
Stateful Design for Secure Information Systems 

Thuong Doan, Laurent D. Michel, Steven A. Demurjian and T.C. Ting 

Department of Computer Science and Engineering 
University of Connecticut 

371 Fairfield Road, Storrs, CT 06269-2155, USA 

Abstract. The unified modeling language (UML) has gained wide acceptance 
for the design of component-based applications via diagrams (e.g., use-case, 
class, sequence, activity, etc.) for representing functional requirements. How-
ever, UML is lacking in its ability to model security requirements, an increasing 
need in today's applications. This paper presents and explains techniques that 
support stateful application design for secure information systems, extending 
the abilities of UML with role-based access control and mandatory access con-
trol. From a security-assurance perspective, we track all of the states of a design 
to insure that a new state (created from a prior state) is always free of security 
inconsistencies, with respect to the privileges of users (playing roles) against 
the application's components. This paper examines the theory of our approach, 
along with its realization as part of the software process and as incorporated 
into Borland's UML tool Together Control Center. 

1   Introduction 

In the design, development, and maintenance of secure information systems, we be-
lieve that security issues must be addressed early and often in order to potentially 
yield more precise and accurate security requirements. To address security during the 
software process, our current research [8, 9] has focused on incorporating mandatory 
access control (MAC) and role-based access control (RBAC) into the elements (ac-
tors, use-cases, classes, etc.) and diagrams (use-case, class, sequence, etc.) of the uni-
fied modeling language, UML [6]. In UML, while there are parallels between security 
and UML elements, direct support for security specification [16] is not provided. Our 
work [8, 9] has focused on the inclusion of RBAC and MAC by aligning the concept 
of role with actor, and by adding security properties to use-case, class, and sequence 
diagrams to capture MAC and RBAC characteristics, and lifetimes (i.e., the legal time 
intervals of access to UML elements). As justification for our efforts, we cite the 
works of [1, 2, 11, 14, 15, 20, 21] who have explored security and UML, and work in 
semantic and ER data models with security extensions [18, 19, 22]. 

Our objective in this paper focuses on capturing critical security requirements for a 
UML design while simultaneously tracking all of the security design states. Towards 
this end, this paper provides a framework that utilizes functional programming nota-
tion and constraints to capture and track all security requirements over time, resulting 
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in an approach to stateful UML design that can be checked against the security con-
straints of an information system. In the remainder of this paper: Section 2 reviews 
background on MAC/RBAC, and recasts our previous work [8, 9, 10] using a func-
tional notation; Section 3 explores stateful UML design, introduces a functional model 
of the design state space and actions, and presents constraints for MAC, RBAC and 
lifetimes. Section 4 examines the safety concept, provides an example of the actions 
that transform the design states, and introduces design-time and post-design checking; 
Section 5 reviews our prototyping effort that uses Borland's UML tool Together Con-
trol Center; Section 6 contains related work; and Section 7 concludes this paper. 

2   Background Concepts 

In this section, we review background concepts on RBAC/MAC, and the extension of 
UML integrated with RBAC/MAC security based on our prior work [8, 9, 10]. First, 
in MAC (or Lattice-Based Access Control [17]), security levels (SL’s) forming a lat-
tice structure are assigned to each subject (clearance - CLR) and each object (classifi-
cation - CLS). The permission of the subject to perform some operation on the object 
depends on the relation between CLR and CLS as dictated by: Simple Security Prop-
erty ("read down - no read up'') [3]; Simple Integrity Property ("write down - no write 
up'') [5]; Strict *-Property ("write equal'') [17]; and Liberal *-Property ("write up - no 
write down'') [3]. For examples, we use SLs: unclassified (U), confidential (C), secret 
(S), and top secret (T) where U < C < S < T (linear order) for simplicity; but our theo-
retical model is applicable for general partial orders. In RBAC [7, 12, 23], roles are 
assigned to users to specify the named assignments that those users can perform in the 
organization. Each role is authorized to perform some operations on certain objects. 

Our extensions to UML for MAC and RBAC involve actors, use-cases, classes, and 
methods as realized in use-case, class, and sequence diagrams [8, 9, 10]. To accom-
plish this, we associate, with each UML element, an identifier, element kind, minimum 
and maximum security levels, and lifetime (LT) as a duration in which the usage of 
that element is valid. Formally, we denote ΛID as the set of identification labels 
(uniquely assigned to each element), ΛEK = {A, UC, Cl, M} as the set of element kinds 
(actor, use-case, class, and method, respectively), and ΛSL as the set of security levels. 
Let T be a set of discrete time of the form “year-month-day [hour:minute:second]” (as 
a subset Cartesian product of sets of integers), a lifetime lt a time interval [st, et] 
where et and st ∈ T are the start time and end time, respectively, with et ≥ st. We de-
note the set of lifetimes as I. A UML element x is a tuple (id, k, slmin, slmax, lt) ∈ 
ΛID×ΛEK×ΛSL×ΛSL×I where id, k, slmin, slmax, and lt are its element identification, kind, 
minimum and maximum security levels, and lifetime, respectively. For a class c: Cl, 
we require c.slmin ≤ c.slmax (since a class is a container of attributes and methods) 
whereas for an element x of other kinds, we require only x.slmin = x.slmax = x.sl.  

As an example, consider a Survey Institution that performs and manages public 
surveys. After the raw survey data is collected, senior staff adds a survey header into 
the database; senior or junior staff adds questions into the survey, may categorize 
questions, or add a question category. Questions with sensitive content are restricted 
to senior staff. Figure 1 depicts a use-case diagram for creating a new survey entry. 
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The actor ac1: Staff has two children ac2: Junior Staff and ac3: Senior Staff. Gener-
ally, Staff can perform uc2: Add Question which includes uc4: Categorize Question, 
and can be extended to uc5: Add Question Category if a new category must be added 
to the database. But, only Senior Staff can perform uc1: Add Survey Header to include 
a new survey header entry and uc6: Add Special Question to include special sensitive 
questions in a survey. Figure 2 illustrates a sequence diagram for Add Survey Header. 

 

 
Fig. 1. UC Diagram: New Survey Entry.       Fig. 2. Sequence Diagram: Add Survey Header. 

 
To illustrate, uc1: Add Survey Header with min and max SL = Secret (S) and LT = 
[“1/1/2005”, “12/31/2006”] is (uc1, UC, S, S, [“1/1/2005”, “12/31/2006”]). Formally, 
we denote ∆ as the set of UML elements connected by different connection kinds, and 
ΛCK as the set of connection kinds between UML elements x and y [8] (assuming use-
case diagrams and class diagrams are acyclic) as:  
• Actor/Use-case (in use-case diagrams): (i.1). Actor inheritance A_Ih: actor x 

inherits actor y; (i.2). Actor-use-case association AU_Asc: actor x interacts with 
use-case y by association; (i.3). Use-case inheritance U_Ih: use-case x inherits 
use-case y; (i.4). Use-case inclusion U_Ic: use-case x includes use-case y; (i.5). 
Use-case extension U_Ex: use-case y extends use-case x.  

• Class/Method (in class diagrams): (ii.1). Class inheritance C_Ih: class x inherits 
class y; (ii.2). Class-method defining CM_Def: the method y is defined in class x. 

• Combinations (in sequence diagrams): (iii.1). Use-case-class utilization 
UC_Uz: class y is utilized in use-case x related to a sequence diagram; (iii.2). 
Use-case-method utilization UM_Uz: method m is utilized in use-case x related to 
a sequence diagram using m; (iii.3). Actor-method utilization AM_Uz: method m 
is utilized by actor x; (iii.4). Method-method calling M_Ca: method x calls 
method y (via message passing in a sequence diagram). 

 
To track the security assurance of UML diagrams, each connection of a source and 
target element (actor, use-case, class, etc.) is characterized by its connection kind and 
LT. Formally, a connection is a tuple (x, y, k, lt) ∈ ∆×∆×ΛCK×I where x, y, k, and lt are 
the source and target UML elements, the connection kind, and connection LT. In 

279



Figure 1, the connection from ac3: Senior Staff to uc1: Add Survey Header via asso-
ciation with LT=[“1/1/2005”, “12/31/2005”] is (ac3, uc1, AU_Asc, [“1/1/2005”, 
“12/31/2005”]). Φ denotes the set of all UML connections for a design. 

In support of RBAC, an actor (see Figure 1) represents one organizational role as 
defined by the security officer. In [10], we specified three kinds of an application’s 
security requirement (SR). First, Disallowed Usage (DisU) states that an element x1 is 
not allowed to use element x2. In Figure 1, the security policy prevents a junior staff 
person from adding special questions and is specified with a DisU SR on the use of 
use-case uc6: Add Special Question by the actor Junior Staff. Second, in Static Role-
Objects Mutual Exclusion (MESRO) - the actor x1 has a role prohibited from simultane-
ously using both elements x2 and x3. Third, in Static Object-Roles Mutual Exclusion 
(MESOR) - actors x1 and x2 have roles prohibited from using element x3 at the same 
time. Let ΛSR be the set of security requirement kinds, an application’s SR of some 
kind k may involve in as many UML elements as needed. In this paper, we limit a SR 
as a tuple (x1, x2, x3, k) ∈ ∆×∆×∆×ΛSR where ΛSR = {DisU, MESRO, MESOR} as de-
scribed above. Θ denotes the set of SR instances. 

3   Stateful UML Design 

This section introduces a model that tracks states of UML elements, connections, and 
security requirements (SRs) through transformations, and describe the process of 
specifying security constraints for the design state. Intuitively, when the designer cre-
ates, modifies, or deletes a UML element, s/he changes the design to a new state that 
only differs in its set of UML elements. Over time, a UML design can be character-
ized as the set of all states where each state represents a specific design iteration. 
When the designer adds, modifies, or deletes an application’s SRs and UML connec-
tions, the design changes to a new state that differs in SRs or UML connections. A 
design state is denoted by (σ∆, σΦ, σΘ) where σ∆, σΦ and σΘ respectively are the state 
of designed UML elements, designed UML connections, and SRs.  

With our approach, the design process reduces to a sequence of state transforma-
tions to add, update and/or delete UML elements, application SRs and UML connec-
tions. An action α (add, update or delete) maps state (σ∆

i, σΦ
i, σΘ

i) into state (σ∆
i+1, 

σΦ
i+1, σΘ

i+1) where the component states σ∆, σΦ, and σΘ are represented with func-
tions. Intuitively, σ∆ is a function that associates each UML element and the design 
time with a tuple of its name, element type, security levels, and lifetime (valid at that 
the design time). The function for the initial empty component state σ∆

0 returns null. 
σΦ is a function that maps a pair of UML elements, a connection kind (for a connec-
tion), and the design time to the legality (valid or invalid) of the connection. The 
function for the initial component state σΦ

0 returns null to report the absence of con-
nections between any two UML elements. σΘ is a function associating a tuple of re-
lated UML elements, a SR kind (for an application’s security needs), and the design 
time with the enforcement needed for that SR (at that design time). If the customer 
requires enforcing that SR, σΘ is true, else σΘ is false (no enforcement). σΘ

0 for the 
initial component state is false to indicate that there is no SR needed by the customer. 
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A design state is captured with a triplet of first-class functions σ∆, σΦ, and σΘ and 
generated by an action based on the current state. Formally, the signatures of the three 
functions are σ∆: ∆×T → ΛID×ΛEK×ΛSL×ΛSL×I; σΦ: Φ×T→ {valid, invalid, null}; and 
σΘ: Θ×T → {true, false}. An action α is a meta-function that produces the triplet of 
first-class functions for the next state. Design reduces to an interleaving of actions to 
produce a state (σ∆

i, σΦ
i, σΘ

i) and evaluate its state function σΦ
i to determine its safety. 

Figure 3 illustrates the methodological concerns via the space of three design state 
components and their interactions at design time. Typically, the designer first creates 
UML elements (transforming σ∆). Next, s/he associates existing UML elements with 
the application’s SRs (transforming σΘ) which can include disallowing an actor to use 
some class, or specifying a static mutual exclusion of an actor to utilize two use-cases 
at the same time, etc. Then s/he draws connections among UML elements (transform-
ing σΦ). The legality of a connection is checked based on the security constraints (see 
Figure 4) of related UML elements, other existing connections, and the application’s 
SRs at that instant of the design time. 

A brief description of the constraints for MAC, RBAC, and LTs used to validate 
UML connections (Figure 4) follows. Due to space limitations, only intuitive descrip-
tions of the constraints are provided.  
• MAC Constraint. The MAC constraint checks the domination of the SL of the 

source element x over the target element y depending on the chosen MAC proper-
ties (e.g., Simple Security). For details, please refer to our previous work [9]. 

• RBAC Constraint. Let (a,b) ∈ Φ2 denote the existence of a connection between 
UML elements a and b where Φ2 is a transitive binary relation representing all of 
the UML connections without concerning the connection kind and LT. Let con-
nectTo(b) denote the set of UML elements in the projection of the transitive clo-
sure of Φ2 on b and connectFrom(a) denote the set of UML elements in the pro-
jection of the transitive closure of Φ2 on a. The RBAC constraint for a new con-
nection x to y determines whether the application’s RBAC SRs hold between x 
and y and between all the vertices w ∈ connectTo(x) and z ∈ connectFrom(y). 

• Lifetime Constraint. The LT constraint for a design state at a design time t re-
quires that for any connection, t fall in the non-empty overlap of the LTs of the 
connection and those of its source and target elements. 

 

 
 

Fig. 3. Design State Space and Actions. Fig. 4. Taxonomy of Security Constraints. 
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4   Security Assurance Design Support 

In this section, we demonstrate the use of the model and constraints (see Sections 2 
and 3) to obtain a safe design state. We introduce the concept of safe design state and 
demonstrate the way that a design state is transformed and checked against constraints 
when actions are performed. The concepts are foundational for a secure assurance 
design support program for checking the safety of states. The goal from a security 
assurance perspective is to assist the designer in producing a safe design. A design 
state (σ∆,σΦ,σΘ) is said to be safe at design time t if every materialized connection of 
kind k in σΦ between elements x and y in σ∆ evaluates to valid under SRs in σΘ (i.e., 
all of the connections of the design satisfy their MAC, RBAC, and LT constraints). 
When a software engineer authors the use-case diagram given in Figure 1, s/he creates 
new actors and use-cases and connects them with associations. Note that in our ap-
proach, the drawing of connections includes both security and functional characteris-
tics to allow us to be able to analyze security as connections are made. 

To insure the absence of security errors, it is imperative that any actions taken by 
the software engineer move the application from one safe design state to the next. To 
illustrate this process, Table 1 provides a synopsis of the actions taken at design time t 
= “06/01/2004” by a software engineer who: creates new UML elements - three use-
cases and three actors (States 1 to 6); adds SRs - a mutual exclusion (State 7); adds 
two valid connections - one between actors and one between an actor and a use-case 
(States 8 and 9); and fails in a connection attempt - from an actor to a use-case (State 
10). The table omits the formal representation of actions, state functions, and con-
straints, to streamline the explanation and allow the reader to focus on the underlying 
concepts. When the designer attempts to draw a connection from ac1 to uc3, the con-
nection (ac1, uc3, AU_Asc t) evaluates to invalid in State 10 at design time t since the 
application’s SR MESRO has been added at State 7 (ac2 is prohibited from simultane-
ously utilizing uc2 and uc3). Then ac2 inherits ac1 (State 9) while ac1 can utilize both 
uc2 and uc3 in State 9. So, ac2 can also utilize both and that violates the application’s 
security requirement MESRO. Hence, State 10 is not safe since the evaluation of func-
tion σΦ

10 on ac1, uc3, AU_Asc, and t: (σΦ
10 ac1 uc3 AU_Asc t) = invalid (and the secu-

rity assurance design support system reports an error message, see Section 5). 
The security assurance framework supports two modes of checking: design-time for 

real-time checks as the designer alters a UML diagram (as presented in Table 1 and 
discussed above) and post-design for an on-demand check of an entire design version 
(iteration) across all of an application's UML diagrams. Design-time and post-design 
security safety checking are realized, algorithmically, as two parts of a Security As-
surance Design Support (SADS) program. SADS has two sub-programs: dSADS for 
the design-time mode and pSADS for the post-design mode. Note that the dSADS 
maintains the design in the safe state by preventing the UML design tool from materi-
alizing an invalid connection (see Section 5); thus we do not need to be concerned 
with incremental deletion effect that would need to reconsider other connections. 

To compare our model with other efforts, we make several observations. Assume 
that two actors, ac1 and ac2 are mutually exclusive on use-case uc, and that we first 
connect ac1 to uc. A subsequent attempt to connect ac2 to uc causes an error. Given 
this scenario, [13] only supports post-design (akin to our pSADS) by creating a locally 
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stratified logic program from the authorization specification, and as a result, there is 
only one connection allowed – assume that the ac1 to uc connection is chosen by rule. 
The approach of [4] only supports post-design, but provides all of the relevant alterna-
tives when conflicts are identified, and the designer can either choose ac1 to uc or ac2 

to uc. Our post-design conflict checking aligns closely to [4]; it reports the ME con-
flict which can be resolved according to the designer’s preference. Our design-time 
checking is also more robust since the conflict on the second attempted connection 
(ac2 to uc) raises the error. The main difference with [4, 13] is their use of logic pro-
grams with a fixed set of facts/rules as an authorization specification versus our use of 
state functions to dynamically track/adjust for changing design states. 

Table 1. Example of a Design State Construction Process 

Attempted Action New State Effect 
 0:(σ∆

0,σΦ
0,σΘ

0) (The initial state) 

Add uc1 1:(σ∆
1,σΦ

1,σΘ
1) σ∆

1 adds uc1, σΦ
1=σΦ

0, σΘ
1=σΘ

0. 

Add ac1 2:(σ∆
2,σΦ

2,σΘ
2) σ∆

2 adds ac1, σΦ
2 =σΦ

1, σΘ
2 =σΘ

1. 

Add uc2 3:(σ∆
3,σΦ

3,σΘ
3) σ∆

3 adds uc2, σΦ
3 =σΦ

2, σΘ
3 =σΘ

2. 

Add uc3 4:(σ∆
4,σΦ

4,σΘ
4) σ∆

4 adds uc3, σΦ
4 =σΦ

3, σΘ
4 =σΘ

3. 

Add ac2 5:(σ∆
5,σΦ

5,σΘ
5) σ∆

5 adds ac2, σΦ
5 =σΦ

4, σΘ
5 =σΘ

4. 

Add ac3 6:(σ∆
6,σΦ

6,σΘ
6) σ∆

6 adds ac3, σΦ
6 =σΦ

5, σΘ
6 =σΘ

5. 

Add a MESRO to prohibit 
ac2 from simultaneous 
use of uc2 and uc3  

7:(σ∆
7,σΦ

7,σΘ
7) σ∆

7=σ∆
6, σΦ

7=σΦ
6, and σΘ

7 with a 
Static Role-Objects Mutual Exclusion 
SR on ac2 with uc3 and uc2. 

Draw a connection from 
ac1 to uc2 

8:(σ∆
8,σΦ

8,σΘ
8) σ∆

8 =σ∆
7, σΦ

8 with an association from 
ac1 to uc2, σΘ

8= σΘ
7. See Note 1. 

Draw a connection from 
ac2 to inherit ac1 

9:(σ∆
9,σΦ

9,σΘ
9) σ∆

9=σ∆
8, σΦ

9 with inheritance from ac2 
to ac1, σΘ

9=σΘ
8. See Note 2. 

Draw a connection from 
ac1 to uc3 

10: 
(σ∆

10,σΦ
10,σΘ

10) 
σ∆

10=σ∆
9, σΦ

10 with invalid connection, 
σΘ

10 =σΘ
9. 

Notes: 1. The connection (ac1, uc2, AU_Asc) is valid in State 8 (at the design time t 
= “06/01/2004”) as (σΦ

8 ac1 uc2 AU_Asc t) yields valid - all three MAC, RBAC 
and LT constraints hold at t. 
2. The connection (ac2, ac1, A_Ih) is valid in State 9 as (σΦ

9 ac2 ac1 A_Ih t) yields 
valid - all three MAC, RBAC and LT constraints hold at t. 

5   Model Architecture and Prototype Effort 

Over the past year, we have been working on a prototype implementation that features 
a model architecture that contains a set of interacting modules (see Figure 5): 
• UML Design Tool is the graphical user interface (GUI) for the designer to in-

put/edit UML diagrams. Currently, we employ Borland's Together Control Center 
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with Open APIs for Java and modular plug-in structure for UML design aug-
mented with security definition and both design-time and post-design checking. 

• Internal UML Structures Storage stores in-core representations of UML struc-
tures extended with security properties and synchronously writes them to persis-
tent storage (an Oracle RDBMS) in order to improve searching capabilities and 
support a multi-designer working environment. 

• Security Constraint Checking Module enforces security constraints on UML 
elements and connections. If a constraint is violated, it pops up an error message 
and abandons the intended connection. Otherwise, the connection materializes in 
the GUI UML design tool and updates the database. 

 
Figure 6 shows a UML property dialog with a security page (enhanced with our own 
custom code) that displays the clearance (CLR) for the Senior Staff actor as set to 
“Secret” and lifetime. Figure 7 shows a Message Pane of the plug-in module listing 
elements that have been created and SQL statements submitted to the RDBMS by 
Java. Consider Figure 8 and assume that dSADS is enabled; an attempt to connect ac1: 
Staff to uc1: Add Survey Header, triggers the display of an error message as the ac1.sl 
= C < uc1.sl = S violates the MAC constraint. 
 

  
Fig. 5. Our Model Architecture. Fig. 6. Security of Senior Staff. 

 

 

 
 
 

Fig. 7. Message Pane of our Plug-in Module.  Fig. 8. MAC Constraint Error Message. 
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6 Related Work 

There have been other efforts on security for UML and other data models. First, in 
[11] and [21], UML is used to represent RBAC modeling and notation. Next, in [20], 
UML elements are used to model MAC and RBAC based systems. Both of these ef-
forts model security with UML, which contrasts to our approach to integrate RBAC, 
MAC, etc., directly into UML, allowing applications to be built with security. Third, 
UMLsec is an approach on formal analyses of multi-level security (secrecy and integ-
rity) of message flows in subsystems of UML (sequence/state diagrams) and extended 
elements [14]. Our work on MAC is similar to theirs, and their flow analysis is akin to 
our checking. Fourth, in [15], SecureUML has extended meta-model elements (e.g., 
User, Role, and Permission) and authorization constraints expressed to generate secu-
rity infrastructure for RBAC; this is similar to our constraints and checking of consis-
tency. Fifth, [1, 2] present a framework for incorporating security into use-cases, 
which is more limited than our work which includes use-case, class, and sequence 
diagrams. Sixth, in [22], a semantic data model for security is proposed, with con-
straints on security levels of data entities and relationships; this work is similar to our 
efforts on MAC and the constraint checking as connections are made in UML dia-
grams. For ER models, [18, 19] have proposed extensions to represent security con-
straints among entities, again, similar to our efforts on MAC and constraint checking. 
The major difference between [18, 19, 22] and our work is that their efforts have fo-
cused on multi-level security for attributes in the relational database paradigm whereas 
ours is from an object-oriented approach of security levels for method level (to control 
the behaviors of objects) with our inclusion of RBAC and lifetimes. 

7 Conclusions 

This paper has proposed a formal model for design states, actions for transforming 
design states, and constraints on MAC, RBAC, and lifetime for UML connections. 
Sections 2 and 3 presented a functional model to represent UML elements, UML 
connections, and application security requirements, checking MAC, RBAC, and life-
time security constraints as changes are made to UML designs. Section 4 introduced 
the concept of safety in this context, provided an example of the material of Sections 
3, and described the Security Assurance Design Support Program for design-time and 
post-design checking. Finally, Section 5 briefly reviewed the ongoing prototyping 
effort of this work into Borland's UML tool Together Control Center, while Section 6 
contrasted our work to related efforts in UML and semantic/ER data models. Our 
ongoing work is in a number of areas. First, as a design grows in size, it may be rele-
vant to consider security definition and constraint checking on “meaningful” sub-sets 
of the design. If the UML elements within a sub-set are closely related in terms of 
security constraints but loosely affect elements in other sub-sets, it may be possible to 
compartmentalize the security analysis. Second, we are exploring additions to our 
constraint taxonomy, such as the Mutual Inclusion, location and dynamic constraints. 
Third, there is a companion research effort that is exploring the use of aspect-oriented 
programming to generate security enforcement code from our extended UML. 
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