How to Synthesize Relational Database Transactions
From EB3 Attribute Definitions?

F. Gervai$?, M. Frappief and R. Laleat|

! Laboratoire CEDRIC, Institut d’Informatique d’Entreprise
18 Allée Jean Rostand, 910BSry Cedex, France

2 GRIL, Département d’informatique, Universitle Sherbrooke
Sherbrooke, Qebec, Canada J1K 2R1

3 Laboratoire LACL, Universi de Paris 12
IUT Fontainebleau, Bpartement informatique
Route Forestire Hurtault, 77300 Fontainebleau, France

Abstract. EB? is a trace-based formal language created for the specification of
information systems (IS). Attributes, linked to entities and associations of an IS,
are computed it by recursive functions on the valid traces of the system. In
this paper, we show how to synthesize relational database transactions that cor-
respond toes?® attribute definitions. Thus, ea@s?® action is translated into a
transactiones?® attribute definitions are analysed to determine the key values af-
fected by each action. To avoid problems with the sequencing of SQL statements
in the transactions, temporary variables and/or tables are introduced for these key
values.

1 Introduction

We are mainly interested in the formal specification of information systems (IS). In our
viewpoint, an IS is a system that helps an organization to collect and to manipulate all its
relevant data. The use of formal notation and techniques is justified for some systems
when the data and/or their manipulation are considered as criticEEh¢6] formal
language has been specially created for that aim.

Example. The example used in this paper is a library management system. The system
has to manage book loans to members. In particular, a member can transfer his loan to
another member. A book can be lent by only one member at once. Figure 1 shows the
user requirements class diagram of the example.

An Overview of EB%. EB? is a trace-based formal specification language that can de-
scribe the input-output behaviour of an IS. The inputs are the events received by the
system, like actiorLend in the example. The outputs are computations on attribute
values in answer to an input everty., a function that returns the number of loans of

Gervais F., Frappier M. and Laleau R. (2005).

How to Synthesize Relational Database Transactions From EB3 Attribute Definitions?.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 83-88
DOI: 10.5220/0002573600830088

Copyright © SciTePress

84

loan

Lend
Return
Transfer

book ! member
* ! 0.1

bookKey : bk_Set L memberKey : mk_Set
- borrower —_—
title : T nbLoans : N
Acquire Register
Discard Unregister
Modify

Fig. 1. User requirements class diagram of the library

a member. Ares? specification consists of the following elements: i) a usgjuire-
ments class diagram which includes entities, associatent their respective actions
and attributes; ii) a process expression, denoteaebyn, which defines the valid input
event traces; iii) recursive functions, defined on the sawferai n, that assign values
to entity and association attributes; iv) input-outputesjlwhich assign an output to
each valid input event trace. Indeed, the denotational stoseof aneEs? specification
is given by a relatiorR? defined on7 (nai n) x O, where7 (mai n) denotes the traces
accepted bymai n and O is the set of output events. Ler ace denote the system
trace, which is the sequence of the valid input events aedesat far in the execution of
the system, letr ace: : o denote the right append of elemento tracet r ace, and
let[] denote the empty trace. Then, we have:

trace:=[1];
forever do
receive input event;
if mai n can acceptrace: : o then
trace:=trace::o;
send output eventsuch thatt r ace, o) € R;
else
send error message;

The EB? notation for process expressions is similar to Hoare’s CG3PThe com-
plete syntax and semantics B> can be found in [6] and the process expression for
the example in [8]EB? expressions are close to the user view and complex cortstrain
inside and between entities are easy to specifygh[4]. The input-output rules of the
example are described in [7].

Outline. The APIS project [5] aims at generating IS fraes® specifications. There
already exists an interpreter, called EB3PAI [3], &8° process expressions. It allows
one to generate IS from correes?® specifications. Nevertheless, the computation of at-
tribute values in EB3PAI is not taken into account yet, aagsactions are considered

85

as black boxes. In this paper, we focus on the synthesis atioehl database transac-
tions that correspond tes? attribute definitions. Thus, we will be able to efficiently
interpretees® specifications for the purpose of software prototyping atglirements
validation. The synthesized imperative programs are of#me algorithmic complex-
ity as those manually generated by a programmer. Hence cthdy also be used in
concrete implementations eB® specificationses?® attribute definitions are presented
in Sect. 2. In Sect. 3, we show how to generate SQL statemleatscorrespond to
eB? attribute definitions. Finally, Sect. 4 concludes the payiét some comments and
perspectives.

2 EB3 Attribute Definitions

The definition of an attribute iEB? is a recursive function on the valid traces of the
system, that is, the traces accepted by process expressian The function is total
and is given in a pattern-matching-like style, as in CAML. [ltJoutputs the attribute
values that are valid for the state in which the system igrdfaving executed the
input events in the trace. A key definition outputs a set of kelyes, while a non-
key attribute definition outputs the attribute value for & k@lue given as an input
parameter. For instance, the key of entity tyjmeok is defined by functiorbook K ey
in Fig. 2.book K ey has a unigue input parametee 7 (main), i.e., a valid trace of the
system, and it returns the set of key values of entity typek. Let us note that type
F(bk_Set) denotes the set of finite subsetdbf Set. Non-key attributeitle is defined
in Fig. 2.

bookKey(s : T(main)) : F(bk_Set) = title(s : T(main), bId : bk_Set) : T =

match last(s) with match last(s) with

L0, T, (11)

Acquire(bld,) : bookKey(front(s))U{bld},|Acquire(bld,ttl) : ttl, (12)

Discard(mId) : bookKey(front(s)) — {bld}, |Discard(bld) : L, (13)

_: bookKey(front(s)); Modify(bId, ttl) : ttl, (14)
_: title(front(s),bld); (15)

Fig. 2. Examples ofB? attribute definitions

Expressions of the formmput : expr, like Acquire(bld,ttl) : ttl in title, are

calledinput clauses. When an attribute definition is executed, then all the infatges

of the attribute definition are analysed, and the first patteatching that holds is the
one executed. Hence, the ordering of the input clauses igriant. The pattern match-
ing analysis always involves the last input event of tracH one of the expressions
input matches withast(s), then the corresponding expressiarpr is computed; oth-
erwise, the function is recursively called with the firstretnts ofs except the last one,
denoted byfront(s). This case corresponds to the last input clause with symbol
EB? attribute definitions always includg, that matches with the empty trace, to repre-
sent undefinedness; hene®? recursive functions are always total. Any reference to a

86

keyeKey or to an attributé in an input clause is always of the fori ey(front(s))
orb(front(s),...). For instance, we have the following values for attribtitée:

title([],01) &€ L

title([Register(my)], b1) £ title([],b1) 2 L
title([Acquire(by, t1)],b1) 2 ¢

title([Acquire(by, t1), Register(my), Modify(b1, t2)], b1) £ t,

In the first example, the value is obtained from input clausg éincelast([]) = L.
In the second example, we first applied the wild card clauskg ¢ince no input clause
matchesRegister, and then (I11). In the last examples, the value is obtainesttly
from (12) and (I3), respectively.

Expressiorexpr in an input clause of the forimput : expr is a term composed of
constants, variables and attribute recursive cdlthien else endexpressions are also
used when the pattern matching condition is not sufficiemtet@rmine the key values
affected by an action. For instance, the input clausdiansfer in attributenbLoans
is:

Transfer(bld, mId') : if mId = mId thennbLoans(front(s),mId) + 1
else ifmId = borrower(front(s),bld) then
nbLoans(front(s),mId) — 1endend

The key ofnbLoans is mId, and thef predicates determine two key values fol d:
mlId andborrower(front(s),bld).

3 Synthesizing Relational Database Transactions

In the EB® semantics, when a new event of actiois accepted by process expression
mai n, then all the attributes affected lymust be updated. To generate a RDBMS
transaction for eacEB? actiona, we must analyse the input clausesea attribute
definitions to determine which attributes are affected lgyekecution of actiom and
what are the effects of on these attributes. The general algorithm is the following

for each actiom of the EB? specification
analyse the input clauses BB attribute definitions
determine the tableg(a) affected bya
for eacht in T'(a)
determine the key values to delete
determine the key values to insert and/or to update
define the transaction far

In the remainder of this paper, the SQL 92 norm [10] is use®L queries, while a
procedural pseudo-language is used for transactions.

Definition of Temporary Variables and Temporary Tables. The analysis of the input
clauses is summed up in this paper; the algorithms are pgegban[7]. When a pattern
matching condition evaluates to true, an assignment ofwevalr each free variable in
the input clause has been determined. When expressjanin an input clause of the

87

forminput : expr containgf then elseexpressions, then we must analyse the different
conditions in thdf predicates to determine the values of the key attributdsatiganot
bounded by the pattern matching. We use a binary trees agtslon trees to analyse
theif predicates; their construction and analysis are detail¢8l)i

When key values are determined from predicates involvingpedations and/or
recursive calls of attributes, then a temporary variable éeemporary table must be
defined in the host language, in order to manipulate it in thesaction of the action.
Moreover, such definitions allow us to define transactiodgprendently of the state-
ments ordering. A temporary variable is defined when a urkgyevalue is determined,
while a temporary table is used to characterize several &kyes. For instance, if we
need the collection of books lent by membef d, then the following table is defined:

CREATE TABLE TAB (bookKeyINT PRIMARY KEY);
INSERT INTO TAB

SELECT bookKey

FROM book

WHERE borrower= #mlid;

We do not use views, because we want to consider the valud® afata before any
modification. Thus, the content of the temporary tables @uated only once, at the
beginning of the transaction. The generatiorS&LECT statements that correspond
to the key values satisfying thepredicates depends on the form of the predicate. We
have identified the most typical patterns of predicates eid torrespondin@ELECT
statements [7].

Definition of Transactions. For defining transactions, all the SQL statements are
grouped by table. Thanks to the analysis of the input claubeskey values to delete
are distinguished from the other key values. DELETE statements are grouped at
the beginning of each table’s list of instructions. For am&te, the transaction generated
for actionDiscard is:

TRANSACTION Discard(mld : BOOKID)
DELETE FROM book /* delete statement */
WHERE bookKey= #bld;

COMMIT ;

Let us note that this transaction should be executed onlynuigcard is a valid input
event of the system. When the action involves updates anwiertions, then the trans-
action becomes more complex. Indeed, tests must be defirtsddomine whether the
key values already exist in the tables, in order to distisiguipdates from insertions.
For instance, the trasaction generatedXoquire is:

TRANSACTION Acquire(bld : BOOKID,bTitle : T)

VAR R : ResultSet /* define a temporary variable for the test */
SELECT bookKeyINTO R /* extract bld from book */
FROM book
WHERE bookKey= #bld;

IF R is not empty /* test to determine whether bld is in book */

THEN UPDATE bookSET title = #ttl /* update statement */

WHERE bookKey= #bld;

88

ELSE INSERT INTO book(bookKey,title) /* insert statement */
VALUES (#bld, #ttl);

END;

COMMIT ;

Such a transaction could be simplified by the analysiss3fprocess expressions.

4 Conclusion

In this paper, we have presented an overview of an algorithah gynthesizes rela-
tional database transactions fras? attribute definitions. Synthesized programs can
be used in concrete implementationsef specifications; their algorithmic complexity
is similar to those of manually written programs. Our progsantroduce some over-
head, because they systematically store the current vafusgibutes before updating
the database, in order to ensure correctness. We plan tmipptthese programs by
analysing dependencies between update statements adg\aken possible, these in-
termediate steps. By focusing on the translation of atteiliefinitions, the resulting
transactions do not take the behaviour specified byeteprocess expression into ac-
count. This work must now be coupled with the analysis antt#@imterpretation of B>
process expressions. Several papers deal with the sysitbfeglational implementa-
tions. Most of the time, refinement techniques are usedjtik2] for Z and [11] for B
specifications, which are orthogonal in specification styles® [4].

References

1. Cousineau, G., Mauny, M.: The Functional Approach to ProgragnCambridge Univer-
sity Press, Cambridge (1998)
2. Edmond, D.: Refining Database Systems. In Proc. ZUM’'95, Lirkehieland, 7-9 Septem-
ber 1995. LNCS, Vol. 967, Springer-Verlag (1995) 25-44
3. Fraikin, B., Frappier, M.: EB3PAI: an Interpreter for the® Specification Language. In
Proc. 15th Intern. Conf. on Software and Systems Engineering amdiyaications, Paris,
France, 3-5 December 2002. CMSL, Paris (2002)
4. Fraikin, B., Frappier, M., Laleau, R.: State-Based versus EBased Specifications for In-
formation Systems: a Comparison of B ax&f. Software and System Modeling, to appear
5. Frappier, M., Fraikin, B., Laleau, R., Richard, M.: APIS - Autdim&roduction of Informa-
tion Systems. In Proc. AAAI Spring Symposium, Stanford, USA, 28v2ifch 2002. Techn.
Rep. SS-02-05, AAAI Press (2002) 17-24
6. Frappier, M., St-Denis, Res®: an Entity-Based Black-Box Specification Method for Infor-
mation Systems. Software and System Model{g8) (2003) 134-149
7. Gervais, F., Frappier, M., Laleau, RB> Attribute Definitions: Formal Language and Ap-
plication. Technical Report 700, CEDRIC, Paris, France (2005)
8. Gervais, F., Frappier, M., Laleau, R.: Synthesizing B Substitutionsg® Attribute Defini-
tions. Technical Report 683, CEDRIC, Paris, France (2004)
9. Hoare, C. A. R.: Communicating Sequential Processes. Prentilt¢1985)
10. ISO: Database Language SQL. International Standard ISO/IEX1/$TC21, doc. 9075
N5739 (1992)
11. Mammar, A.: Un environnement formel pour léveloppement d’applications base de
donrées. Ph.D. thesis, CNAM, Paris (2002)

