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Abstract. In this paper a new approach for enabling survivable secure 
communications in multi agent systems is validated through CSP/FDR state 
analysis. The security validation of this approach centers around three security 
properties: confidentiality, integrity and authentication. Requirements for these 
security properties are defined for every message generated by this security 
protocol during its life cycle. A logical analysis of these requirements is 
followed by a thorough security validation, based on a model-checking 
CSP/FDR analysis. Both analyses show that with minor modifications the 
protocol is able to deliver on its security requirements for the three tested 
security properties. Finally, the protocol is optimized with possible 
improvements that increase its efficiency whilst maintaining the security 
requirements.   

1 Introduction 

Traditionally, the trust management service in most networks is provided by a 
centralized authority: the Security Distribution Center (SDC). This centralized 
approach (Steiner, 1988) brings advantages such as efficiency and trustworthiness (an 
agent only has to trust the centralized entity), which are lost in decentralized [2] and 
distributed [4] [20] [21] solutions. The downside of having one or multiple centralized 
SDC’s is that without it the network entities have no means of efficient secure 
communication. Hence these SDC’s form multiple single points of failure and are at 
risk from a variety of threats, ranging from “normal errors” to service blocking 
attacks by nefarious entities. The traditional approach to dealing with a single point of 
failure is adding redundancy through static replication of the security centres. This 
approach brings high investments in the dedicated hardware and bad performance, 
since most of the time the backup hardware is not used efficiently. The Medusa 
protocol set was developed to capture the advantages of a centralized approach while 
dealing with its deficiencies [7]. Medusa counters random failures in the SDC, 
possibly caused by a service blocking attack, through volatile trust management. 
According to the volatile trust management principle trust is seen as a moveable 
software object that can be exchanged between several SDC’s [6]. In Medusa this 
moveable software object, called the trust token, is moved to another location when 
the SDC goes down, so that the service can be continued. To that end, Medusa creates 
a pool of possible successors to the current SDC. In theory, this aspect of Medusa 
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increases the survivability of the SDC indefinitely, because Medusa uses resource 
sharing between undedicated systems. Survivability denotes that a system can 
continue providing essential services in the presence of attacks or failures, and can 
recover full services in a timely matter [10].  
Medusa’s ability to provide enhanced survivability was already proven in earlier 
research [19] however for Medusa to be successful it must also be secure. In this 
paper the security of the Medusa process is put to the test.   

In the discussion of related works two types of works are distinguished. First, there 
are works related to Medusa. Group Communication Systems (GCS) [1] [14] also 
offer a trusted infrastructure and some [11] [13] [3], like Medusa, are specifically 
designed to withstand failures and malicious agents, however these GCS’s feature an 
unranked infrastructure. A Medusa-like hierarchical structure is proposed in [11], but 
it does not achieve survivability through the use of undedicated systems and resource 
sharing. 

Second, there are works similar to this specific paper, a security validation using 
the CSP/FDR approach.  A similar approach is used in [9] for validating existing 
protocols, but not for Medusa. 

Medusa is designed to cover both internal security (systems security) and external 
security (communications security). In this theory testing research the external 
security of the Medusa process is analysed. The objective is to: assert the security of 
the Medusa process by performing a thorough security validation on predefined 
essential security properties and recommend alterations to Medusa to improve either 
security or efficiency. 

To validate the security of the Medusa process, two research methodologies are 
used. First a general logic based analysis is performed followed by a more thorough 
model-checking approach by state enumeration (in this process every possible state of 
the protocol is analysed). The main reason for choosing this combination is its merit 
in the field of security validation [16].  

In section 2 an overview is given of Medusa’s security requirements, the 
communication during its lifecycle, together with a logical analysis of the security 
requirements. In section 3, the CSP/FDR state enumeration approach is introduced 
and used to find any possible attacks an intruder could use to subvert Medusa’s 
requirements. Also, this approach is used to see whether the security properties can be 
asserted more efficiently. Finally, the results of these analyses are summarized and 
discussed further in section 4.   

2 MEDUSA: Security Requirements & Overview 

First the three security requirements are defined. Following Medusa is introduced and 
its communication evaluated. Each security requirement is analyzed to see whether it 
is required and delivered (in a friendly environment).  
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2.1 Security Requirements  

Although Medusa was designed as a single solution for security services, it consists of 
multiple security protocols occurring either sequentially or concurrently. A security 
protocol is defined as: a prescribed sequence of interactions between entities to 
achieve a certain end [16]. To reduce complexity the number of agents participating 
in a protocol is kept to a minimum. For instance during the primary elections phase all 
CE’s communicate with all candidates. This can be modelled as a protocol between 
one CE and one candidate, which is run between all CE’s and candidates. The 
analysis of the latter situation is much less complex but does not reduce the quality of 
the security validation.  

The three security properties that are validated in this paper are: confidentiality, 
authentication or integrity. They are defined here as follows. Confidentiality: no 
plaintext data of a message passing between honest entities may be derived by 
unauthorized entities. Integrity: any corruption of data contained in a message must 
always be detected Authentication: if a message alleges to be from a certain entity, it 
was indeed originated by that entity. 

Of these security requirements integrity should be upheld for every message. If the 
contents of a message can be tampered with a disruption of the Medusa process is 
easily achieved. The other two properties, confidentiality and authentication, may or 
may not be required depending on the message. For authentication two forms are 
distinguished: one-way authentication, signifying that the initial sender must be 
authenticated to the receiver, and two-way authentication meaning that the receiver 
should also be authenticated to the sender.  

2.2 Medusa Overview 

The Medusa process consists of three phases: bootstrapping, preparation and 
resurrection. The preparation and resurrection phases are part of Medusa’s operational 
lifecycle. The preparation phase ensures the survival of the ad-hoc SDC, through 
continuous replication and distribution of its trust token. When the SDC goes down 
the resurrection phase begins and another SDC is established by reconstructing the 
trust token. Medusa’s bootstrapping protocol is the self-organizing process that leads 
to the creation of the SDC and its pool of successors. Through interactions between 
agents (not dedicated to Medusa) a network of unrelated and untrusted agents is 
converted into a trusted hierarchical structure.  

In the following sections an overview is presented of the different phases of 
Medusa. The various security protocols taking place are shown with their sequence of 
messages. For coherency with the Medusa pseudo code the methods in which the 
messages are sent are shown as well. For every method the necessary security 
requirements are defined. By looking at the various security tools used in the 
protocols it is determined if and how these requirements are met.  Here is an overview 
of the various security tools used in Medusa communication and their abbreviations: 
A,B : identity of a or b 
M : the actual message 
Na : nonce generated by a 
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Kab : symmetric key shared by A and B 
{m}SKa : message encrypted with SKa   
TS : timestamp 
H(M) : a hash of M 



PKa , SKa  :  public and secret key pair  

2.2.1 The Bootstrapping Phase 
The bootstrapping phase itself can be further divided into three subphases: Primary 
Elections, Pool Formation, Ratification.   
 
Primary Elections 
Before bootstrapping can begin, a network must exist with a number of agents (CE’s). 
These agents are not dedicated Medusa agents, but have background Medusa 
functionality. Furthermore these agents must have initial but limited access to one or 
more Central Exogenous Authority’s (CEA), i.e a trust dealer. A CEA can provide 
them with a trust certificate that contains a quantitative indication of their 
trustworthiness. In the intended Medusa structure one or several chosen agents will 
perform the centralized trust management service. Agents that opt to become a 
candidate leader inform all other agents of this fact. When all candidates are known 
the actual voting process takes place. All agents create a list of ballots containing a 
voting score for each candidate. These scores are based on the absolute trust value 
given by the CEA, and the agent’s individual level of trust in the CEA itself. After 
receiving all the votes the candidates individually calculate the score of each 
candidate by weighting the votes of every agent with their respective trust value and 
summing up the results. This means that every candidate will have a greater 
appreciation for the voting scores of the agents it trusts most. The top scoring 
candidates are the prospect SDC’s. 
1. CE  CEA :                (IDlist request) 
2. CEA  CE :                   (IDlist)  Initialize 
3. Cand(A) CE(B): {M,A,Na}SKa, {H(M,A,Na),TS}SKa (candidacy declaration) 
4. CE(B)  Cand(A): {H(M,A,Na,Nb),TS}SKb, Nb             (acknowledge receipt) 

ModPublishCand 

5. CE(B)  Cand(A): {M,B,Nb}PKa, {H(M,B,Nb),TS}PKa       (ballot list) 
6. Cand(A)  CE(B): {H(M,Bb,Na),TS}SKa, Na     (acknowledge receipt) 

Initialize: In this initial protocol every CE acquires an initial IDlist from the CEA 
containing the ID’s and trust certificates of most CE’s in the network space. Correct 
authentication both from the CE to the CEA and from the CEA to the CE is essential 
in the method. Confidentiality is an issue, although later in the process most CE’s will 
share their trust certificates for privacy reasons they should retain the right to keep 
their certificates private. It was decided not to give a specification of the Initialization 
protocol. The implementation of this protocol will undoubtedly differ with each 
Central Exogenous Authority. It is assumed that a CEA in the Medusa environment 
has some protocol in place which offers confidentiality and 2-way authentication. 

ModPublishCand: In this method the candidates broadcast their candidacy 
declaration over the network. Since the candidacy declaration does not contain any 
sensitive information confidentiality of the message is not an issue here. 
Authentication however is relevant; and is provided through the use of the 
Candidate’s secret key.  

ModCastBallots: A CE sends its list of ballots to all known candidates. Similar to 
the method Initialize confidentiality is an issue here for reasons of privacy. It is 
provided by encrypting the message with the candidate’s public key. Authentication is 

ModCastBallots 
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also required but is not provided, anybody could have encrypted this message since 
the key used for encryption is public.  

 
Pool Formation  
The goal of this sub phase is creating a pool of possible successors to the SDC in case 
it should at some point cease to exist. To that end the leader invites other agents to 
join its pool. The invited pool members evaluate whether to indeed become a pool 
member of the inviting prospect.  They must have sufficient trust in the inviting 
prospect to do so. Once enough pool members agree the pool formation is finished. 
1. Pros(A) CE(B): {{M}SKa,A,Na,Kab}PKb,{H(M,A,Na)TS}PKb    (Covenant) 
2. CE(B)  Pros(A): {H(M,Kab,A,Na,Nb),TS}SKb, Nb     (Acknowledge Receipt) 
3. CE(B)  Pros(A): {{H(M)}SKb,A,Nb}Kab,{H(M,A, Nb)TS}Kab   (Signed covenant) 
4. Pros(A)  CE(B): {H({M}SKb,,A,Nb,Na),TS}SKa, Na             (Acknowledge Receipt) 

ModProcessVotes: This method only features communication for candidates that 
go on to become prospects. These prospects send a covenant for signing to a number 
of prospect pool members.  This covenant is clearly meant only for the pool members 
and should therefore remain confidential. Confidentiality is provided by encrypting 
the entire message with the CE’s public key. Also, authentication should be 
established from the prospect to the future pool member. Authenticity is guaranteed 
because M is signed with the prospect’s private key. 

 ModVouches: In Modvouches the prospect pool member signs and returns the 
covenant. The pool member should be authenticated to the prospect. Confidentiality 
does not seem to be required since only a signed hash of the covenant is returned to 
the prospect leader. However another (untrusted) prospect could use such a covenant 
to fool other CE’s into believing it has a strong pool. Therefore the hashed and signed 
covenant should remain confidential. Both authenticity and confidentiality are 
achieved by encrypting the message with its symmetric key supplied by the prospect. 

 

ModVouches 

ModProcessVotes 

Ratification 
The final step in establishing a Medusa structure is ratification of the prospects by end 
members. All prospects that have managed to form a pool invite agents to subscribe to 
them by advertising themselves and their pool structure. This pool structure indicates 
their possible survivability rate as their pool members are possible future successors. 
The agents individually decide whether or not to become a client of a certain leader 
(or SDC). Even when clients have subscribed they may still switch to another leader, 
which presents an increase in trustworthiness or survivability. When all leaders have 
invited clients they evaluate their clientele. If it is large enough to warrant the leader’s 
existence the leader can start providing its security service. If not the leader will 
disband its pool and group of clients, leaving it and its former pool members available 
to join new pools or subscribe to other SDC’s.  
1. Pros(A) CE(B): {M,A,Na}SKa, {H(M,A,Na),TS}SKa      (Subscr Inivitation) 
2. CE(B) Pros(A): {H(M),A,Na,Nb),TS}SKb, Nb             (Acknowledge Receipt) 
3. CE(B) Pros(A):{{M}PKa,A,Nb}SKb,{H(M,A,Nb),TS}SKb          (Subscr Answer) 
4. Pros(A) CE(B): {H(M,A, Nb,Na),TS}SKa, Na         (Acknowledge Receipt) 
5. Pros(A) CE(B): {M,Kab,A,Na}PKb, {H(M,A,Na)TS}PKb                        (Secret Key
6. CE(B) Pros(A): {H(M,A,Na,TS,Nb)}SKb, Nb         (Acknowledge Receip

ModRatification 

ModSubscribe 
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ModRatification: As in the method ModPublishCand the leader broadcasts it 
subscription request over the network, hence confidentiality is not an issue. Because 
the clients need to know to whom they will or will not subscribe the leader should be 
correctly authenticated to the receivers. This is provided by encrypting the 
subscription request with the leader’s secret key.  

ModSubscribe: The CE chooses whether or not to subscribe and replies to the 
leader. If the client subscribes it sends a hashed secret to the leader which should 
remain confidential. The CE must also be authenticated to the leader. Confidentiality 
is achieved by encrypting the whole message with the prospect’s public key; the 
hashed secret is encrypted with the client’s private key to provide authenticity.  

ModMembership: The leader acknowledges the client’s subscription. This message 
also contains the symmetric server key that the client can use for efficient 
communication through the SDC (the leader) and therefore must be kept confidential. 
Authentication of the leader to the client is essential, as the client must be certain that 
its key was issued by its leader. Confidentiality is provided by encrypting the message 
with the client’s public key. Although no private key is used authenticity is still 
guaranteed because the leader returns the hashed secret (stored in M) which no one 
knows other than the leader and its client. 

2.2.2 The Preparation Phase 
Once the trust infrastructure has been created it must be maintained. The goal of the 
preparation phase is to prepare the leader to resist future failures. To this end the 
leader creates a survival kit, containing a list of its clients, an ordered list of possible 
successors and the trust token, the combination of the individual secrets of each client. 
The trust token is divided into several pieces through twisted secret sharing [18] [5]. 
Each pool member receives the client list, the successor list, and a piece of the trust 
token. The pieces of the trust token are encrypted and distributed amongst the pool 
members with non-matching keys in such a way that a majority of the pool members 
can reconstruct it in case the leader ceases to exist.  

There are two security protocols that run during the preparation phase: the trust 
token sharing protocol and the alive protocol. The first is run only periodically when a 
significant change to the secret has occurred (due to for instance a new client being 
added) while the latter is run almost continuously.  

Trust Token Sharing: 
1. Ldr(A)  Plmbr(B): {M,A, Na}Kab,{H(M,A,Na),TS}Kab     (piece of token) 
2. Plmbr(B)  Ldr(A): {H(M,A, Na,Nb),TS}Kab, Nb      (Acknowledge Receipt) 

 
Alive: 

1. Ldr(A)  Plmbr(B): {M,A,Na}Kab, {H(M,A,Na),TS}Kab            (Alive message) 
2. Ldr(B)  Plmbr(A): {H(M,A,Na,Nb),TS}Kab, Nb         (Acknowledge Receipt) 

ModPreparation: this method handles the division and distribution of the 
survivability objects. Although the different parts of the trust token cannot be opened 
with the keys sent with them confidentiality must still be maintained for else an 
intruder could acquire the clients’ secrets by intercepting enough pieces of the trust 
token to reconstruct it. Authentication is also essential and must be established both 
ways. The leader must be certain that he is indeed sending the trust token to the pool 

ModPreparation 

ModSelfAssess 
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members whilst the pool members must only accept the new token when they are 
convinced their leader has sent it. Both authenticity and confidentiality are provided 
through a symmetric key shared by the leader and the respective pool member. 

ModSelfAssess: This method contains a leader’s functionality for sending “alive” 
signals to each pool member. The security requirements for “alive” messages are 
limited. Confidentiality is not required, authenticity from the leader to the pool 
members is required; the pool members must know that it is the leader sending out 
alive signals and not an imposter. Authenticity is guaranteed through symmetric keys. 

2.2.3 The Resurrection Phase 
The resurrection phase allows the pool members to resurrect the trust token and 
appoint the successor as the new leader in case of leader failure. First each pool 
member determines the successor based on the successor list. Before sending its piece 
of the trust token to the successor a pool member checks whether the successor is 
alive. If the successor is operational all pool members send their piece of the trust 
token to the successor. The successor gathers all pieces and reconstructs the token. 
With the trust token the successor assumes the leadership role and starts to refresh 
both the pool member and the client keys. Subsequently the clients acknowledge the 
new leader by refreshing their secret. The new leader combines the fresh secrets into a 
new trust token and enters the preparation phase.  

The resurrection phase features two security protocols: resurrection and key & 
secret refreshment. Contrary to the preparation phase these protocols run sequentially.  

Resurrection: 
1. Plmbr(A)  Ldr(B): {M,A,Na}Kab,{H(M,A,Na),TS} Kab  (request Alive) 
2. Plmbr(A) Plmbr(C):{M,A,Na}Kac,{H(M,A,Na),TS}Kac       (death decl.) 
3. Plmbr (C)  Plmbr(A): {H(M,A,Na,Nc),TS}Kac, Nc  (Acknowledge dd) 
4. Plmbr(A) Scssr(C):{M,A,Na}Kac, {H(M,A,Na),TS}Kac         (trust token) 
5. Sccssr(C)  Plmbr(A): {H(M,A,Na,Nc),TS}Kac, Nc   (Ackn. receipt) 

Key & Secret Refreshment 
1. Ldr(A)  CE(B): {H(M),A,Na,Kab2)Kab, {H(Kab2,A,Na),TS}Kab           (new key) 
2. CE(B)  Ldr(A): {H(Kab2,A,Na,Nb),TS}Kab, Nb       (Acknowledge Receipt) 
3. CE(B)  Ldr(A): {H(M2),B,Nb}Kab2, {H(M2,B,Nb),TS}Kab2      (updated sectret) 
4. Ldr(A)  CE(B): {H(M2,B,Na,Nb),TS}Kab2, Nb                       (Acknowledge receipt) 

 
ModCheckCondition: After a failed alive check, a poolmember informs the others 

of the leader’s demise and starts the resurrection protocol. Informing the other pool 
members of the leader’s demise can be achieved with few security requirements. Only 
authenticity from the sender to the receiver is required. The receiving pool members 
must be certain that the declaration of death was sent by a pool member so that agents 
outside the pool cannot confuse it with false declarations. Authenticity is provided 
through the symmetric keys 

ProcSendToken: In this method all pool members send their piece of the token to 
the successor. Confidentiality is critical since together the pieces of the token contain 
highly sensitive information. Also two-way authentication must be established. All 
requirements are achieved by the symmetric keys used in both messages. 

ModCeckCondition 

ProcRefreshSecr 

ProcRefreshKeys 

ProcSendToken 
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ProcRefreshKeys: The successor has assumed the leadership role and refreshes all 
keys. Since this is in essence a key-exchange protocol again both confidentiality and 
two-way authentication need to be established. These requirements are provided via 
the symmetric keys of the former leader which the successor has successfully rebuilt. 
ProcRefreshSecr: After receiving a fresh key the CE also resends its secret to the 
leader. As implied by its name the secret contains sensitive information, requiring 
confidentiality. Furthermore the secret must be sent to none other than the respective 
leader, and the leader must be sure of the identity of the sender. This leads to the 
conclusion that again two-way authentication is required. Both authenticity and 
confidentiality are provided through the use of the new symmetric keys, just issued by 
the new leader in procRefreshKeys. 

2.3 Summary 
The following table summarizes the different requirements for each method that were 
established in the previous text. For Integrity and Confidentiality a “–“ value signifies 
that the respective property is not required, while a “+” signifies the opposite. For 
authentication “1-way” means that the sender must be authenticated to receiver, and 
“2-way” represents a two-way authentication requirement. 

Table 1. Security Requirements 

Methode Auth. Int Con Methode Auth. Int Con 
Initialize 2-way + + ModMembership 1-way + + 
ModPublishCnd 1-way + - ModPreparation 2-way + + 
ModCastBallots 1-way + + ModSelfAssess 1-way + - 
ModProcessVts     1-way + + ModChkCndition 1-way + + 
ModVouches 1-way + + ProcSendToken 2-way + + 
ModRatification 1-way + - ProcRefreshKeys 2-way + + 
ModSubscribe 1-way + + ProcRefreshSecr 2-way + + 

All messages in the Medusa process include a signed hash of the message contents. 
Therefore the integrity of all messages is guaranteed. In most cases the other 
requirements are also met except for one: the authenticity requirement in 
modCastBallots. Authenticity is not achieved because the message is only encrypted 
using the receiver’s public key. If instead the message is also encrypted with the 
sender’s private key, as seen in modProcessVotes, both authenticity and 
confidentiality will be guaranteed as is required.  

3 CSP/FDR Analysis 

Now that the various security requirements for the Medusa protocol have been 
established and validated in a “friendly” environment, the analysis continues in an 
environment where active intruders attempt to subvert the Medusa process. To 
validate Medusa in a hostile environment the CSP/FDR approach is introduced. 

The CSP/FDR approach consists of the CSP (Communicating Sequential 
Processes) process algebra and the model checker FDR (Failures/ Divergences 
Refinement). CSP is a mathematical framework for the description and analysis of 
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systems consisting of components (processes) interacting via the exchange of 
messages [12] [15] [17]. The fact that CSP is designed specifically for describing 
parallel processes communicating with each other makes it inherently suited for 
modelling security protocols. In CSP, clients, pool members and leaders can be 
modelled as processes performing a sequence of actions. By default the network will 
deliver a message to its specified destination but an intruder is active on the network. 
The intruder conforms to the Dolev-Yao model [8]. This model introduces an attacker 
able to manipulate messages passing through the network by deleting, faking, 
redirecting replaying and so on, only bound by cryptographic constraints. This 
intruder is present in each run of the security protocol and tries everything in its 
arsenal to subvert the security properties of the protocol. With regards to 
cryptography, perfect encryption is assumed.  

For generating the CSP language a high level compiler was used: Casper (Lowe, 
1998). Casper takes a fairly abstract description of a security protocol (similar to the 
description used in section 3) and generates the corresponding CSP description. By 
using Casper both the time required for generating the CSP description and the 
likelihood of errors in the description is greatly reduced.  

3.1 Protocol Validation 

In this section CSP/FDR is used to validate the various security protocols described 
earlier. Only the confidentiality and authenticity requirements can be checked with 
this approach. However when a message is correctly authenticated and contains a 
signed hash of its contents, integrity should also be guaranteed. To catch replay 
attacks by the intruder, the authentication requirement is enhanced with the following 
condition: if an entity A believes it has run a protocol once with another entity B then 
B has run the protocol with A exactly once. The protocol specifications of section 3 
are in several systems, containing various initiators and responders. The following 
scenarios are a reasonably complete list of the checks worth making [16]: 
1. An initiator A, and a responder B 
2. An initiator A, and a responder A 
3.  An initiator A, a responder A,  
 and an initiator B 

All of these systems were tested for each Medusa security protocol. The following 
text describes the attacks that were found on the various protocols and, if possible, a 
solution. If a protocol is not mentioned, no attack was found.  

4. An initiator A, a responder A,  
and a responder B 

5. An initiator A, and two responders B 
6. Two Initiators A, and a responder B 

Pool formation: In the first scenario an attack is discovered on the authentication 
requirement of ModProcessVotes. The attack proceeds as follows: 
1.Pros(A) Int   :{{M}SKa,A,Na,Ka,int}PKint,{H(M,A,Na)TS}PKint 
1.Int(A) CE(B):{{M}SKa,A,Na,Ka,int}PKb,{H(M,A,Na)TS}PKb 
2.CE(B) Int(A):{H(M, Ka,int,A,Na,Nb),TS}SKB, Nb 
3.CE(B) Int(A):{{H(M)}SKb,A,Nb}Ka,int,{H(M,A,Nb)TS}Ka,int 
4.Int(A) CE    :{H({M}SKb,,A, Nb,Na),TS} Ka,int, Na 

This attacks presents a rather unlikely situation where prospect A invites the 
intruder into its pool. The intruder subsequently redirects this invitation to B posing as 
A. The intruder acts as though the symmetric key it is issued by A is instead a key 
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between A and B. B finishes the protocol with the intruder and believes it is now a 
pool member of A. This is not the case because in fact it did not run the protocol with 
A. Although it is unlikely that a prospect would actually invite an intruder, this attack 
can be negated completely by adding the message’s destination in the part encrypted 
with A’s secret key. The protocol is changed as follows: (the change is printed bold): 
1. Pros(A) CE(B):{{M,B}SKaA,NaKab}PKb{H(M,A,Na)TS}PKb 
2. CE(B) Pros(A): {H(M,Kab,A,Na,Nb),TS}SKb, Nb 
3. CE(B) Pros(A): {{H(M)}SKb,A,Nb}Kab, {H(M,A, Nb)TS}Kab 
4. Pros(A) CE(B): {H({M}SKb,,A,Nb,Na),TS}SKa, Na 

After this change was adopted no more attacks were discovered in any of the 
scenarios. 

Trust Token-Sharing: In scenario 4 Casper detects the following attack on the 
authentication of ModPreparation: 
1.Ldr(A)  Int(B)     :  {M,A, Na} Kab, {H(M,A, Na),TS} Kab 
1.Int(A) Plmbr(B)   :  {M,A, Na} Kab, {H(M,A, Na),TS} Kab 
2.Plmbr(B)  Int(A) :  {H(M,A, Na,Nb),TS}Kab, Nb 

1.Int(A)  Plmbr(B) :  {M,A, Na} Kab, {H(M,A, Na),TS} Kab 
2.Plmbr(B)  Int(A) :  {H(M,A, Na,Nb),TS}Kab, Nb 

This is a textbook replay attack. The intruder poses as B and A sends the secret. 
The intruder sends this to B twice and B responds accordingly. Now A thinks it is still 
running the protocol with B while B thinks it has already run it twice. The data 
integrity is still in tact because the message is still the same. Whether this attack is 
possible in practice depends on the implementation of the protocol. If B saves the 
nonce supplied by A for as long as the timestamp is valid, or saves the last timestamp 
it has received, this replay attack becomes impossible. The attack can also be solved 
regardless of implementation by adapting the protocol as follows: 
1.Ldr(A)  Plmbr(B) :  {M,A, Na} Kab, {H(M,A, Na),TS} Kab 
2.Plmbr(B)  Ldr(A) :  {H(M,A, Na,Nb),TS, Nb }Kab,  

3.Ldr(A)  Plmbr(B) : Nb 

The nonce generated by B is sent to A encrypted, and subsequently returned to B. 
Every time B receives its nonce it can therefore be certain that A has run the protocol.  
Although the above attack does not cause any discernable damage (as long as the 
validity of the time stamp is shorter than the intervals of refreshing the token) to the 
Medusa process, it is recommended that either of the above solutions is adopted. Both 
solutions are easily implemented and with both, strong authentication is guaranteed.  

3.2 Protocol Improvements 

To optimize the Medusa protocol further, CSP/FDR was used to check the security 
requirements could still be achieved if the various sub protocols were “slimmed 
down”. The main goal for this section is to remove Medusa’s dependency on 
timestamps especially in the Bootstrapping phase. Although limited time 
synchronization may be possible, even in open and ad-hoc networks, it would greatly 
benefit to the protocol if the time synchronization dependency were removed.  

Primary Elections:  
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1. Cand(A) CE(B) : {M,A,Na}SKa, {H(M,A,Na)}SKa 
2. CE(B) Cand(A) : {M,B,Nb,A,Na}PKa,{H(M,B,Nb,A,Na}SKb 
3. Cand(A) CE(B) :  Nb 

Pool Formation:  
1. Pros(A) CE(B) : {M,,A,Kab}PKb,{H(M,A,Kab),B}SKa 
2. CE(B) Pros(A) : {{H(M)}SKb,B,Nb}Kab,{H(M,B,Nb)}Kab 
3. Pros(A) CE(B) : Nb 

Ratification:.  
1. Cand(A) CE(B) : {M,A,Na}SKa, {H(M,A,Na)}SKa 
2. CE(B) Cand(A) : {M,B,Nb,A,Na}PKa,{H(M,B,Nb,A,Na}SKb 
3. Cand(A) CE(B) :  {M,A,Nb,Kab} PKb,{H(M A,Nb,Kab)}SKb 

Trust Token Sharing:  
1.Ldr(A)  Plmbr(B) :  {M,A, Na} Kab, {H(M,A, Na),TS} Kab 
2.Plmbr(B)  Ldr(A) :  {A,Na,Nb} Kab, {H(A,Na,Nb)}Kab,  
3.Ldr(A)  Plmbr(B  :   Nb 

Alive:  
1. Plmbr(A)  Ldr(B) :  Nb 
2. Ldr(A)  Plmbr(B) :  {M,A, Nb } Kab, {H(M,A, Nb } Kab 
 
1. Ldr(A)  Plmbr(B) :  {M,A,TS} Kab, {H(M,A,TS} Kab 

Resurrection:  
1. Plmbr (A)  Ldr(B)    :  {M,A,Na} Kab, {H(M,A,Na)} Kab 
2. Plmbr (A)  Plmbr(C) :  {M,A,Na} Kac, {H(M,A,Na)} Kac 
3. Plmbr (C)  Plmbr(A) :  {C, H(M,A,Na,C)}Kac 
4. Plmbr (A)  Sccssr(C) :  {M,A,Na} Kac, {H(M,A,Na)} Kac 
5. Sccssr (C)  Plmbr(A) :  Na 

Key & Secret Refreshment: 
1. Ldr(A) CE(B):{H(M),A,Kab2)Kab,{H(Kab2,A)}Kab 
2. CE(B) Ldr(A): {H(M2),B,Nb} Kab2, {H(M2,B,Nb)} Kab2 
3. Ldr(A) CE(B): Nb 

Comparing these protocols to the original protocols a number of improvements are 
visible. First and foremost the timestamps have been removed without sacrificing the 
required security. Any replay attacks are avoided through the use of nonces. 
Furthermore most individual protocols have become much smaller, with in some 
cases a 50 percent reduction in the number of messages required.  
For the Alive protocol two possible implementations are shown. The first does not use 
timestamps but consists of two messages. The second consists of only one message (a 
50 percent reduction in the number of messages) but does require the use of a 
timestamp. Because the Alive protocol is run almost continuously the reduction in 
messages can yield a significant performance benefit. The Alive protocol is run after 
the structural hierarchy is in place so time synchronization should be easily achieved.  

4 Conclusions 

The analyses in this paper have shown that the Medusa protocol with some minor 
alterations can provide the security requirements: confidentiality, integrity and 
authentication, even with an active intruder out to subvert the Medusa process. Also, 
further alterations have been suggested to the various sub protocols to increase their 
efficiency whilst maintaining the security requirements. These changes have lead to a 
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protocol that is not dependent on time synchronizations during the bootstrapping 
phase. In this phase, time synchronization poses a real problem, and the fact that 
Medusa is able to do without it is a great improvement. Furthermore if for some 
reason time synchronization in the latter phases is unavailable, the Medusa protocol 
can be adapted to avoid time synchronization altogether. 
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