
Architecture for an Autonomic Web Services
Environment

Wenhu Tian, Farhana Zulkernine, Jared Zebedee, Wendy Powley and Pat Martin
School of Computing,

Queen’s University, Kingston, ON Canada

Abstract. The growing complexity of Web service platforms and their
dynamically varying workloads make manually managing their performance a
tough and time consuming task. Autonomic computing systems, that is, systems
that are self-configuring and self-managing, have emerged as a promising
approach to dealing with this increasing complexity. In this paper we propose
an architecture of an autonomic Web service environment based on reflective
programming techniques, where components at a Web service hosting site tunes
themselves and collaborate to provide a self-managed and self-optimized
system.

1 Introduction

Web services are self-contained and self-describing software components that can be
accessed over the Internet. They are now well accepted in Enterprise Application
Integration (EAI) [19] and Business to Business Integration (B2Bi) [4]. Performance
plays a crucial role in promoting the acceptance and widespread usage of Web
services. Poor performance (e.g. long response time) means the loss of customers and
revenue [14]. In the presence of a Service Level Agreement (SLA), failing to meet
performance objectives could result in serious financial penalties for the service
providers. As a result, Web service performance is of utmost importance, and recently
has gained a considerable amount of attention [3, 15, 18].

A Web service is a Web-accessible program that is described in a WSDL (Web
Service Description Language) [17] document. Web services are published or
discovered via a UDDI (Universal Description, Discovery and Integration) [16]
registry. SOAP (Simple Object Access Protocol) [13] is the most common message
passing protocol used to communicate with Web services.

A Web service hosting site typically consists of many individual components such
as HTTP servers, application servers, Web service applications, and supporting
software such as database management systems. If any component is not properly
configured or tuned, the overall performance of the Web service suffers. For example,
if the application server is not configured with enough working threads, the system
can perform poorly when the workload surges. Typically components such as HTTP
servers, application servers or database servers are manually configured, and
manually tuned. To dynamically adjust in an ever-changing environment, these tasks
must be automated.

Tian W., Zulkernine F., Zebedee J., Powley W. and Martin P. (2005).
Architecture for an Autonomic Web Services Environment.
In Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Systems, pages 54-66
DOI: 10.5220/0002561400540066
Copyright c© SciTePress

Unacceptable Web service performance results from both networking and server-
side issues [10]. Most often the cause is congested applications and data servers at the
service provider’s site as these servers are poorly configured and tuned. Expert
administrators, knowledgeable in areas such as workload identification, system
modeling, capacity planning, and system tuning, are required to ensure high
performance in a Web service environment. However, these administrators face
increasingly more difficult challenges brought by the growing functionalities and
complexities of Web service systems, which stems from several sources:

• Increased emphasis on Quality of Services

Web services are beginning to provide Quality of Service features. They must
guarantee their service level in order that the overall business process goals can be
successfully achieved.

• Advances in functionality, connectivity, availability and heterogeneity

Advanced functions such as logging, security, compression, caching, and so on are
an integral part of Web service systems. Efficient management and use of these
functionalities require a high level of expertise. Additionally, Web services are
incorporating many existing heterogeneous applications such as JavaBeans,
database systems, CORBA-based applications, or Message Queuing software,
which further complicate performance tuning.

• Workload diversity and variability

Dynamic business environments that incorporate Web services bring a broad
diversity of workloads in terms of type and intensity. Web service systems must be
capable of handling the varying workloads.

• Multi-tier architecture

A typical Web service architecture is multi-tiered. Each tier is a sub-system, which
requires different tuning expertise. The dependencies among these tiers are also
factors to consider when tuning individual sub-systems.

• Service dependency

A Web service that integrates with external services becomes dependent upon
them. Poor performance of an external service can have a negative impact on the
Web service.

Autonomic Computing [7] has emerged as a solution for dealing with the
increasing complexity of managing and tuning computing environments. Computing
systems that feature the following four characteristics are referred to as Autonomic
Systems:

• Self-configuring - Define themselves on-the fly to adapt to a dynamically
changing environment.

• Self-healing - Identify and fix the failed components without introducing apparent
disruption.

55

• Self-optimizing - Achieve optimal performance by self-monitoring and self-tuning
resources.

• Self-protecting - Protect themselves from attacks by managing user access,
detecting intrusions and providing recovery capabilities.

In this paper we propose an architecture for an autonomic Web services
environment. We consider each component in the proposed architecture as self-
managing and thereby present a hierarchical layout of autonomic managers that
constitute a self-configuring and self-optimizing autonomic Web service system. The
remainder of the paper is structured as follows. Section 2 discusses related approaches
to Web service management. Our proposed autonomic architecture is presented in
Section 3, and a detailed scenario to illustrate how the architecture works is provided
in Section 4. Section 5 summarizes and concludes the paper.

2 Related Work

Architectural approaches based on SLA-driven Web services have been proposed by
Dan et al. [5] and Levy et al. [9]. Dan’s framework includes components for the
support of an SLA throughout its entire life-cycle as well as SLA-driven management
of services. Levy et al uses a queuing model to predict response times for different
resource allocations. In their model, the management system is transparent and
allocates server resources dynamically to maximize the expected value of a given
cluster utility function. Both of these approaches focus on service provisioning. We
focus on autonomic management rather than the provisioning aspects.

Farrell and Kreger [6] propose a number of principles for the management of Web
services including the separation of the management interface from the business
interface, pushing core metric collection down to the Web services infrastructure.
They use intermediate Web services that act as event collectors and managers. We
incorporate these ideas and expand upon them in our approach.

The insufficient reliability and lack of autonomic features in current Web services
architectures is presented by Birman et al in [2]. He proposes some extensions to the
current Web services framework in the form of more robust monitoring and reliable
messaging to achieve higher availability.

3 Autonomic Web Services Architecture
A Web services environment typically consists of a collection of components
including HTTP servers, application servers, database servers, and Web service
applications. In our proposed architecture, as shown in Figure 1, we consider each
component to be autonomic, that is, self-aware and capable of self-configuration to
maintain a specified level of performance. System-wide management of the Web
services environment is facilitated by a hierarchy of Autonomic Managers that query
other managers at the lower level to acquire current and past performance statistics,
consolidate the data from various sources, and use pre-defined policies and SLAs to
assist in system-wide tuning.

56

SLA
Neg otiation

 Site DSite CSite B Site E Site A

 Application Application

Fig. 1. Autonomic Web Services Architecture

At the lowest level in our architectural
refer to an autonomic element as a c

hierarchy are the Autonomic Elements. We
omponent augmented with self-managing

capabilities. An autonomic element is capable of monitoring the performance of its
component, or managed element, (such as a DBMS or an HTTP server), analyzing its
performance and, if required, proposing and implementing a plan for reconfiguration
of the managed element. Autonomic elements form the building blocks of our
architecture and are described in more detail in Section 3.1.

We refer to a Site as a collection of components and resources necessary for
hosting a Web service system provided by an organization. A Web services hosting
site typically consists of HTTP servers, application servers, SOAP Engines, and Web
services. Web services are basically Web accessible interfaces or applications that
can connect to other backend applications such as legacy systems, or database
management systems. Most often these backend components are located on separate
servers that are connected by a Local Area Network (LAN). A site can therefore span
multiple servers. A site manager oversees the overall performance of the site and
provides service provisioning for the components associated with the site.

An Application, as shown in Figure 1, is a special purpose client program that uses
one or more Web services, possibly from different sites. An investor application, for
ex

a Local Area Network (LAN). A site can therefore span
multiple servers. A site manager oversees the overall performance of the site and
provides service provisioning for the components associated with the site.

An Application, as shown in Figure 1, is a special purpose client program that uses
one or more Web services, possibly from different sites. An investor application, for
example, that allows users to look up stock prices may use Web services from several
different companies. A site’s SLA Negotiator negotiates SLA agreements between
the applications and the Web services hosted by the site. Once SLA agreements are
made, the site must manage its resources to ensure the agreed level of performance.

There are two levels of management in our approach; the component level and the
site level. The component is responsible for managing its own performance to meet
go

ample, that allows users to look up stock prices may use Web services from several
different companies. A site’s SLA Negotiator negotiates SLA agreements between
the applications and the Web services hosted by the site. Once SLA agreements are
made, the site must manage its resources to ensure the agreed level of performance.

There are two levels of management in our approach; the component level and the
site level. The component is responsible for managing its own performance to meet
goals specified by the site manager. The site manager monitors for SLA compliance,
sets component goals, and provides resource provisioning when necessary.

als specified by the site manager. The site manager monitors for SLA compliance,
sets component goals, and provides resource provisioning when necessary.

57

3.1 Autonomic Elements

An autonomic element can be viewed as a feedback control loop as shown in Figure 2
[8], controlled by an Autonomic Manager. The autonomic manager oversees the

t (the Managed Element), and by analyzing the collected
statistics in light of known policies and goals, it determines whether or not the
monitoring of the componen

component performance is adequate. If necessary, a plan for reconfiguration is
generated and executed.

Managed element

Monitor

Analyze Plan

Execute
Knowledge

Autonomic manager

Management Interface

Fig. 2. Autonomic Element

One approach to building autonomic elements is based on the principles of
reflective programming [11]. A reflective system is one that can inspect an apt its

onse to changing conditions. Typically a reflective system
maintains a model of self-representation, and changes to the self-representation are
au

 performance. This information is
sto

ements. Each component has an autonomic manager as
shown in Figure 2, augmented with a reflective Management Interface. This interface

d ad
internal behaviour in resp

tomatically reflected in the underlying system.
An example of an autonomic database management system (DBMS) based on

reflective programming techniques, was presented by Martin et al [12]. In this system,
the self-representation of the system embodies the current configuration settings and
the statistics that are collected regarding the system

red as a set of database relations that can be queried and updated. A monitoring
tool periodically takes snapshots of the DBMS performance and stores the collected
data in a data warehouse. When a new set of performance data is inserted into the
data warehouse, a database trigger is fired that calls a diagnosis function. The
diagnosis function compares current and past performance data to determine whether
or not a change in configuration is warranted based on a preset desired performance
setting. If one or more configuration parameters should be altered, a change is made
to the self-representation which in turn triggers a change to the underlying DBMS
configuration parameters.

We use this notion of reflection to implement Web components as autonomic
elements. In our architecture, all components such as the HTTP server, the application
server, the Web services and supporting applications as well as the site manager are
instances of autonomic el

58

is

his data can be accessed using the methods provided by the
ma

sentation is accessed via Web service operations for each element. Two
ma

F

used by higher level managers to set performance goals as per Service Level
Agreements (SLAs) for the managed element and to obtain current performance
statistics for the component. As in the example of the autonomic DBMS, a monitoring
tool periodically monitors the system performance and the analyzer compares the
current and past performance to determine whether a configuration change is
necessary to achieve the desired goal. Following the principles of reflective systems,
each autonomic element maintains a self-representation which embodies the
component’s current goal settings and its current performance statistics. Updates
made to the self-representation trigger changes to the actual system. If deemed
necessary by the analyzer, changes are made to the self-representation to reconfigure
the component.

In our proposed architecture, to ensure interoperability between autonomic
elements, a common management interface is specified for all elements to provide
access to the self-representation. Each autonomic element monitors itself to assess its
general health and the performance data is stored as part of the component’s self-
representation. T

nagement interface. Historical data may be used for performance analysis and
prediction.

The standard Web services environment already provides the tools required to
define, publish, discover, and to use APIs across platforms. These tools and methods
are exploited in our proposed architecture for communication between elements. To
implement the reflective interface, we view each component as a Web service where
the self-repre

nagement interfaces are defined for each autonomic element; the Performance
Interface and the Goal Interface. The Performance Interface exposes methods to
retrieve, query and update performance data. Each element exposes the same set of
methods, but the actual data each provides varies. Meta-data methods allow the
discovery of the type of data that is stored for each element

59

public interface Goal{
 // retrieves a list of goals that can be set for the component

public Vector getMetaData();
 // retrieves the current goal for the component

oal (String goalType);

ent

 retrieves the most recent performance data
public Vector getCurrentData();

of the most recent performance

 public Double getG
 // set a goal for the component

public Boolean setGoal(String goalType, Double
value)
}

public interface Performance{
 // retrieves a list of goals that can be set for the compon
 public Vector getMetaData();

//

 // returns a specified portion
i 3. Mag. nagement Interface Specifications

The Goal Interface provides methods to query and establish the goals for an
aut nomic element. Meta-data methods promote the discovery of associated goals
an

o asses the current health of
ea

registry as suggested by Farrell and Kreger [6]. The self-
rep

 Monitoring incurs a certain degree of overhead, so
mo

iety of
mo

3.2 Site Management

f Web service components and resources provided by an
organization that offers one or more Web services. The components comprising a site

o
d additional methods allow the retrieval of current goals. Goals for individual

components can be set only by their associated site manager. Goals for a site
manager are set by the site's SLA Negotiator component.

Component-level performance interfaces are accessed only by their associated site
manager. A site manager uses the performance interface t

ch of its components and uses the component’s goal interface to set individual goals
for each component.

Management interfaces are defined and published using WSDL and a private
management UDDI

resentation can be stored using any storage format (database, log files etc) as these
details are made transparent by the use of a Web service interface. Figure 3 shows
the interface specification of the management interfaces common to all autonomic
elements. The WSDL specification for the setGoal() method is given in the
Appendix as an example.

Each autonomic element implements a monitoring component to asses the health
of its managed element.

nitoring processes must be lightweight and invoked as infrequently as possible.
Multiple levels of monitoring allow more information to be collected depending on
the amount of detail that is desired. In some cases, it may be desirable to drill down,
collecting more detailed information to assist in problem determination. At times of
stable, acceptable performance, it may suffice to collect data less frequently.

Current HTTP servers and application servers provide rich interfaces for
monitoring tools to extract performance statistics and running status. A var

nitor tools are available on the market to visualize and analyze collected statistics,
and if necessary, to fire warnings when the pre-set thresholds are violated [20, 1].
DBMSs are rich in monitoring tools and APIs for gathering information. Monitors
can be switched on or off at will, and different levels of monitoring can be specified.
Monitoring individual Web services presents more of a challenge as each Web service
application is unique. Generic monitors can be developed that provide basic
information such as response time for the Web service, number of requests per time
unit, or average queue length.

A site is a collection o

are shown in Figure 4. A site may be distributed across many physical nodes.
Multiple instances of a component may reside on the same site and resources are
provisioned as required.

60

Query/Signal

HTTP Server

 Application
 Server SOAP Engine

WS1

 DB Legacy

XML

Objects

JDBC Wrapper SOAP

 HTTP Server
Goal

Interface
Performance

Interface

Application Server
Goal

Interface
Performance

Interface

Set

WS2 WS3
Web service

Goal
Interface

Performance
Interface

DB Server
Goal

Interface
Performance

Interface

Ext.WS

SLA Negotiator

Site Manager

Site Manager

Goal
Interface

Performance
Interface

Fig. 4. Autonomic Web Services Site

Applications that wish to use the Web services offered by a site negotiate a SLA
with the site’s SLA Negotiator. Details of an automated approach to SLA negotiation
is presented by Dan et al in [5], and is beyond the scope of this paper. We assume
that different SLAs can be specified for each Web service or, if a finer level of
granularity is required, SLAs can be set on a per-operation level. The site’s SLA
Negotiator translates these high level specifications into performance goals such as
response time or average throughput for each Web service or operation. The SLA
Negotiator component sets the goals for the site using the site’s management
interface.

Each site employs a Site Manager that oversees the general performance of the
components comprising the site. The site manager itself is implemented as an
autonomic element with its own autonomic manager. Conceptually, the site manager
is the autonomic manager of all the components within the scope of the site. The site
manager collects the performance statistics of each component by querying the
management interfaces of the individual components. This information, along with
the policies and goals defined for the site, is used to determine whether or not the
performance of the site is adequate. If the site is in violation of one or more of the
SLA agreements, an action plan is generated and executed. An action plan may
involve the generation and setting of new goals for particular components, or it may
involve a modification in the provisioning of resources.

The site manager is implemented as a Web service that exposes the site’s
performance interface that can be accessed by other site managers or external
components. This interface can be used by applications for error tracking, Web
service selection, or by modules handling external SLA compliance monitoring. The

61

performance data for a site provides summary data indicating the overall performance
of the associated components.

The site manager is responsible for monitoring the overall performance of the Web
services offered by the site. The site manager retrieves the performance data via the
components’ performance interfaces. The information required by the component for
self-management may differ from that required for overall system management by
managers at the site level. For instance, a DBMS focuses on low level resources such
as I/O and CPU usage to maximize performance. To optimize site performance, and
to monitor SLA compliance, the site manger requires higher level statistics such as
throughput or transaction response times. This information is available through the
components management interface.

4 Scenario

Functionality of the different components presented in the architecture of autonomic
Web services system can be better explained using a common example like the Stock
Quote composite Web service system shown in Fig. 5. In this system, a customer
uses an Investor application to find out the details about multiple stocks. The Investor
application invokes a Stock Broker (SB) Web service by sending a register message
containing a list of stock IDs. The Stock Broker sends accept or reject message to the
Investor in response. In case of accept, the Stock Broker sends the stock IDs received
from the customer, one by one to the Research Department (RD) Web service. The
RD finds the necessary information and sends a report directly to the Investor
application. When the Investor receives information about all the stocks, it sends an
acknowledgement message to the Stock Broker service. The Stock Broker service
then submits the bill to the Investor and notifies the Research Department about the
end of the job. The messages interchanged in this system are presented in Figure 5.

register, ack, cancel
Investor Stock Broker

(SB) (Application)

Fig. 5. Stock Broker Web Service System

The Stock Broker and Research Department Web services are located at two
different sites. Each of these sites is managed by a site manager. The site manager
receives the SLA from the SLA negotiator and monitors the performance of the

(Web service)
accept, reject, bill

request, terminate

Research Department
(RD)

(Web service)

report

62

different components at the site to provide an overall performance in compliance with
the SLA. For the Stock Broker service system, the site manager monitors the
performances of the HTTP server, application server, and other components at the site
including the Stock Broker service.

If the SLA between the Investor and the Stock Broker site is in violation, the Stock
Broker’s site manager retrieves the performance data of all the individual components
associated with this site, analyzes them, and sets new goals for the necessary
components in order to avoid violation of the SLA. For example, if the maximum
response time specified in the SLA is five seconds, and the observed response time is
close to, or beyond this threshold, the site manager tries to set new goals for specific
components to reduce the response time to five seconds or less. If the perceived
bottleneck is the HTTP server, the site manager uses the HTTP server’s goal interface
to set a new goal for this component.

Each component in the autonomic Web service system is associated with its own
autonomic manager. When new performance goals are set, the specific components
attempt to reconfigure themselves using their own autonomic managers. In our
example, the HTTP server’s autonomic manager may increase the number of threads
to improve its response time.

At the highest level, the client Investor application sets the SLA for the Stock
Broker service through the SLA negotiator before invoking the service. The SLA
negotiator conveys the same to the Stock Broker’s site manager and also to the linked
services, in this case the Research Department. When all the linked services agree to
the SLA, the Investor application can invoke the Stock Broker service. Both the
application and the site manager monitor the service performance to ensure SLA
compliance. For linked services, the site manager of the calling service does the
monitoring while the SLA negotiator plays the role of the application in doing the
SLA negotiation with the linked services.

5 Summary

Performance plays a crucial role in the eventual acceptance and widespread adoption
of the Web services model of application deployment. Web service performance,
however, is difficult to manage because of the complexity of the components and
their interactions, and the variability in demand and the environment. In this paper,
we propose autonomic computing as a solution to the problems in managing Web
service performance. We describe an architecture for an autonomic Web services
environment where each component is fully autonomic and equipped to cooperate in a
managed environment. Each component provides a management interface that
exposes a self-representation consisting of performance statistics and goal
information. Our architecture uses standard Web service tools and protocols; interface
definitions specified using WSDL and communication using SOAP over HTTP. Site
level managers oversee the overall performance of the components and ensure SLA
compliance.

We see that progress must be made in several areas before an autonomic Web
services architecture, such as the one described in this paper, can be deployed. First,
Web service components are currently not, for the most part, autonomic. In fact, in

63

many cases, components require a complete shut-down and restart before
configuration changes take effect, thus causing an interruption of service. Dynamic
reconfiguration support is necessary for components to fit into an autonomic
environment. As part of our research we are modifying open source Web based
components, such as the Apache HTTP server, to enable dynamic configuration.
Second, autonomic systems will require extensive monitoring, analysis and diagnosis.
Most Web components currently provide sophisticated support to accomplish these
tasks, however, ensuring that these processes do not burden the system with excessive
overhead costs will be a challenge. Third, an architecture like the one proposed here
relies on the specification of SLAs, goals and policies to determine acceptable
performance. Users require a specification language in which these high level SLAs
and policies can be expressed and SLAs must be translated into observable measures
to be used as goals for each component. We plan to use the WSLA language [5] as the
starting point and investigate how goals for individual components can be specified
and derived from Web service SLAs.

References

1. Apache Server Monitor,
 http://demo.freshwater.com/SiteScope/docs/ApacheServerMon.htm.
2. Birman, K., van Renesse, R., and Vogels, W.: Adding High Availability and Autonomic

Behavior to Web Services, 26th International Conference on Software Engineering
(ICSE'04), May 2004, Edinburgh, Scotland, United Kingdom.

3. Chiu, K., Web Services Performance: A Survey of Issues and Solutions, 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI 2003), Orlando, USA,
July, (2003).

4. Fletcher, P., Waterhouse, M. (Eds).: Web Services Business Strategies and Architectures,
Expert Press, (2002).

5. Dan, A., Davis, D., Kearney, R., Keller, A., King, R ., Kuebler, D., Ludwig, H., Polan, M.,
Spreitzer, M. and Youssef, A.: Web Services on Demand: WSLA-driven automated
management. IBM Systems Journal, 43(1), (2004) 136 – 158.

6. J. A. Farrell, H. Kreger, Web Services Management Approaches. IBM Systems Journal,
41(2), (2002).

7. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era, IBM System
Journal, V(42), N(1), (2003).

8. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer, 36(1),
(2003), 41-50.

9. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A.N., Youssef, A.:
Performance Management for Cluster Based Web Services, IFIP/IEEE 8th International
Symposium on Integrated Network Management (IM 2003), (2003), 247-261.

10. Loosley, C., Gimarc, R.L., Spellmann, A.C.: E-Commerce Response Time: a Reference
Model, Keynote Systems Inc., (2000).

11. Maes, P., Computational Reflection, The Knowledge Engineering Review, pp. 1-19,
(1988).

12. Martin, P., Powley, W., Benoit, D.. Using Reflection to Introduce Self-Tuning Technology
into DBMSs. Proceedings of IDEAS’04, Coimbra, Portugal, July 2004.

13. SOAP Version 1.2 Part 1: Messaging Framework, June 2004,
http://www.w3.org/TR/soap12-part1/.

64

http://demo.freshwater.com/SiteScope/docs/ApacheServerMon.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/2163toc.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/2163toc.htm
http://www.w3.org/TR/soap12-part1/

14. The Impact of Web Performance on E-Retail Success, Akamai Technologies, Feb. 1,
(2004),
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepa
per.pdf.

15. Tian, M., Voigt, T., Naumowicz, T., Ritter, H., and Schiller, J.: Performance Impact of
Web Services on Internet Servers, International Conference on Parallel and Distributed
Computing and Systems (PDCS 2003), Marina Del Rey, USA, (Nov. 2003).

16. UDDI Version 3.0.1, UDDI Spec Technical Committee Specification, (Oct. 2003),
http://uddi.org/pubs/uddi_v3.htm.

17. Web Services Description Language (WSDL) 1.1, (Mar. 2001),
http://www.w3.org/TR/wsdl.

18. Weikum, G.: Self-tuning E-services: from Wishful Thinking to Viable Engineering, High
Performance Transaction Systems Workshop Submissions, (Oct. 2001).

19. Wong, S.: Web services: The Next Evolution of Application Integration,
http://www.eaiindustry.org/docs/WebServicesTheNextEvolutionofApplicationIntegration.
pdf.

20. WebSphere Application Server Monitor,
http://demo.freshwater.com/SiteScope/docs/WebSphereMon.htm.

Appendix: WSDL Sample

The following shows the WSDL generated for the setGoal routine which is part of the
Performance management interface.
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://DefaultNamespace"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://DefaultNamespace"
xmlns:intf="http://DefaultNamespace"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:message name="setGoalResponse">
 <wsdl:part name="setGoalReturn"
type="xsd:boolean"/>
 </wsdl:message>
 <wsdl:message name="setGoalRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 <wsdl:part name="in1" type="xsd:double"/>
 </wsdl:message>
 <wsdl:portType name="Config">
 <wsdl:operation name="setGoal" parameterOrder="in0
in1">
 <wsdl:input message="impl:setGoalRequest"
name="setGoalRequest"/>

65

http://itresearch.forbes.com/detail/ORG/971829109_782.html
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepaper.pdf
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai_eRetail_Success_Whitepaper.pdf
http://www.iasted.com/conferences/2003/marina/pdcs.htm
http://www.marinadelrey.com/
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/wsdl
http://demo.freshwater.com/SiteScope/docs/WebSphereMon.htm

 <wsdl:output message="impl:setGoalResponse"
name="setGoalResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="ConfigSoapBinding"
type="impl:Config">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="setGoal">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setGoalRequest">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="setGoalResponse">
 <wsdlsoap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ConfigService">
 <wsdl:port binding="impl:ConfigSoapBinding"
name="Config">
 <wsdlsoap:address
location="http://webs2/axis/services/Config"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

66

