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Abstract. This article presents noticeable performances improvement of an 
RBF neural classifier. Based on the Mahalanobis distance, this new classifier 
increases relatively the recognition rate while decreasing remarkably the num-
ber of hidden layer neurons. We obtain thus a new very general RBF classifier, 
very simple, not requiring any adjustment parameter, and presenting an excel-
lent ratio performances/neurons number. A comparative study of its perform-
ances is presented and illustrated by examples on real databases. We present 
also the recognition improvements obtained by applying this new classifier on 
buried tag. 

1   Introduction 

The radial basic functions neural net (RBF) has become, for these last years, a serious 
alternative to the traditional Multi-Layer Perceptron network (MLP) in the multidi-
mensional approximation problems. RBF Network was employed since the Seventies 
under the name of potential functions and it is only later than [1] and [2] rediscovered 
this particular structure in the neuronal form. Since, this type of network profited 
from many theoretical studies such as [3], [4] and [5]. In pattern recognition, RBF 
network is very attractive because its locality property allows discriminating complex 
classes such as nonconvex ones. 

We consider in this article the Gaussian RBF classifier of which each m output sj is 
evaluated according to the following formula: 
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Where X=[x1… xn ]T∈RN is a prototype to be classified, Nh represents the total num-
ber of hidden neurons. Each one of these nonlinear neurons is characterized by a 
center Cl∈RN and a covariance matrix Σl. 

From a training set Strain={Xp, ωp}, p=1…N made up of prototypes couples Xp and 
its membership class ωp∈{1…,m}, the supervised training problem of RBF classifier 
amounts determining his structure, i.e. the number of hidden neurons Nh and the 
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different parameters intervening in the equation of outputs (1). Whereas these pa-
rameters can be calculated by different heuristics, the estimate of Nh is often delicate. 
For that, many methods were developed among which we can quote [6], [7] and [8]. 
These methods generally require a very significant load of calculation without how-
ever guaranteeing significant performances. Moreover, they often require a certain 
number of parameters that must be fixed a priori and optimized for a particular prob-
lem. So these methods cannot be applied systematically and without particular pre-
cautions to any type of classification problem. The article [9] proposed a very simple 
algorithm, which generates automatically a powerful RBF network without any opti-
mization nor introduction of parameters fixed a priori. Indeed, the algorithm auto-
matically selects the number of the hidden layer neurons. Although this network is 
characterized by its great simplicity, it presents a major limitation however owing to 
the fact that it requires a rather significant number of neurons in the hidden layer. 
This limitation makes it very heavy and requiring very significant training times for 
the very large databases. 

In this article we propose a solution to this problem by introducing the Mahalano-
bis distance. We thus obtain a new very general, very simple RBF network and pre-
senting an excellent performances/neurons number ratio. We present also the recogni-
tion improvements obtained by applying this new classifier on buried tag coding 
system. 

The organization of the article is as follows: In section 2, we describe the new RBF 
network and we present the associated algorithm. Its operation is illustrated for an 
example on an artificial database. In section 3, we study its properties and in section 4 
its performances on real problems. Finally, we present results obtained by application 
of this classifier on buried tag coding system. 

2   Algorithm 

In this section, we describe the principle of construction proposed as well as the algo-
rithm allowing its implementation. We illustrate then his operation in a problem of 
classification including two classes of which one is not convex. 

2.1   Principle 

The principle of the algorithm rests on [9]. According to the exponential nature of the 
functions ϕl(.) of each hidden neuron, the activation state of each one of them de-
crease quickly when the vector of entry X moves away from the neuron center. So 
only an area of the entry space centered in Cl will provide a significantly non-null 
activation state. Contrary to [9], our algorithm regards this area as a hyperellipsoide 
centered in Cl. Indeed, the use of the Mahalanobis distance makes it possible to take 
into account the statistical distribution of the prototypes around the centers Cl and 
thus a better representation of classes shape. Our algorithm proposes to divide a non-
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convex class into a set of hyperellipsoides called clusters. Each cluster corresponds to 
a hidden neuron and it is characterized thus by a center placing it in the entry space, a 
matrix of covariance indicating the privileged directions and a width calculating the 
extension of the hyperellipsoide. In the continuation, we will not make any more the 
distinction between a neuron and a cluster. 

2.2   Description 

Before describing the construction algorithm of the RBF classifier, we will introduce 
some notations used thereafter. At the kth iteration, we define C(k)

ij like the ith center 
(i=1… m(k)

j) characterizing the class Ωj. With each center a covariance matrix is asso-
ciated Σ(k)

ij and a width L(k)
ij. We note H(k)

ij the hyperellipsoide of center C(k)
ij such as: 
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Each class is characterized by the area R(k)
j defined as the union of all the hyperel-

lipsoides H(k)
ij (i=1… m(k)

j). 
We will also use the distance d(R(k)

j,X) between a point X∈Ωj  and its associated 
area R(k)

j. This one is defined as the Mahalanobis distance between X and the nearest 
center C(k)

ij of R(k)
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Step 0 (initialization): For k=0, we define m clusters whose centers correspond to 
the gravity centers of different classes Ωj (Nj is the element number of Ωj) : 

m(0)
j=1 and 

∑
Ω∈

==
jpX

p
j

j mjXNC K1,1)0(
1

 

( )( ) mjCXCXN jpX

T
jpjp

j
j K1,1

1 )0(
1

)0(
1

)0(
1 =−−−=∑ ∑

Ω∈  

(4) 

 
 
 
(5) 

Step 1 (adjustment of the widths): The width L(k)
ij relating to the center C(k)

ij is de-
fined like the half of Mahalanobis distance between this center and the nearest center 
of another class : 
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Step 2 (search for an orphan point): We seek a point Xi∈Strain not belonging to its 
associated area R(k)

ωi and most distant from this one: 
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If such a point does not exist, go to the step 5. 
Step 3 (creation of a new center): Point Xi found at step 2 becomes a new center 

composing the class Ωωi : 
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Step 4 (Reorganization of the centers): The K-means clustering algorithm is ap-
plied to the points of Strain pertaining to the class Ωωi in order to distribute as well as 
possible the m(k)

j  centers. Calculate the new covariance matrices: 
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Do k=k+1 and go to the step 1. 
Step 5 (determination of the weights): The weights matrix W* which minimizes an 

error function, here selected as the sum square errors of classification, and is given 
by: 

1* T TW H H H
−
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(10) 

where H and T are the matrices respectively gathering the activation function stats 
and the target outputs. These last are fixed at 1 when they correspond to the class of 
the point and 0 elsewhere. 

2.3   Discussion 

The initialization of the algorithm (step 0) could have proceeded by the random 
placement of a number of given centers. This technique is very current in the defini-
tion of an RBF network. The fact of choosing the initial centers as gravity centers of 
the points Xp makes it possible to avoid this unforeseeable character and provides 
moreover the number of these centers. Thus, the result of the algorithm depends only 
on the composition of the training data. In certain cases where the classes are non 
convex, it may be that the gravity center of a class is inside another class. This situa-
tion is not prejudicial for the algorithm since this center will be moved during follow-
ing iterations. The covariance matrix corresponding to each center is obtained from 
the associated training data. We will further see that other definitions of this matrix 
can give different results. In step 1, L(k)

ij is defined relatively to the minimal distance 
between the center C(k)

ij and centers of another class. This means that a partial cover-
ing between the clusters of the same class is authorized. From a practical point of 
view, that makes it possible to optimize the space occupation of the attributes by the 
various zones of receptivity and thus to reduce the number of clusters necessary to 
compose each class. The elliptic volume covered by each cluster is maximal without 
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encroaching on neighboring classes. In step 2, the fact of choosing the furthest point 
from the region R(k)

j makes it possible to improve the effectiveness of the algorithm of 
K-means clustering used at step 4. It should be noted that this one relates only to the 
centers constituting the same class since the other centers did not change a position. It 
guarantees moreover a fast development of this area. In the network training (step 5), 
the target outputs are fixed arbitrarily at 1 when they correspond to the class of the 
point and 0 elsewhere. The motivation of this practice is artificially to create a brutal 
fall of the membership degree at the geometrical border of the class. 

After k iterations, all the points of Strain belong to a cluster, the algorithm gener-
ated m+k clusters defining as many subclasses. The RBF network thus built com-
prises then Nh=m+k hidden neurons. We can note that the algorithm converges nec-
essarily. Indeed, in the "worst case" where none the classes is separable, there will be 
creation of a cluster for each point of Strain. 

  
 

Fig. 1. Algorithm initialization. Fig. 2. 1st iteration of the algorithm. 

2.4   Illustration of operation 

We will illustrate the significant phases of the algorithm on a classification problem 
of two concentric classes from the databases of "ELENA" project [10] [11]. This base 
makes it possible to determine the capacity of a classifier to separate two classes not 
overlapping but of which one is included in the second. 

The RBF network comprises 2 inputs and 2 outputs. The figure 1a shows the 2 
initial centers {C1,C2} obtained following step 0. We can see that the two centers are 
almost confused. Each cluster induced is delimited by an ellipse of the width 
calculated at step 1. Obviously, the cluster of center C2 is not sufficient to entirely 
represent the class Ω2. This one thus will be subdivided in several subclasses. With 
the first iteration of the algorithm, the point noted Xi on the figure 2 is the furthest 
from the center C2 and is out of the corresponding cluster. The addition of a new 
center compared to this point led, after application of the K-means, to the new distri-
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bution {C1,C2,C3} illustrated by the figure 2. The point Xj is now the furthest from the 
center C3 on this figure. After application of the K-means on this new configuration 
one leads to the figure 3. After 4 iterations, the 2 classes are discriminated perfectly 
and the neuronal classifier comprises a total of 5 neurons (see figure 4). After having 
determined the number of centers necessary and their positions, the weights of the 
network are calculated according to equation of step 5. The algorithm thus manages 
to separate the two classes with only 5 neurons against 108 neurons for the old algo-
rithm using the Euclidean distance and with a slightly higher rate of recognition: 98% 
against 97.7% for the old RBF. 

C1

C2
C3

C4

C5

C1

C2
C3

C4

C5

Fig. 3. 2nd  iteration of the algorithm. Fig. 4. Result of classification of the algo-
rithm. 

2.5   The choice of the covariance matrix 

One of the limits of this classifier is the estimate of the covariance matrix. The larger 
the size of the clusters is and the better is the estimate of this matrix. So the calcula-
tion of this matrix can sometimes reduce the rates of recognition. To cure this prob-
lem, other calculations of this matrix can be proposed to take into account more pro-
totypes during the estimate of this matrix. 
Table 1 gives examples of calculation, errors and the corresponding number of neu-
rons. One can see on this table that a different choice of the covariance matrix that 
proposed in section 2 can increase or decrease the rate error but the number of hidden 
neurons can only increase. But this number remains always largely lower than the 
number of neurons proposed by the old RBF. 

Table 1. Error rate of the base Textures according to the choice of the matrix of covariance  

Covariance Matrixa Error(%) Nh 

Σ=cov(C)             (a) 2,90 24 
Σ=cov(Ji)             (b) 1,94 3 
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Σ=cov(JCi)          (c) 1,73 858 

Σ=cov(J)             (d) 0,41 22 
a(a) covariance of the centers, (b) covariance of the data of each class (c) covariance of the data 

of each center (d) covariance of the total database. 

3   Benchmarks 

The object of this section is to evaluate the performances of the RBF classifier built 
by the algorithm presented in section 2. For that, we applied the classifier to various 
problems of classification comprising a variable number of attributes and classes and 
bearing from the real world situations. 

3.1   Pima Indians Diabetes Database  

This database is from the Machine Learning database repository at the University of 
California, Irvine [12]. In this problem there are two classes representing results of a 
diabetes test given to Pima Indians. There are 8 attributes, and 768 examples, ran-
domly partitioned into two disjoint subsets of equal size for training and testing. Ta-
ble 2 presents comparative results of different classifiers (backpropagtion networks, 
decision trees or support vector machines [13],…). For more details on methods of 
this table see [14]. 

 

Fig. 5. Pima Indians database (2 first attributes) 

We can see on this example, the RBF classifier gives the weakest error rate (with 
the Linear MSE classifier). The relatively high error rate (23%) and the number of 
hidden neurons (76 units) is due to the fact that this database comprises partially 
superimposed classes (see Figure 5). 
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Table 2. Pima Indians Database Results 

Method Error rate (%) 
Linear MSE (pseudoinverse) 23 
Oblique Decision Tree 8 decision nodes 24 
1-1 Nearest Neighbor  30 
2-3 Nearest Neighbor  25 
Full covariance gaussian mixture, 1 component/class 26 
Full covariance gaussian mixture, 2 component/class 29 
Full covariance gaussian mixture, 3 component/class 30 
Full covariance gaussian mixture, 4 component/class 31 
Backprop Multilayer Perceptron 2 hidden units 25 
Backprop Multilayer Perceptron 4 hidden units 24 
Backprop Multilayer Perceptron 8 hidden units 29 
Support Vector Machine, RBF kernel, width 1 (297 s.v.) 30 
Support Vector Machine, RBF kernel, width 3 (176 s.v.) 35 
Support Vector Machine, polynomial kernel, order 4 (138 s.v.) 36 
Support Vector Machine, polynomial kernel, order 5 (131 s.v.) 34 
MFGN 4 components  35 
MFGN 6 components  32 
MFGN 8 components  35 
Our RBF classifier (76 hidden units) 23 

3.2   ELENA Databases 

The benchmarks carried out here are studied in detail in ELENA project [10]. The 
three databases result from real problems. The "Phoneme" problem relates to the 
speech recognition. The principal difficulty of this problem is great dissymmetry in 
the number of authorities of each classes. The "Iris" data is very known in the pattern 
recognition. To finish, the data of the "Texture" file relates to the recognition of 11 
natural micro-textures such as grass, sand, paper or certain textiles. For each problem 
of classification, we have the results concerning the RBFM classifier generated by the 
algorithm proposed, the RBFE is the classical RBF classifier based on Euclidian 
distance and other classifiers studied in [11]. The table 3 presents results on these 
various problems. The performances of the RBF classifier are slightly lower than the 
other classifiers for the first problem. This is explained by the significant interlacing 
of the two classes. The algorithm generates a neuron number close to the point’s 
number of training data and the capacities of generalization on the test set are thus 
very bad. 

Table 3. Error rate (%) and hidden neuron number (Nh) on four different databases 

Method Phoneme Iris Texture 
KNN 12.90 3.50 2.20 
MLP 16.10 4.10 2.10 
LVQ 17.10 6.10 3.40 

RBFE (Euclidian) 
10.90 

Nh=227 
2.90 

Nh=24 
1.80 

Nh=858 
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RBFM (Mahalanobis) 
10.43 

Nh=59 
1.94 

Nh=3 
0.41 

Nh=22 
The error rate of our classifier RBFM is generally the weakest for each of the last 

three problems. This is checked whatever the number of classes to be distinguished 
and the quantity of available data for the training. 

We can see on this table the "compact" quality of our classifier who gives compa-
rable error rates or even lower while minimizing the hidden neurons number Nh. So, 
training times are much less significant. For the "Textures" database for example, the 
error rate is divided by 4, while the number of hidden neurons is divided by 39. It was 
necessary less than two minutes to training our classifier and more than one hour for a 
classical RBFE classifier. 

4   Application in buried tag identification 

The goal of our application is to detect and identify reliably different buried metallic 
codes with a smart eddy current sensor. Based on the principle of the induction bal-
ance, our detector measures the magnetic fields modifications emitted by a coil. 
These modifications are due to the presence of the metal codes buried on the top of 
the drains. A code is built from a succession of different metal pieces separated by 
empty spaces. Thus the identification of the codes allows the identification and the 
localization of the pipes (like water, gas,…) [15]. 

Several material improvements were carried out on our detector [16], but the iden-
tification of the codes always poses problems because of the similarity between the 
codes, the non-linearity of the answer according to the depth and the choice of a suit-
able coding of the signals [17]. To solve these problems, various methods of classifi-
cations were proposed. These methods are based on neural networks. Among all 
developed methods it is the classifier RBFE (Euclidean RBF) who gives the best 
results. But, these results remain insufficient for the great depths. It is for that we 
developed this new classifier to try to decrease rate errors and neurons number for a 
future integration of the classifier on programmable microchips. A comparison is 
made between these different methods and the new RBF classifier. For a burying 
depth up to 80 cm, we obtain the results given in the table 4. We can notice that the 
result of the new RBF classifier is better than the others, and always with less number 
of hidden neurons. 

Table 4. Results of code misclassification for the 5 pattern recognition methods implemented  

Classifiera RBFM RBFE SOM 

Error (%) 5.0 6.2 11.3 
Nh 68 135 80 

aRBFM=RBF based on Mahalanobis distance, RBFE= RBF based on Euclidian distance, SOM=Self Or-
ganization Map. 
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5   Conclusion 

We proposed a noticeable performances improvement of a neural classifier based an 
RBF network. The new classifier is very general and simple. It generates automati-
cally a powerful RBF network without any introduction of parameters fixed a priori. 
The number of hidden neurons is very optimized what will allow its use for the very 
large databases. Indeed, the new classifier obtains excellent recognition results for a 
variety of different databases and particularly the buried tag recognition. On this 
application we can also note a reduction in the error rate (relatively weak) but espe-
cially a very clear reduction in the number of hidden neurons (division by 2). This 
allows a notable saving of the training times necessary to the development of the 
system. 
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