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Abstract. The principle of “everything is an object” basically supported by two 
fundamental relationships inheritance and instantiation has helped much in 
driving the object technology in the direction of simplicity, generality and 
power of integration. Similarly in the Model Driven Engineering (MDE) today, 
the basic principle that “everything is a model” has many interesting properties. 
The two relations representation and conformance are suggested [2] to be the 
two basic relations in the MDE. This paper tends to support this ideas by 
investigating some concrete examples of the conformance relation concerning 
three technological spaces (TS) [10]: Abstract/Concrete Syntax TS, XML TS 
and Object-Oriented Modeling (OOM) TS. To go further in this direction we 
try to formalize this relation in the OOM TS by using the category theory – a 
very young and abstract but powerful branch of mathematics. The OCL 
language is (partially) reused in this scheme to provide a potentially useful 
environment supporting MDE in a very general way.  

1   Introduction 

Model Driven Engineering (MDE) today does not limit itself to the OOM 
Technological Space (TS) but many other TSs such as AS TS, XML TS ... [10]. This 
means explicitly that its principles must be very general and not only restricted to 
OOM TS. Today, the principle « Everything is a model » as suggested by many 
authors such as [3] becomes the main principle of the MDE similarly to the principle 
« Everything is an object » in object technology. Conformance is one of the 
fundamental relations supporting this principle in MDE. This paper investigates the 
conformance relation in some well-known Technological Spaces such as 
Abstract/Concrete Syntax, XML and OOM technological spaces. 
The paper is organized as follow: section 1 presents the context of our work; section 2 
presents some ideas about the notion of conformance in several well-known TSs; 
section 3 presents a formalization of the conformance relation in the OOM TS using 
category theory and the OCL language. The practical usage of this formalization will 
be discussed in the section 4. Some related works are briefly introduced in the section 
5. Some conclusions will be provided in the section 6.  
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2   Conformance in some Technological Spaces 

We begin our discussion with a simple example coming from Regular Expression. It 
is not difficult to see that there is a mapping from a string S = acccd to a regular 
expression E = a(b|c*)d? when the string S matches the expression E. This mapping is 
illustrated in the Fig.1. 

a (b | c*) d?

a c c c d
 

Fig. 1. A very simple form of conformance – a string matches a regular expression 

The regular expression E defines characters that may appear in a string conforming to 
E: {a,b,c,d} and how these characters are structured using several constructions:  
– alternation with a vertical bar such as b | c specify the choice of b or c. 
– quantification with a quantifier (+,?,*) that following a character specifies how 

often that character is allowed to occur. 
– grouping with brackets to define the scope and precedence of the other operators. 
If the guiding principle of the MDE:   

“Everything is a model”                                               [P0]   
is accepted, we have the following two models: the string S and its definition E (is 
also a string) with their characters as model elements. It can be said that S is defined 
by E or S conforms to E. 
“A model conforms to its definition, this definition is also a model called meta-model 
of the first one”                                                                                                          [P1] 
From our first observation, we propose the following principle: 
“Every element of a model finds an unique definition in a meta-model that the model 
conforms to”                                                                                                              [P2] 
We have also the following comments: 
– The order of elements in S must respect to the order of elements defined in E.  [C1] 
– The group of elements in S must respect to the group definition in E.                [C2] 
– The number of occurrences of elements in S must respect to quantification 

definitions in E.                                                                                                    [C3] 
Now we move to an illustrative example in the Abstract/Concrete Syntax TS. Let’s 
consider a well-known HelloWorld program written in the Pascal programming 
language. This program is considered to be a syntactically correct with respect to the 
grammar of the Pascal programming language. In this example, the HelloWorld 
program is a model and the grammar of the Pascal programming language is the 
meta-model defining the former. The principle [P2] is applicable in this case and is 
illustrated in the Fig.2. A part of the grammar is represented in the flowchart form 
extracted from [9]. Every symbol of this program finds a unique definition in the 
grammar. The three comments [C1, C2, C3] are also correct in this case. 
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 program HelloWorld; 
 
 
 

begin 
  writeln('Hello World'); 
end. 

program

PROGRAM identifier ( identifier ) ; block .

;

 

BEGIN ENDstatement

;

; block ;

PROCEDURE

FUNCTION identifier parameter list : type identifier

identifier parameter list

block

 program HelloWorld; 
 
 
 

begin 
  writeln('Hello World'); 
end. 

 
Fig. 2. A Pascal program conforms to the grammar of the Pascal programming language 

In the XML TS, we find the following definition [6]: « An XML document is valid if it 
has an associated document type declaration and if the document complies with the 
constraints expressed in it ». This means explicitly that a valid XML document must 
conform to a DTD. DTDs specify two kinds of constraints as classified in [5]: 
structural constraints given by element declaration rules and attribute constraints 
given by attribute declaration rules. Also following [5], « the structural constraints of 
DTD are abstracted as extended context free grammars, that is, context free 
grammars where the right hand side of each production contains a regular 
expression. An XML document is valid with respect to the structural constraints of a 
DTD if its abstraction as a tree represents a derivation tree of the extended CFG 
corresponding to that DTD ». Attribute constraints deal with the values of attribute 
nodes while structural constraints deal with the labels of nodes in the XML tree.  

<?xml version="1.0"?>
<!ELEMENT message (from,to,subject,body)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (#PCDATA)>

<?xml version="1.0"?>
<!DOCTYPE message SYSTEM "message.dtd">
<note>
           <from>Ha</from>
           <to>Mariano</to>
           <subject>Work completed</subject>
           <body>The work has been done</body>
</note>

 

 
Fig. 3. An XML document conforms to a DTD. 

Let’s consider an example that illustrates the relation between an XML document and 
a DTD. In this case, the model is the XML document and the meta-model defining 
this model is the DTD. The XML document has (element and attribute) nodes as its 
elements. The principle [P2] and the three comments [C1, C2, C3] are also applicable 
in this case.  
We have analyzed the conformance relation in the case of regular expression, 
Abstract/Concrete syntax and XML. The principle [P2] is also applicable in Object-
Oriented modeling.  
In the left of the Fig.4 is an UML diagram represented in a case tool such as Rose. 
This model is an instance-of of the UML meta-model as simplified in Fig.4. Every 
elements of this model finds its unique definition in the meta-model.  
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Fig. 4. An illustrative example: a model UML conforms to its meta-model 

An UML model conforms to the UML meta-model must also satisfied all the well-
formedness rules defined with the meta-model. The multiplicity in the meta-model 
can also be expressed as constraints associated to the meta-model [16]. Furthermore, 
we have the following principle: 
– Every link in the model finds a unique definition in the meta-model.                 [P3] 
This principle is so important as the [P2] principle for a model UML and also for the 
conformance relation between a model and a meta-model defining it in meta-
modeling. These two principles [P2, P3] are also applicable in the “strict meta-
modeling” approach in which the OMG’s MOF is an example: “Every element of an 
Mn level model is an instance_of exactly one element of an Mn+1 level model” [1]. 

3   A formalization of the conformance relation in the OOM TS 

In a very general way, a model can be viewed as containing: 
– A set of model elements (character in a string or regular expression, symbols and 

terminals in a grammar, element or attribute nodes in XML, model elements in 
modeling) 

– Some of those elements are associated to some sorts of literal (integer, real, 
string....) 

– A set of links that associates elements (link is directed). Those links forms a 
navigation network among model elements. 

– To make sense, each model must be associated with a meta-model defining it.  
– Every model element finds its unique definition in the meta-model. 
– Every model link finds its unique definition in the meta-model. 
The fact that there is a mapping from a model (the defined artifact) and its meta-
model (the defining artifact) is one of the necessary conditions for the model to 
conform to its meta-model. This mapping includes model elements mapping and 
model links mapping and is then a structural mapping. Together with this structural 
mapping the model must satisfy constraints associated to the meta-model. Those 
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constraints can be evaluated based on structural mapping and literal values associated 
to model elements.  
Before taking into details of the formalization, we put some words about the category 
theory. Category theory originally arose in mathematics out of the need of formalism 
to describe the passage from one type of mathematical structure to another [7]. 
Category theory has been used in diverse branches of software engineering and 
computer science as pointed out by Goguen [8], in object-oriented software evolution 
[11] and recently the formalization of UML [14] and MOF [4] etc. In category theory 
there are structures called categories that contain objects and morphisms. Those 
morphisms can be composed and the composition of morphisms is associative. 
Functor is a structure-preserving mapping between two categories. Definitions of 
category, functor and other notion of category theory can be found at [15], [7]. A 
computational aspect of category theory can be found in [12]. 
The next topic is the proposed formalization of the conformance relation between a 
model and its meta-model in the OOM TS. The OOM TS bases on OMG’s 
technology (MOF, UML, QVT...), which is originally based on object models. 
Adapted from [13], an object model is a tuple 

µ=(CLASS,ATT
c
,OP

c
,ASSOC,associates,roles,multiplicities,<,  

   PRIMITIVETYPE) 

such that 
i. CLASS is a set of classes. 
ii. ATTc is a set of operation signatures for functions mapping an object of 

class c to an associated attribute value. 
iii. OPc is a set of  signatures for user-defined operations of a class c. 
iv. ASSOC is a set of association names. 

a. associates is a function mapping each association name to a list 
of participating classes. 

b. roles is a function assigning each end of an association a role 
name. 

c. multiplicities is a function assigning each end of an 
association a multiplicity specification. 

v. < is a partial order on CLASS reflecting the generalization hierarchy of 
classes. 

vi. PRIMITIVETYPE is a set of primitive data types used in the object 
model = {STRING, INTEGER, REAL }. 

 
In our formalization, model navigation plays an important role. We proposed the 
concept of navigation morphism which is represented by a tuple 

nav = (e
s 
, L, E

t 
) 

such that 
i. e   is the model element that is the source of the navigation morphism s

ii. L is a sequence of navigation label 
iii. Et  is a sequence of elements that is orderly located in the navigation 

from the source element es  to the target element. The last element of 
this sequence is the target of the navigation morphism. 

Now, from every object model µ, there is a derived category Cµ : 

111



Cµ = (ObC 
,Mor

C 
,dom,cod,id,composition)

 
 

such that  
i. Obc = CLASS ∪ PRIMITIVETYPE 
ii. PRIMITIVETYPE is the set of primitive types used in the object 

model 
iii. MorC  = Mor ∪ Mor  C1 C2 

iv. MorC1 is the set of all navigation morphisms  
(es , [role name],[et]) 
representing a navigation from es  to et (es ,et ∈ CLASS)  through the 
“role name”  role. MorC1 can be calculated from CLASS, ASSOC, 
associates and roles. 

v. MorC2 is the set of all navigation morphisms  
(es , [attribute name],[et]) 
representing a navigation from es  (es ∈ CLASS) to et  (es ∈ 
PRIMIVITES) through the “attribute name” attribute. MorC1 

can be calculated from CLASS, ATTc, PRIMITIVETYPE.  
vi. dom: MorC → Obc is a function that takes a navigation morphism as 

argument and gives the source of that navigation morphism as result. 
This function can be calculated from CLASS, ATTc, ASSOC, 
associates, roles and <. 

vii. cod: MorC → Obc is a function that takes a navigation morphism as 
argument and gives the target of that navigation morphism as result. 
This function can be calculated from CLASS, ATTc, ASSOC, 
associates, roles and <. 

viii. id is an identity function that takes a model element e as its argument 
and give a navigation morphism (e,[],[e]) as result. i.e this 
function returns a navigation morphism from the element e to itself 
(there is no navigation label) 

ix. composition is a function that takes two navigation morphisms 
nmor1 = (es1,L1 ,Et1) and nmor2  = (es2,L2 ,Et2) as its 
arguments and give a composite navigation morphism  
nmor=(es1,L1 concat L2,Et1 concat Et1)  
when cod(nmor1)=dom(nmor2)  

Once the model µ is promoted as a meta-model (M2  level), any model of this meta-
model can be represented by a category : 

C
model

 = (Ob
C 
,Mor

C 
,dom,cod,id,composition)

 
 

such that  
i. Obc = OBJECT ∪ LITERAL 
ii. OBJECT is the set of objects in the selected model 
iii. LITERAL is the set of objects associated to a primitive value used in 

the selected model 
iv. MorC  = MorC1 ∪ MorC2  
v. MorC1 is the set of all navigation morphisms  

(es , [role name],[et]) 
representing a navigation from es  to et (es ,et ∈ OBJECT)  through the 
“role name”  role. MorC1 can be calculated from the selected model. 
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vi. MorC2 is the set of all navigation morphisms  
(es , [attribute name],[et]) 
representing a navigation from es  (es ∈ OBJECT) to et  (es ∈ 
LITERAL) through the “attribute name” attribute. MorC1 can be 
calculated from the selected model.  

vii. dom: MorC → Obc is a function that takes a navigation morphism as 
argument and gives the source of that navigation morphism as result. 
This function can be calculated from the selected model. 

viii. cod: MorC → Obc is a function that takes a navigation morphism as 
argument and gives the target of that navigation morphism as result. 
This function can be calculated from the selected model. 

ix. id is an identity function that takes a model element e as its argument 
and give a navigation morphism (e,[],[e]) as result. i.e this 
function returns a navigation morphism from the element e to itself 
(there is no navigation label) 

x. composition is a function that takes two navigation morphisms 
nmor1 = (es1,L1 ,Et1) and nmor2  = (es2,L2 ,Et2) as its 
arguments and give a composite navigation morphism  
nmor=(es1,L1 concat L2,Et1 concat Et1)  
when cod(nmor1)=dom(nmor2) 

An example: BankClient model conforms to SimpleUML model 

The simplified meta-model UML and the Bank_Client model (Fig.4) are illustrated 
partially in the categorical form in the Fig. 5. Model elements and model links of 
these two models is provided in the Table.1. 

Class Association
source

destination

reverse

forward

Bank

Client

Bank_Client

source

forward

reverse

destination

 

Fig. 5. A partial view of mapping from BankClient (model) to SimpleUML (meta-model) 

The mapping from Bank_Client model to SimpleUML model illustrated in the 
Table.2 can be expressed by a functor F: CBank_Client  → CSimpleUML that contains: 
– A model element mapping  

Felement  =  Bank →  Class ; Client → Class ; Bank_Client → Association 
– A model link mapping Fnavigation  =  

(Bank,[forward],[Bank_Client]) → {(Class,[forward],[Association]) ;   
(Client,[reverse],[Bank_Client]) → (Class,[reverse],[Association])  ; 
(Bank_Client,[source],[Bank]) → (Association,[source],[Class])  ; 
(Bank_Client,[destination],[Client]) → (Association,[destination],[Class]) 
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Table 1. Model elements and model links of Bank_Client and SimpleUML model 

 CBank_Client CSimpleUML 

elements {Bank,Client,Bank_Client} {Class, Association} 
links/ basic 
navigations  

{(Bank,[forward],[Bank_Client]), 
 (Client,[reverse],[Bank_Client]),   
(Bank_Client,[source],[Bank]), 
(Bank_Client,[destination],[Client])} 

{(Class,[forward],[Association]),   
(Class,[reverse],[Association]), 
(Association,[source],[Class]), 
(Association,[destination],[Class])} 

Table 2. Navigation mapping and mapping of a composition 

From Bank_Client To SimpleUML 
(Bank,[forward],[Bank_Client]) (Class,[forward],[Association]) 
(Bank_Client,[destination],[Client]) (Association,[destination],[Class]) 
(Bank,[forward],[Bank_Client]) ° 
(Bank_Client,[destination],[Client])= 
(Bank,[forward,destination],[Bank_Client,Client]) 

(Class,[forward],[Association]) ° 
(Association,[destination],[Class])= 
(Class,[forward,destination],[Association,Class]) 

Remarks. The mapping of the composition of two navigations is the composition of 
the mappings of the two navigations. This is an important property of the structural 
mapping and is called structure-preserving mapping in the category theory. 

4   Exploiting the formalization  

In order to demonstrate the benefits of the proposed formalization, we have developed 
a prototype of an MDE environment in which different kind of data such as models, 
meta-models, mapping specifications, conformance relationships and more generally, 
any structure-preserving relationship can be represented in a unified manner (using 
categories and functors).  
The developed prototype having architecture depicted in Fig.6 contains an OCL 
evaluator that exploits categorical representations of models and conformance 
mapping to navigate through model elements. The implementation of this evaluator is 
well facilitated since model navigation – an important part of the language is made 
explicit in the categorical representation of (meta-)models.  

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

Module Model/
Category

Module OCL (parser and evaluator)

Module Set

Module Transformation EngineModuleTracking/
Impact Analyse

Model Query/
Model Checker

(formal) Subset of QVTTracking/Impact analyse…

 
Fig. 6. The MDE environment prototype 

The developed prototype has allowed us to point out several potential usages of the 
formalization presented in the previous sections. Some of these usages are provided 
below: 
– Verifying for model conformance: the input and output model of a transformation 

can be respectively verified if each model conforms to its meta-model due to the 
OCL evaluator. 

– Model query: models can be queried with the OCL language. 
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– Model transformation execution: a set of model transformations (structure 
preserving transformation) can be executed due to the transformation engine. 

– Systematic traceability: the traceability information is stored as categorical 
functors and is produced as explicit result of transformation together with output 
model.  

– Tracking for multi-step transformations: since traceability information is stored in 
the form of functors, those functors can be composed in the case of successive 
transformation.  

– Help to the analysis of impacts:  since the structural relation between input and 
output model is captured by a functor (this functor is also the traceability 
information), it is possible to ask some kind of questions about transformation 
executed such as: if a model element (or model link) in the input model is removed 
then which parts of the output model will change? Or in the inverse direction:  if I 
want to make some change in the output model, which parts of the input model 
need to be changed?  These kind of questions can be answered without making real 
change and re-execute transformations and is very useful in an interactive 
environment where model transformation is an interactive computer aided tool to 
the development or may be in the specification phase of model transformation 
when debugging facility is a requirement. 

– Analysis for (structural) completeness of model transformations: with the 
traceability information we can easily verify which parts of the input model do not 
take part in the generation of any model element in the output model, this may be 
the case in that the specification of model transformation is not complete. 

5   Related works 

Category theory has been used to formalize UML [14] and recently MOF [4]. These 
formalizations based on Slang, a language supporting category theory of the Kestrel 
Institute [14]. Our formalization uses directly the graph representation (interpreted as 
categories) of models, functors to describe conformance mapping and OCL to 
describe constraints. In our work, functor is also used to represent relation between 
models at different levels of abstraction of the same system.  

6   Conclusions 

The work presented in this paper bases on a categorical abstraction of model and OCL 
to formalize the conformance relation of a model to its meta-model in the Object-
Oriented Modeling TS. This relation can be expressed by a conformance mapping 
from the model to its meta-model and a set of constraints associated to the meta-
model. These constraints must be satisfied when being evaluated over the model, the 
meta-model and the conformance mapping between them. We believe that the same 
kind of formalization can be used to other TSs due to the conformance mapping from 
a model to its definition (meta-model) in OOM TS or from a XML document to its 
DTD (or XML Schema), etc. The main advantage of this formalization is that it is 
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very abstract and can be applied to any kind of (meta-)models. This formalization is 
also a first step in defining a model transformation formalism in which traceability 
and analysis of impacts is fully supported.    
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