Consistency Verification of a Non-monotonic Deductive
System based on OWL Lite

Jaime Rarirez and Anglica de Antonio

Technical University of Madrid
Madrid, Spain

Abstract. The aim of this paper is to show a method that is able to detect a partic-
ular class of semantic inconsistencies in a deductive system (DS). A DS verified
by this method contains a set of production rules, and an OWL Lite ontology that
defines the problem domain. The antecedent of a rule is a formula in Disjunctive
Normal Form, which encompasses first-order literals and linear arithmetic con-
straints, and the consequent is a list of actions that can add or delete assertions in
a non-monotonic manner. By building an ATMS-like theory the method is able
to give a specification of all the initial Fact Bases (FBs), and the rules that would
have to be executed from these initial FBs to produce an inconsistency.

1 Introduction

The purpose of this paper is to present a method for verifying the semantic consistency
of deductive systems (DSs) that deal with production rules and an OWL Lite ontology
One of the most interesting facets of the proposed method is that it is able to deal with
non monotonic reasoning. As the consequent of the production rules is allowed to add
and delete facts about individuals in the Fact Base (FB), the behaviour of the verified
DS isnon-monotonic.

Some methods or tools intended to verify the consistency of a DS (mostly rule based
systems) build a model of the DS (Graph, Petri Net, etc.), and execute the model for each
valid input, in order to identify possible inconsistencies during the reasoning process.
This approach in many cases turns to be computationally very costly. Thus, we decided
to follow another approach in which the starting point is one of the inconsistencies that
might be possibly deduced by the verified DS, and the goal is to compute a description
of the initial FBs in which the DS would deduce that inconsistency. This approach takes
some ideas from the ATMS designed by de Kleer [1] since it uses the concept of label as
a way to represent a description of a set of FBs. Other methods for verifying rule-based
systems that follow a similar approach were proposed in [2] [3].

Section 2 of this paper mentions other methods that have also been proposed to
verify the consistency of a hybrid DS or non-monotonic DS. In section 3, some aspects
are explained related to the DSs to be verified. Section 4 describes how to specify the
inconsistencies that are verified by this method. Section 5 explains how this method

! http://Mmww.w3.0rg/TR/owl-features/

Ramirez J. and de Antonio A. (2005).

Consistency Verification of a Non-monotonic Deductive System based on OWL Lite.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 19-28
DOI: 10.5220/0002573400190028

Copyright © SciTePress

20

specifies the way in which a DS can deduce an inconsistenpgsiible. In section

6, the procedure for detecting an inconsistency is outlenadiillustrated by means of
a simple example. We end with some conclusions and futur&saderived from our

work.

2 Previous Work

There are not many methods that are able to deal with thecagith of non-monotonic
DSs based on rules. Among them, we can highlight Antonio@'thwd [4], which anal-
izes DSs expressed in default logic, and Wu & Lee’s methogwh]ch tests DSs with
production rules under the closed world assumption. WhileoAiou’s method is in-
spired on tabular methods for monotonic DSs, Wu & Lee’s mgtimodels the DS as
a high level extended Petri net. Analogously, only a few roéshhave been proposed
that are able to verify hybrid systems, that is, systemsdabine two different knowl-
edge representation formalisms, one for representingrtitdgam domain, and another
for representing the inference knowledge. The first work dealt with hybrid systems
was that of Lee & O’Keefe [6], which characterized a set of ngpes of anomalies
that appear as a result of considering the subsumptioriaestip among literals in
different rules. In order to detect those anomalies, Lee &d&@fe presented a method
with a tabular approach. Finally, we will mention anothettinog to verify hybrid sys-
tems, which was proposed by Levy and Rousset [7], and is tist atvanced method
proposed to date to test hybrid systems. This method cangedpo hybrid systems
expressed in the CARIN language [8], which is a languagedatines the flexibility
of the Horn clauses with the expressiveness of A8V CR Description Logic (DL).
The method provided is grounded in theoretical resulttedlt the query containment
problem, studied in the database literature. However, thia drawback of this method
is that it is required to evaluate the same query for eacH irgbut, and this process may
imply a very high computational cost. Thus, to the best oflimowledge, no method,
except for ours, can deal with hybrid DSs with non monotoe&soning. Moreover, our
method does not need to check the DS w.r.t. each possiblg isipae it begins from
the inconsistency, and then it tries to build the descriptiba conflictive input working
backwards.

3 Characteristics of the Deductive System to be Verified

The DS is made up of a Knowledge Base (KB) and an inferencaenlgiturn, the DS'’s
KB consists of an OWL Lite ontology and a set of productionsuleet us describe each
part in more detail:

3.1 OWL Lite ontology

OWL language was intended to associate meaning to the welrdenin addition,
OWL allows for defining a shared vocabulary that several agémhich may be en-
dowed with DSs) can process and utilize to exchange infaomaOWL is a layered

21

language because it specifies a hierarchy of three subdgeguThey are, sorted by de-
creasing degree of expressiveness, OWL Full, OWL DL and OWL Ritdough OWL
Full and OWL DL are more expressive than OWL Lite, the utiliaatof OWL Lite for
reasoning purposes is more recommended, as long as thienemtigproblem for OWL
Full is undecidable, and quite inefficient for OWL DL. An OWL kibntology consists
of a set of axioms and a set of facts. The axioms define some telasnomies where
each class comprises a set of properties, whereas eaclefaetgdan individual. More-
over, an OWL property is either a data-valued property or dgeattvalued property. In
OWL Lite, the cardinality of the properties must be 0 or 1. Maer, a property can be
defined to be transitive, symmetrical or inverse of anotheperty. The properties can
be arranged to make up taxonomies of properties, for exanhgeropertyHasFather
can be defined as a subproperty of the propddgRelative

3.2 Production rules

The rule form considered by the method(isi, l12, ..., l1wV yoees Vi1, b2y ooy bins) —
ai,as, ..., a; Where the antecedent part contains a disjunctiom @onjunctions of lit-
erals (;;), and the consequent part contains a list of actiaps @ literal is an atom (or
atomic formula), a negated atom (except when the atabn j§ferent(I1, I2), since it
must not be negated) or a linear arithmetic constraint. Bniallles must be preceded by
7, and the types of the variables can be determined takin@godount the OWL Lite ax-
ioms. The kinds of atoms that can occur in the antecedenapa§ubClass(C1, C2),
Instance(I,C), SubProperty(P1, P2), Dif ferent(I1,12)andPROPERTY (I1,
VALUFE), where each argument written in capital letters can be abfrior an ob-
ject name. HencePROPERTY may be a variable representing any property. The
intended meaning for the literalPROPERTY (I1,VALUE)s:
—~PROPERTY (I1,VALUE) = 3VALUE1(PROPERTY (I1,VALUE1)
ADifferent(VALUE, VALUE1)). This meaning is established taking into account that the
maximum cardinality for the OWL Lite properties is 1. The Bmarithmetic constraints
are intended to represent complex relationships over saaevélued properties on the
real domain. The syntax for these constraints is the santeeasy/htax specified for the
DL reasoner RACER

Basically, we admit actions in the consequent part to betiatidhctions or deletion
actions. By means of an addition action, a rule can add a detttet FB, whereas by
means of a deletion action, a rule can remove a fact from theSyBtactically, an
action can take the formdd(Individual _Atom) or Del(Individual _Atom) where
Individual_Atom is eitherInstance(I,C) or PROPERTY (I1,Value).

3.3 Dynamic aspects

The DS is assumed to contain an inference engine able totexdseurules following a
forward or backward chaining. Furthermore, the DS must stt@DL reasoner able to
deal with the entailment problem. As an OWL Lite ontology carntanslated into the
description logicSHZF [9], DL reasoners such as RACER can be used to instantiate

2 http://ww.cs.concordia.ca/ haarslev/racer/racer-manual-pdt-7.

22

a literal of a rule on demand if possible. If a certain litezahnot be instantiated with
the facts entailed by the ontology, and the DS follows a backvehaining, the rule
inference engine will try to find a rule that deduces thatdite

When a rule is fired, we assume that all the actions belongitigetconsequent of
the rule are executed sequentially.

Facts in a DS are classified into two categoriesteducible facts a fact that is
obtained from the execution of the DS; and exiernal factis a fact that cannot be
deduced by the DS and can only be obtained from an externatesou

3.4 Non-Monotonicity and Inconsistency

Rules can introduce new facts in the FB, but they can alsdalaleeady existing facts.
This provides the DS’s designer with the capability of bimgDSs with non-monotonic
reasoning. Consequently, we could find production ruledefformp — Add(-p)
under Open World Assumption (OWA). This kind of rules (wheis assumed to hold)
are not admissible in a monotonic KB, since they are loginabmnsistencies. If we
admit rules of the formp — Add(—p), we situate ourselves quite far from the concept
of inconsistency in monotonic DSs as defined in other wordksye are going to clarify
the meaning of inconsistency in this work:

A deductive tre€l’ that deduces a conjunction of fadisand F’ is tree consistent
iff:

1. T does not contain a set of contradictory external facts, or
2. the deductive subtree @fthat deduce$’ must not deduce: F” in the end, and
vice versa.

This definition is not more than an structural property touglfed by the deductive
trees built by the DS that we want to verify using the methositife method will simu-
late the DS execution, it will discard any deductive prodbss implies the creation of
an invalid deductive tree. Let us see an example of an instamgiset of rules. For the
sake of clarity, a simplified notation for the rules will be goyed in this example. Ac-
cording to this notation;p denotes a fact that is contradictory with the faet.r.t. the
ontology axioms. Let us take the production rules. v, s — Del(p), Add(—p); R2:

t — Add(p); R3: -p — Add(q) under OWA. In the figure 1 we can see the deductive
tree for a conjunctiomp A ¢ that is supposed to be the antecedent of another rule. The
factsp andq are deducible and all the other facts are external. Obwdssk rule R3),

in order to deduce, —p must be deduced beforehand, and after having deduped

is not possible to deduge

4 Specification of Semantic Inconsistencies

Each semantic inconsistency that must be considered isgepied by means of an
Integrity Constraint (IC). The IC form isdx;3xs... 3z, (I1(scoper) A la(scopes) A

... N (scopey)) = L. A scope is associated with each literal to specify the kirdhta
referenced in the literal (input or output). A literal withgut scope states something
about the initial FB, while a literal with output scope stasmmething about the final
FB (resulting after an execution of the DS).

23

R2(t) R3(=p)

N/

Fig. 1. Example of an invalid deductive tree

5 Specification of the Contexts

5.1 Describing Fact Bases

The proposed method will construct an object cakedbcontexto specify how the
initial FB must be and which deductive tree must be executedrder to cause an
inconsistency. There can be different initial FBs and déffe deductive trees that lead
to the same inconsistency. An object caltehtextwill gather all the different ways to
violate a given IC. Consequently, a context will be compasfaasubcontexts. In turn,
a subcontext is defined as a pénvironment, deductive treghere an environment
is composed of a set ohetaobjectsand a deductive tree is a tree of rule firings. A
metaobject describes characteristics that one objectémabe present in the FB should
have. For each type of OWL Lite object there will be a differsmute of metaobject. In
order to describe an OWL Lite object, a metaobject must irckudet of constraints on
the characteristics of the OWL Lite object. All the metaokg&cattributes are outlined
below:

Metaclass= (identifier, subclassf, metaindividuals) Metalndividual = (identifier, instancef, objectproperties,
MetaObjectProperty = (identifier, datatypeproperties, differentfrom)
pairsof_metaindividuals, subproperiyf) MetaValue =(conditions)

MetaDataTypeProperty = (identifier,
pairsof_metaindividual-value, subpropertf)

Given that certain constraints expressed as arithmetguet@ns can restrict the
datatype property values, a different kind of metaobjeliedaonditionwill represent
these constraints. The attributes of a conditioresgessiomndvalues Lets see an ex-
ample of an environment describing a FB in which the fornfulatance(? X, Person)
AFeels(?X, Tiredness) NTemperature(?X, Ttemp) A Ttemp > 36.5 holds. If there
exists an OWL Lite object in the FB for each metaobject in thdrenment, that sat-
isfies all the requirements imposed on it, then the given @darwill hold in the FB.
The environment is defined 4€LASS1, IND1, IND2, OPRO1, DTPRO1, VALUEL1,
CONDZ1} where:

CLASS1 = (Person,, {IND1}) DTPRO1 = (Temperature,

IND1 = (,{CLASS1}, {OPRO1}, {(IND1,VALUE1)},)

{DTPRO},) VALUE1L = ({COND1})

IND2 = (Tiredness, {OPRO1}, ,) COND1 = ("?temp > 36.5”, [VALUFE1])

OPRO1 = (Feels, {(IND1,IND2)},)

24

CLASSL1 is a metaclass, IND1 and IND2 are metaindividualsROPis a metaOb-
jectProperty, DTPROL1 is a metaDataTypeProperty, VALUEA imetaValuel, and fi-
nally CONDL1 is a condition. As defining the metaobjects, tvamsecutive commas
represent an empty field.

5.2 Contexts Operations

We will define the following contexts operations: creatidraccontext, concatenation

of a pair of contexts and combination of a list of contextse3éoperations will be em-

ployed by the method to compute the scenarios, as we willkdeedn. Before defining

the context operations, the goal object will be definedjoal g is a pair(l, A) wherel

is a literal andA is a set of metaobjects associated with the object namesaaiables

in [, that specifies the FBs in which the litefas satisfied without using DL reasoning.

Moreover, a goa(l, A) is external/deducible iff the literdlis external/deducible.

a) Creation a context with a unique subcontext is created from an eateyoalg =

(1,A): C(g) = {(E, EMPTY _TREE)} where the environmeri comprises all the

metaobjects included iA.

b) Concatenation of a pair of contextst C; andC, be a pair of contexts andonc(C1,

C5) be the context resulting from the concatenation, thiémmc(Cy, Ce) = Cy U Cs.

¢) Combination of a list of contextdet C1,Cs, ...,C,, be the list of contexts, and

Comb(Cy, Cs, ..., Cy,) be the context resulting from the combination. The form of th

resulting context isComb(C1, Cs, ..., Cy) ={(Ek1 U Ega... U Egp, DTk * DTgo... %

DTkn) S.t. (E‘Z7 DTl) € Cz}
c.1) Union of environment$E; U E;): this operation consists of the union of the
sets of metaobjects; and E;. After the union of two sets, it is necessary to check
whether any pair of metaobjects can be merged. A pair of rbgats will be
merged if they contain a pair of constrain{sandcs, respectively, such that{A c3)
entail that both metaobjects represent the same OWL Litebfjais will happen if
both metaobjects should have the same value indietifier attribute according to
the ontology axioms. Finally, if the resulting environmegpresents an invalid ini-
tial FB, then this environment will also be discarded. Thist Icheck will be carried
out with the help of the DL reasoner RACER.
c.2) Combination of deductive tre¢®T; = DT}): let DT; and DT} be deductive
trees, therDT; « DT} is the deductive tree that results from constructing a new tr
whose root node represents an empty rule firing, and whoseuwbtees aréT;
andDTj.

6 Computing the Context associated with an Integrity Constaint
The process to compute the context associated with an |Gridedi into two steps.

Next, these steps will be explained.

6.1 First Step

The first step can be considered as a pre-processing of theratds. In the second step,
a backward chaining simulation of the real rule firings isriear out without making

25

calls to the DL reasoner (except for consistency checksearutiion of environments,
see 5.2, or in the updates of the set of assumed individusalgeavill see in the second
step). However, in a real execution of the DS some literalseénmule antecedents may be
instantiated thanks to these DL reasoner calls. In ordell thi§ gap in the simulation,
some new rules derived from the ontology axioms and alrezidjireg rules are added
to the set of rules. In particular, the generation of newsideelated to the presence of
deduced literals in the rules. Sometimes, a rule adds a retvioféhe FB that matches
a literal in another rule’s antecedent; in that case, we sdll in the simulation that
the first rule can be chained with the literal. In other casesile adds a new fact to
the FB that does not match directly a literal in a rule anteagdbut it actually does
it indirectly, because the new fact allows the DL reasonatdduce another fact that
does match the literal. For the purpose of simulating pigptéis kind of inference
situations, the set of rules must be pre-processed. Nexwyilvexplain how the new
rules are computed from the ontology axioms and alreadyiegisules:

Deducing the literal =Instance(I1D1,C):
According to the syntactical restrictions explained in, 3@ rules can deduce directly
this kind of literals, but DS actually can indirectly dedutthese ways:

1. R(ID1,1D2),-subclass(C, Domain(R)) — —Instance(ID1,C)
2. R(ID2,ID1),-subclass(C, Range(R)) — —Instance(ID1,C)

WhereR is any property. Thus, in each rule whose antecedent candéagonjunction

¢ where the deducible literatInstance(ID1,C) occurs, the conjunction will be

replaced with the new conjunctions:

Substitute(c,” —Instance(ID1,C)”,” R(ID1, ID2), -subclass(C, Domain(R))”) and,

Substitute(c, ”—Instance(ID1,C)”,” R(ID2,ID1), -~subclass(C, Range(R))”)

where the functiorbubstitute(c, s1, s2) returns the conjunction resulting from replac-

ing the strings1 with the strings2 in the conjunctiorr.

Deducing the literal Instance(ID,C):

Following an analogous reasoning to the previous replangrireeach rule whose an-

tecedent contains a conjunctierwhere the deducible literdinstance(I1D1,C) oc-

curs, two new conjunctions must be added:

Substitute(c, ” Instance(ID1,C)”,” R(ID1,1D2), subclass(C, Domain(R))”) and,

Substitute(c, ” Instance(ID1,C)”,” R(ID2,1D1), subclass(C, Range(R))”) .
Furthermore, given that any individuathat is instance of a clastis also instance

of any superclass o, then another conjunction must be added:

Substitute(c,” Instance(ID1,C)”,” Instance(ID1, C1), subclass(C1,C)”)

Deducing transitive object properties

If the object propertyR is defined to be transitive, then in each rule whose anteteden

contains a conjunctionwhere the deducible literdt(/ D1, I D2) occurs, the hew con-

junction must be added:

Substitute(c,” R(ID1,1D2)”,” R(ID1,?X), R(?X, 1D2") st. the variable X does not occur

in the conjunctiorz.

Deducing symmetric object properties

If the object propertyR is defined to be symmetric, then in each rule whose antecedent

contains a conjunctioawhere the deducible literd(7D1, I D2) occurs, the new con-

26

junction must be added:

Substitute(c, ” R(ID1,1D2)”,” R(ID2,1D1)”) .

Deducing inverse object properties

If the object propertyR~! is defined to be inverse of the object propeRy then
in each rule whose antecedent contains a conjunctiarere the deducible literal
R~Y(ID1,1D2) occurs, the new conjunction must be added:

Substitute(c,” R~ (ID1,1D2)”,” R(ID2,ID1)”) and vice versa.

6.2 Second Step

Basically, the second step can be divided into two phaséiselfirst phase, the AND/OR
decision tree associated with the IC is expanded followibh@ekward chaining simu-
lation of the real rule firings. The leaves of this tree aresuhat only contain external
facts in their antecedents. At this point, the differenceveen a deductive tree and an
AND/OR decision tree should be explained. While a deductige tan be viewed as
one way and only one way for achieving a certain goal (thabisdeducing a bound
formula or for firing a rule), an AND/OR decision tree compssone or more deduc-
tive trees, therefore it specifies one or more ways to actaesartain goal. During the
first phase, metaobjects are built corresponding with eacia®e of a rule/IC that is
being processed and each referenced OWL Lite name, and tletaebjects are propa-
gated from a rule to another one. In this propagation, somstraints are added to the
metaobjects due to the rule literals, and some constrai@teemoved from the metaob-
jects due to the rule actions, because any constraint dedbycan action is not required
to be satisfied by the initial FB any more. In addition to thetaobjects, a set of as-
sumed individuals (SAl) is propagated and updated. The &i82bis to warrant that
the expanding deductive tree fulfills the second conditibthe T'ree Consistency
definition (see 3.4). The first condition of tlié-ece Consistency definition is checked
in the union of environments (see 5.2) during the next phase.

Figure 2 shows an example with a rule R1 and an IC, as well adetiactive tree
expanded by the proposed method for this IC. In this exantipdeT property literals
are deducible, whereas the rest of literals are externg.figure also shows the names
of the metaobjects built for the variables and the OWL Lite aanas well as the two
propagations of metaobjects through the two goal-acti@minahgs. We will follow the
trajectory of metaindividual 12 from the IC, where it is cted for the variabl€ X, to
therule R1.IntheIC, I2is created @s {OPR1},,) (see the format of the metaobjects
in section 5.1). Then, the reference®® R1 is removed from 12 in the first chaining,
because the action deduces a pair of the object profpartyvhich 12 is involved. Next,
inthe rule R2, 12 is required to appear in two pairs, one ofahject propertyR, and an-
other of the object property; therefore 12 is updated tl2 = (,, {OPR1,OPR2},,).
Now, 12 is involved in another chaining, this time from R2 td,Rand in this chain-
ing the reference t@)PR1 is removed from 12 due to the simulation of the action
effect. Finally, in the rule R1, a reference to the objectperty R and a constraint
stating that the individual 12 is an instance of clatsare added to 12. For the ex-
ample of the figure 2, a SAl is created in the IC, so tRat] = {SubProperty
(DPR1,DPR2),DPR1(I1,V1), V1 > 5,/T(I2,13), Dif ferent (I3,a)}. Then,
in the first chaining the action remov@472, I3) from SAl, and when SAI gets to

27

R1:R (7X, 7Y), Instance (7X, A) = Add(T(?X, ?7Y))

OFR4 12 IS 12 €L ‘
T — OPR1
-1

-1

R2: —R(?X. ?Y). V (a ?Z). T (?X,?Y) = Del(T(?X. ?Y)). Add(T(?X, 2Z))

‘ OPR2 T2 IS OPF3 14 13 OPR1 12 I T — OPR1
X-12
72Z—13

IC: (2U>5)1), SubProperty(?S, D) (). 7S (7Y, 7U)(1), -~ T (?X, a)(0) =L

‘ CONDI DPR1 DPR2 DPR1I 11 Vi OPRl 12 I3 ‘

Fig. 2. Deductive tree of the case study

the conjunction of R2, it is updated so thafl] = {SubProperty (DPR1, DPR2),
DPRI1(I1,V1),V1 > 5, V(a,I3), T(12,I5), Dif ferent(I13,a)}. Finally, in R1,
SAI = {SubProperty(DPR1, DPR2), DPR1(I1,V1),V1>5,V(a, I3),

Dif ferent(13,a), Instance(12,C1)}. As we can just see in this paragraph, the ex-
ample of the figure 2 does not raise any inconsistency proipag@Al. However, if the
external literalV (a, a)(I) was added to IC, then in the antecedent of R2, SAl would
be {SubProperty(DPR1, DPR2), DPR1(I1,V1), V1 > 5,V (a,I3),T(12,15),
Dif ferent(13,a),V(a,a)}, which is inconsistent because it forces the object prop-
erty V to have two pairga, I3) and(a, a) st. Dif ferent (I3, a). If SAI turns to be
inconsistent w.r.t. the ontology axioms, thece Consistency property does not hold
for the current deductive tree, and then the current rulet imigliscarded.

In the second phase, the AND/OR decision tree is contragteddans of context op-
erations, so that metaobjects in external goals and conditielated to metaobjects
in external goals are inserted in the subcontexts of theegoritssociated with the
IC. Basically, the creation operation is employed to work the context associated
with an external goal; the combination operation is empdote work out the con-
text associated with a conjunction of literals from the estd associated with the
literals; and the concatenation operation is employed tckwat the context associ-
ated with a disjunction from the contexts associated withfdrmulas involved in the
disjunction. Let us see the context associated with the I@énexample of the fig-
ure 2:C(IC) = {SUBC1} = {({C1,11,12,13,15,15', 16, DPR1, DPR2, OPR3,
OPRS5,V1 ,COND1},tree(R1, [tree(R2, [EMPTY TREF)])]))} where:

Cl=(A,,{I2}) DPR2 = (D,,)
11 =(,,,{DPR1},) OPR3 = (V,{(I6,13)},)

12 = (,{A, R1)},{OPR5},,) OPR5 = (R, {(12,I5),

13 = (,,{OPR3},,{I6}) (12,15")},)

15" = (,,,,{I5}) / * OPR5 = OPR2+ OPR4 x |
I5 = (,,{OPR5},,{I5'}) V1= ({COND1})

16 = (a,, {OPR3},,{I3}) COND1 = ("?U > 5",{V1})

/*x16=14+13" %/
DPR1 = (,{(I1,V1)},{DPR2})

28

The two phases of the second step are explained in detaiffame-like knowledge
representation formalism called CCR-2 in [10].

7 Conclusion and Future Work

In this paper, a formal method to verify the consistency ef isasoning process of a
DS has been presented. It is noteworthy that the DS to beacgficompasses a KB,
endowed with an OWL Lite ontology and a set of production ruldsich permits the
representation of non-monotonic reasoning and arithneetistraints. So far, most of
the efforts dedicated to the consistency verification of B&g focused on the veri-
fication of a set of rules ignoring the domain knowledge. Oh¢he few works that
has dealt with the verification of both the set of rules anddbmain knowledge was
proposed in [7]. That work explains how to verify DSs whosendm knowledge is
expressed in a rich language based on a DL. In our approagkevieo, we have chosen
to sacrifice expressiveness (OWL Lite instead of OWL DL) in favof efficiency, so
that the proposed method can be applied to large systemsf @ue next steps will be
to show this empirically. We are currently studying moreplgéf the proposed pre-
processing rules in 6.1 is exhaustive, so as to ensure thpletaness of the simulation
in the second step (see 6.2). Besides, we are working on anséah of the proposed
method that verifies the reasoning module of a deliberatiemficohabiting a dynamic
environment with other agents. In this dynamic environmntbattruth value of some
external facts may change during the reasoning processesuth of the reception of
new messages or stimuli coming from the environment of thiéiee agent.

References

1. deKleer, J.: An assumption based TMS. Atrtificial Intellige@8¢1986) 127—-162

2. Rousset, M.: On the consistency of knowledge bases: The COVAEtem, Proceedings
ECAI-88, Munich, Alemania (1988) pp. 79-84.

3. Ginsberg, A.: Knowledge-base reduction: A new approach tokatg&nowledge bases for
inconsistency and redundancy, Proceedings of the AAAI-88 (19883%85-589.

4. Antoniou, G.: Verification and correctness issues for nonmonokomwledge bases. Inter-
national Journal of Intelligent Systerh& (1997) 725-738

5. Wu, C.H,, Lee, S.J.: Knowledge verification with an enhanced legél petri-net model.
IEEE Expertl2(1997) 73-80

6. Lee, S., O'Keefe, R.M.: Subsumption anomalies in hybrid knowddaizsed systems. Inter-
national Journal of Expert Syster$1993) 299—-320

7. Levy, A.Y., Rousset, M.: Verification of knowledge bases on dantant checking. Artificial
Intelligence101(1998) 227—-250

8. Levy, AY,, Rousset, M.: CARIN: A representation language cainly horn rules and
description logics, Proceedings ECAI'96 (1996)

9. Horrocks, I., Patel-Schneider, P.F.: Three theses of rapeim in the semantic web. In:
Proc. of the Twelfth International World Wide Web Conference (WWW308CM (2003)
39-47

10. Ranirez, J., de Antonio, A.: Knowledge base semantic verification basedrmexts propa-
gation, Notes of the AAAI-01 Symposium on Model-based Validation ofligence (2001)
http://ase.arc.nasa. gov/ nvi/abstracts/index. htnm .

