σ∗.

– pre(M) = {v ∈ Σ∗ | ∃x ∈ Σ∞ : vx ∈ M} is the set of all finite prefixes of
M ⊆ Σ∞. Thenpre(x) = pre({x}) is that ofx ∈ Σ∞.

– L is prefix-closed if and only ifpre(L) = L.
– lim(L) = {x ∈ Σω | ∃∞w ∈ pre(x) : w ∈ L} is the Eilenberg-limit of language

L [2, 13].2

– A propertyP onΣ is a subset ofΣω. Behaviourlim(L) satisfies propertyP (writ-
ten: “lim(L) � P ”) if and only if lim(L) ⊆ P [1].

– cont(w,M) = {v ∈ Σ∞ | wv ∈ M} is the leftquotient ofM ⊆ Σ∞ by w ∈ Σ∗.

To introduce an implicit fairness assumption into the satisfaction relation,relative
liveness properties[5, 11] are defined as a satisfaction relation of properties [10, 11].
This satisfaction relation is calledinherently fair linear-time verification(IFLTV) rela-
tion in this paper. There are three different ways of definingIFLTV. Two are important
regarding this paper and are presented subsequently:

1. lim(L) satisfies inherently fairP ⊆ Σω (written: “lim(L) 
 P ”) if and only if
∀w ∈ pre(lim(L)) : ∃x ∈ cont(w, lim(L)) : wx ∈ P .

2. lim(L) 
 P if and only if pre(lim(L)) = pre(lim(L) ∩ P ).

From the second definition it follows that we can check the IFLTV relation by exam-
ining the automaton representinglim(L)∩P . Sincepre(lim(L)) ⊇ pre(lim(L)∩P is
always true, we only have to find a condition ensuringpre(lim(L)) ⊆ pre(lim(L)∩P .
Will we examine this condition subsequently for the case in whichP is represented by
adeterministicBüchi automaton. We useB as a shorthand for behaviorlim(L), which
is always deterministic.

We construct subsequently the automatonAB∩P representing the intersection of
behavior and property (the so-called synchronous product automaton) for the case of
deterministicP . This yields an IFLTV model-checking algorithm for the deterministic
case.

1 It is important to note that dealing only with languages is not a restriction sincefinite au-
tomata cancompletely(including state information) be encoded by their local languages [2]
(the languages over transition triples(state, event, successorstate)).

2 Read “∃∞... : ...” as “there exist infinitely many different ... such that ...”.

5



4 Construction of AB∩P

It must be guaranteed during construction of the product automaton thatB 
 P re-
mains valid. It is necessary to modify the classic algorithmof the synchronous product
construction. The additional feature ensures that the result automaton does not violate
B 
 P , or if it does that it is detected. LetAB = (QB , Σ, q0, FB ,∆B) the automaton
representing the behaviour andAP = (QP , Σ, p0, FP ,∆P ) the one of the properties.
The construction creates first the new initial state(q0, p0) of the product automaton
AB∩P . Then for every transition(q0, a, qi) ∈ ∆B , whereq0 is the initial state,a ∈ Σ

andqi ∈ QB , there must be a transition(p0, a, pj) ∈ ∆P , wherep0 the initial state of
AP , a ∈ Σ andpj ∈ QP . If that does not hold, we abort, becauseB 6
 P . Otherwise
we add the state(qi, pj) and the transition((q0, p0), a, (qi, pj)) to AB∩P .

We continue that process of adding new states and transitions until the product au-
tomatonAB∩P is complete (no more states and transistions can be added), or we have
found that for a state(q, p) in AB∩P , there is a transition(q, a, q′) ∈ ∆B without a
matching transition(p, a, p′) ∈ ∆P . The accepting states(q, p) in AB∩P are those
whereq is an accepting state ofAB andp is an accepting state ofAP .

Only if the above construction could be completed,B 6
 P potentially holds true
and we have to continue exploring the graph structure ofAB∩P .

5 Model Checking IFLTV by Exploring Strongly Connected
Components ofAB∩P

Our algorithm is based on a structural analysis of the graph representingAB∩P . We
partition the graph into its maximalStrongly Connected ComponentsandStrongly Con-
nected Bottom Components:

– A strongly connected component(SCC) is a set of nodes of a graph such that for
any two nodesv1 andv2 in the SCC are paths fromv1 to v2 and vice versa.

– An SCC is maximal if and only if by adding any addition node to the SCC, the
resulting set of nodes is not an SCC anymore.

– A strongly connected bottom component(SCBC) is an SCC such that no node out-
side the SCBC can reached from nodes within the SCBC. Note that SCBC are
always maximal.

The model-checking algorithm that we aiming at can now be stated by the following
theorem:

Theorem 1. B 
 P if and only ifAB∩P can be constructed as described in the previ-
ous section and all SCBC ofAB∩P contain at least one accepting state.

Proof. ’⇒’: We assume that ifAB∩P cannot be constructed as defined in the previous
chapter or it contains at least one SCBC without any accepting state, thenB 6
 P :

Let (q, p) be a state produced during the construction ofAB∩P which causes the
construction to stop. Then there is a transition(q, a, q′) in AB without a matching
transition(p, a, p′) in AP . Let w be a string along a path from(q0, p0) to (q, p) in

6



the partially constructedAB∩P . Thenwa is in pre(B) but not inpre(B ∩ P ). Hence
B 6
 P .

If the construction ofAB∩P completed, but it contains an SCBC without accepting
states, then letw be a string along a path inAB∩P leading into that SCBC. Thenw is
in pre(B) but not inpre(B ∩ P ). HenceB 6
 P .

’⇐’: We assumeB 6
 P and show that eitherAB∩P cannot be constructed as
defined in the previous chapter or it contains at least one SCBC without any accepting
state:

If B 6
 P then there exists a stringw which is inpre(B) but not inpre(B ∩ P ).
Hencew either does not exist along a path from the initial state inAB∩P at all — then
the construction ofAB∩P did not complete — orw cannot be continued withinAB∩P

to reach infinitely often an accepting state — which implies that there is an SCBC
without accepting states in which continuingw is trapped. ⊓⊔

6 The Non-deterministic Case

As in general, there exist properties requiring non-deterministic Büchi automata to rep-
resent them, the model checking algorithm resulting from the previous section does not
cover all cases. It seems to be likely that the loss of information when determinising
AB∩P is insignificant with respect to IFLTV, i.e. we probably can determiniseAB∩P

and then decideB 6
 P as presented in the previous section. This is, however, onlya
conjecture that we have not proved yet.

7 Conclusion

We presented a model-checking procedure for inherently fair linear-time verification
(IFLTV) based on an analysis of strongly connected components in the synchronous
product automaton for the behavior and property. We could show that model checking
with repsect to IFLTV can, in the case in which the property can be represented by a
deterministic B̈uchi automaton, be reduced to checking that constructing the synchro-
nous product automaton does not ignore any transitions present in the automaton of the
behavior, and that the product automaton does not contain strongly connected bottom
components without accepting states.

For the case of non-deterministic Büchi properties we conjectured that the con-
struction should be similar — however, a proof of this conjecture is part of future work.
Additional future work will be experiments with an implementation of the discussed
algorithm.

References

1. B. Alpern and F. B. Schneider. Defining liveness.Information Processing Letters, 21(4):181–
185, October 1985.

2. S. Eilenberg.Automata, Languages and Machines, volume A. Academic Press, New York,
1974.

7



3. N. Francez.Fairness. Springer Verlag, New York, first edition, 1986.
4. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock

freedom and safety properties.Formal Methods in System Design, 2(2):149–164, April 1993.
5. T. A. Henzinger. Sooner is safer than later.Information Processing Letters, 43:135–141,

1992.
6. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems—

Specification. Springer Verlag, New York, first edition, 1992.
7. F. Nießner, U. Nitsche, and P. Ochsenschläger. Deterministicω-regular liveness properties.

In S. Bozapalidis, editor,Proceedings of the 3rd International Conference on Developments
in Language Theory (DLT’97), pages 237–247, Thessaloniki, Greece, 1998.

8. U. Nitsche. Application of formal verification and behaviour abstraction to the service in-
teraction problem in intelligent networks.Journal of Systems and Software, 40(3):227–248,
March 1998.

9. U. Nitsche.Verification of Co-Operating Systems and Behaviour Abstraction, volume 7 of
GMD Research Series. GMD, Sankt Augustin, Germany, 1998. Publication of PhD thesis.
ISBN: 3-88457-331-4.

10. U. Nitsche and P. Ochsenschläger. Approximately satisfied properties of systems and simple
language homomorphisms.Information Processing Letters, 60:201–206, 1996.

11. U. Nitsche and P. Wolper. Relative liveness and behavior abstraction (extended abstract).
In Proceedings of the 16th ACM Symposium on Principles of Distributed Computing
(PODC’97), pages 45–52, Santa Barbara, CA, 1997.

12. S. St James and U. Ultes-Nitsche. Computing property-preservingbehaviour abstractions
from trace reductions. InProceedings of the 20th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2001), pages 238–245. ACM Press, August 2001.

13. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,Formal Models and Se-
mantics, volume B ofHandbook of Theoretical Computer Science, pages 133–191. Elsevier,
1990.

14. U. Ultes-Nitsche and S. St James. Testing liveness properties: Approximating liveness prop-
erties by safety properties. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,Formal Tech-
niques for Networked and Distributed Systems, FORTE 2001, IFIP TC6/WG6.1 - 21st Inter-
national Conference on Formal Techniques for Networked and Distributed Systems, August
28-31, 2001, Cheju Island, Korea, volume 197 ofIFIP Conference Proceedings, pages 369–
376. Kluwer, 2001.

15. U. Ultes-Nitsche and S. St James. Improved verification of linear-time properties within fair-
ness – weakly continuation-closed behaviour abstractions computed from trace reductions.
Software Testing, Verification and Reliability (STVR), pages 241–255, 2003.

16. P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In E. Best,
editor, CONCUR’93, volume 715 ofLecture Notes in Computer Science, pages 233–246.
Springer Verlag, 1993.

8


