
Integrated Authorization for Grid System
Environments

Jiageng Li

Department of Computer Science, University of West Georgia,
1600 Maple St., Carrollton, GA 30118, USA

Abstract. Grid computing has received widespread attention in recent years as
a significant new research field. Yet to date, there has been only a limited work
on the grid system authorization problem. In this paper, we address the authori-
zation problem and its requirements in a grid system environment. We propose
a new integrated authorization service that tackles the authorization problem at
two levels: grid system level and organization unit level. It is shown that the
new approach not only meets the requirements of the authorization in grid sys-
tem environment but also overcomes the disadvantages found in existing au-
thorization designs.

1 Introduction

Grid computing has recently received significant attention as a new field in the area
of distributed computing. When considering grid system security, the two principal
issues are those of authentication and authorization. Authentication verifies the end
user’s identity, the first step in the authorization process. Authorization then deter-
mines if the (authenticated) user has the access rights on the requested resource or
service. Specifically, when a server in a grid environment receives a client’s service
request, it asks two questions.

1. “Is the requesting client really the grid user that it claims to be?” (authen-
tication, validating the client’s identity)

2. “Does the grid user have the necessary permission to perform this ser-
vice?” (authorization, checking client’s rights)

The authorization problem in grid environments imposes some unique require-
ments on the system, due to its distinctive characteristics. The majority of existing
research to date has taken place in the authentication arena. There has been only lim-
ited work on the grid system authorization problem. In this paper we propose a new
integrated authorization service for grid system environments, focusing specifically
on the issues associated with scalability. The remainder of the paper is organized as
follows. In section 2, we investigate existing authorization designs in grid systems
(e.g. Globus and Legion). In section 3, we present our integrated authorization ser-
vice. We provide specifics regarding implementation of the service in section 4. In
section 5, we conclude the paper.

Li J. (2005).
Integrated Authorization for Grid System Environments.
In Proceedings of the 2nd International Workshop on Ubiquitous Computing, pages 94-100
DOI: 10.5220/0002571300940100
Copyright c© SciTePress

2 Related Work

In this section, we critique the authorization system designs for two well-known grid
systems: Globus [1] and Legion [2]. We observe that there are two main issues asso-
ciated with the existing authorization designs in Globus and Legion. First, in both
systems, the authorization policy is enforced at the local host level. When a client
initiates a job, it has no apriori knowledge regarding its access rights to resources at
other grid sites. As a result, the identification of resources that the user is authorized
to use can be a trial-and-error process. A job request first has the resource manage-
ment service identify potential system resources for use. However, whether the user
is authorized to utilize these resources is not known until the job actually requests the
resources. If authorization is denied, the process must be re-started from the begin-
ning. Second, with the existing authorization mechanism, scaling of the maintenance
and administration work is an issue. Authorization information is managed by each
individual local site/object without a central control. Each site/object maintains its
own authorization information for all its grid users. Information duplication, as well
as administration and organization of this information in a coherent, consistent man-
ner, becomes problematic.

An authorization design with a community authorization service (CAS) for grid
systems is proposed in [3]. The basic idea is to divide the grid system into communi-
ties, with each community having its own CAS server. The CAS server manages the
community security policy and makes access decisions for the community’s re-
sources. When a community member receives a resource request from a client, it
sends the CAS server an authorization request. If the authorization request is consis-
tent with its access control policy, the CAS server will generate a capability and send
back to the community member. The resource allows the user access based upon this
capability. In this approach, authorization is distributed yet limited to the scope of the
community.

3 Integrated Authorization

Our integrated authorization service is based on a general grid system authorization
model and authorization servers proposed in [4], within which the authorization takes
place. We now present our authorization architecture for grid systems. The goal is to
provide an approach that meets the requirements of a dynamic grid environment
while overcoming the disadvantages identified in current approaches. The basic idea
is to address authorization at two levels: the local organization unit level and grid
system level. At the local organization unit level, each organization unit maintains its
own authorization server that manages its authorization policies and makes access
control decisions for the unit. At the grid system level, the organization units’ au-
thorization servers are linked together to form an integrated authorization service.
This integrated service provides an authorization information query mechanism
among multiple organization units at the grid system level.

95

3.1 Constructing an integrated authorization service

At the grid system level, authorization servers are linked together into a tree structure
based on the grid system image. In addition to the authorization servers for each or-
ganization unit at the local level, an authorization server for the entire grid system is
established for the grid, representing the root node of the tree. If an organization unit
is further divided into multiple organization units, the authorization server of the
original organization unit works as the parent node of its sub-divided organization
units’ authorization servers. In the authorization service, each authorization server is
assigned a distinguished name that identifies it within the grid system. Each parent
authorization server node contains the addresses of its direct subsidiary authorization
servers which are represented as records in the parent node. In other words, in the
tree-structured integrated authorization service, there are two types of authorization
server node: leaf node, and non-leaf node. Only the leaf node contains the actual
authorization information for the resources of its organization unit, while the non-leaf
node only contains the pointers links to its direct subsidiary nodes.

On the other hand, each node except root node also keeps the address of its direct
parent authorization server. If an organization unit is a direct branch of the grid sys-
tem, then its authorization server is linked to the root authorization server as its parent
node. In this way, an integrated authorization service is generated for the grid system.
The service provides a flexible and powerful authorization information query system
for use within multiple organization units or at the overall grid system scope.

Each authorization server maintains an authorization server database (ASD). An
entry of the authorization server database is called an authorization server record
(ASR). The record declares that a given organization unit is served by the authoriza-
tion server. Each record consists of four fields: the organization unit name, record
type, server type and the authorization server name/address. There are two types of
records: the parent authorization server (PAS), and the children authorization servers
(CAS). For the server type, the server can be either a primary server or a secondary
server. In the integrated authorization service, an authorization server can have only
one parent authorization server, while it can have multiple children authorization
servers.

3.2 Authorization protocol

When the authorization service receives a client’s authorization request, the request is
routed to the specific authorization server that is capable of providing the appropriate
authorization information. The routing procedure is motivated by Domain Name
Service (DNS) [5].

Similar to DNS, we have two types of authorization query messages: recursive
query and iterative query. In recursive query, the client asks the authorization server
to provide a final answer for the query. In this case, if the server can solve the query,
it checks its information base and responds. If the server can not solve the query, it
sends the request to another server until it gets the answer or fails. On the other hand,
the iterative query does not require as much work on queried server. In iterative
query, if the authorization server can not solve the query, it will return the address of

96

an authorization server that it knows best to find the answer. In our approach, we use
recursive query to query the local authorization server and use iterative query for the
local authorization server to query other authorization servers. Furthermore, a local
cache is used by each authorization server for recording the addresses of other au-
thorization servers for future reference to expedite authorization queries.

During authorization, an authorization client first sends its request to the local au-
thorization server of its own organization unit. If the authorization server can resolve
the request, it will generate the result and send it back to its client. This is realized by
checking OU information in the authorization request. If the OU name matches the
authorization server’s OU name in the request message, it means the authorization
server is capable to resolve the query. If the authorization server can not resolve the
query, it checks its cache first to see whether it has the address of the destination
authorization server. If it is found successfully, it would send the query to the au-
thorization server directly based on the address. On the other hand, if it is not found,
it would send the request to its parent authorization server until either the request can
be solved or it reaches the root authorization node. Upon the request reaching the root
authorization server, the root server sends the authorization request to its child au-
thorization server node according to the OU name in the authorization request until
the authorization server is located. Then the authorization server will solve the query
and send the authorization result back to the local authorization server. The local
authorization server will correspondingly forward the authorization result to the
original client. During the process, the local cache of the authorization server will
record the addresses of the authorization servers it visited which are not available in
the cache.

3.3 Message format

There are two types of query messages in the authorization process: recursive and
iterative messages. Each query message includes two parts: header and individual
queries. The header of query messages includes the Query_type, User_info,
OU_name, and the Number of Queries. The Query_type is either “R” for recursive
query or “I” for iterative query. User_info attribute is the global identity (GID) of the
authorization client. OU_name represents the name of the remote organization unit
with required resources. In one query message, it can contain multiple individual
queries, but the multiple individual queries must be querying the same authorization
server or organization unit. Each individual query includes Host_name, Re-
source_name, and requested Access_right for the remote authorization server. Three
possible result messages for an authorization query are: Final query result, Referred
query result with referred authorization server address, and Query failure. Each query
result message also includes two parts: header and result part. The header of the result
message includes the general information of the corresponding query message, which
includes Code, Result_type/Failure_code, User_info, OU_name, and Number of
Queries. The Code attribute in the header represents the query status. We use “0” to
represent query success, and “1” query failure.

If the query status is a success, the Result_type attribute represents whether the re-
sult is the final query result or a referred query result with a referred authorization

97

server address. “C” represents the final query result and “R” represents a referred
query result. A final query result can be a capability or a denied sign returned from
the queried authorization server for each individual query. It is indicated by the Attr.
field in the query result. If Attr. field equals 0, it means a corresponding capability is
returned; if Attr. field equals 1, it means the authorization request of the individual
query is denied. A referred query result contains the referred authorization server
address at the end of the result message.

Code (0): Result_type:
C: Final query result
 Attr: (0) capability
 (1) authorization denied
R: Referred query result

Referred authorization server address
If the query status is a failure, the attribute following the query status code is the

failure code which indicates the failure reason of the query message. The failure can
be authentication failure, server down, or query format error, etc. We use “A” to rep-
resent authentication failure; “B” for server unreachable/down; “C” for query format
error and “D” for other errors.

Code (1): Failure_code:
 A: Authentication failure
 B: Server unreachable/down
 C: Format error in query
 D: Others

4 Implementing the Integration Authorization Service

In order to implement our authorization protocol, a number of implementation-
specific issues must be addressed. In this section, the issues of service initialization,
security, and failure handling for the integrated authorization service are each exam-
ined and resolved.

4.1 Initialization

When a new organization unit is available on the grid system, its authorization infor-
mation should be added into the integrated authorization service of the grid system.
The procedure can be divided into two phases: constructing a new authorization
server and adding a new server into the system. During the first phase, the server
establishes a secret key with each host housing shared resources within the organiza-
tion unit that it manages. Note that the secret key is only shared between the host and
its authorization server. Next, construct an authorization information base for the new
authorization server. This information base stores the access control information of
the organization unit. In order to do this it must poll its local grid users and hosts to
identify shared resources. In the second phase, the new server is linked to its direct
parent authorization server. The new authorization server determines which authori-

98

zation server should be its parent server; the position of the authorization server
within the authorization service depends on the structure of the grid system. With the
tree-structured authorization service, the authorization server needs to be registered
and linked to its direct parent authorization server. To accomplish this, the system
administrator of the new organization unit provides its direct parent authorization
server with administrative and technical information about the organization unit and
the authorization server. If the parent authorization server can acknowledge the re-
quest, it adds an entry for the new authorization server with the address, as a pointer
link to it. The links are for constructing the integrated authorization service of the
grid system, which are used for directing and routing authorization requests among
authorization servers.

4.2 Security

Ensuring proper security for our integrated authorization service is vital. Several
specific security facets must be addressed. First, the authorization service should only
allow requests to take place between the authenticated clients and servers. Second,
since the capability is the media tool for transferring the access permissions to the
resources for the client, capabilities must be transmitted securely and can not be com-
promised by a third party. Third, capabilities must not be generated by anyone other
than the authorization servers. Fourth, the authorization server must not be imperson-
ated by another entity on the network. In our integrated authorization service, the
security issues are addressed both at the grid system level and at each local authoriza-
tion server:

• At the grid system level, with the public key infrastructure, each authorization
server and authorization client has a pair of keys: a public key and a private
key. The combination of public key infrastructure and SSL is used to ensure
the security of the communication between the authorization client and au-
thorization server, and between authorization servers.

• On the other hand, each authorization server and the hosts with shared re-
sources within the organization unit scope shares a secret key at the local
level. Capabilities are generated by encrypting the authorization information
with the corresponding secret key. With the secret key, it is assured that the
capability can only be decrypted and interpreted by the two parties. The sub-
ject of the user’s public key, as part of the authorization information, is en-
crypted within the capability. Therefore, the capability can only be interpreted
by the resource holder and can only be used by the user with the correct pub-
lic key.

4.3 Failure handling and recovery

Since the authorization server is responsible for managing the authorization functions
for an organization unit, if the authorization server fails, it would cause the resources
of the organization unit beyond access and sharing.

99

For the failure handling and recovery, in our authorization service, we assume that
each authorization server is backed up with at least one secondary server. The pri-
mary and secondary authorization server(s) should have the same authorization in-
formation and be kept synchronized. Updates are performed on the primary server
first. When such an update takes place, the primary server sends a synchronization
message to its secondary server(s) to keep their authorization information synchro-
nized.

We assume that in the integrated authorization service, the parent authorization
server has the knowledge of the addresses of all the authorization servers, primary or
secondary, of its subsidiary organization units. Each subsidiary authorization server
also knows all the addresses of its direct parent authorization servers. The authoriza-
tion request is always sent to primary authorization server first. When a client queries
a failed primary authorization server, after a time-out, the query will be resent to its
secondary authorization server. Finally, it is noted that secondary servers can be used
to split the workload during times of activity.

5 Conclusion

In this paper, we presented a new integrated authorization approach in grid system
environments. We addressed the problem of existing methods at two levels: the grid
system level and the local organization unit level. By dividing the grid system into
organization units, a centralized authorization server for each of them is set up at the
local organization unit level. On the other hand, at the grid system level, the authori-
zation servers are interconnected into a hierarchical tree structure to generate an inte-
grated authorization service. With the new approach, scalability is solved with the
independent, distributed servers. As the grid system expands, additional authorization
servers for the new organization units can be added into the integrated authorization
service without much overhead. This new authorization approach also addresses the
concerns of existing grid system authorization approaches.

References

1. Foster, I., Kesselman, C.: The Globus Project: A Status Report. Proceedings of
IPPS/SPDP'98 Heterogeneous Computing Workshop, (1998) 4-18.

2. Grimshaw, A., Wulf, W.A.: the Legion team. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, Vol. 40, No 1, (1997) 39-45.

3. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community Authoriza-
tion Service for Group Collaboration. Proceedings of the Third IEEE International Work-
shop on Policies for Distributed Systems and Networks, (2002) 50-59.

4. Li, J., Cordes, D.: Authorization in Grid System Environments. Proceedings of the 41st
ACM Southeast Regional Conference, (2003) 292-297.

5. RFC1034: Domain Names, Concepts and Facilities.

100

