A Platform for Universal Access to Applications

Nuno Valero Ribeird and Joé Manuel Bazio®

1 Escola Superior de Tecnologia de @al, Instituto Poliécnico de Séthal, 2910-761 Sébal,
Portugal

2 Instituto de Telecomuniéees, IST, 1049-001 Lisboa, Portugal

Abstract. This paper gives an insight on the services that are necessary for a
system capable of supporting one practical application of the concept of Ubig-
uitous Computing. The applied scenario is an academic campus and it is pre-
tended that students may access typical computer applications ubiquitously, i. e.,
anywhere and using any computer. We callitiversal Access to Applications.

In this scenario, each user may access and use an arbitrary, and heterogeneous,
set of applications on any computer and anywhere in the campus. A survey on
technologic solutions for enabling the access to non-native applications is firstly
summarized. Then we proceed with the design of such distributed system using
MoNet methodology. Four steps are covered together with their main contribu-
tions: requirements capturing, design of a Logical Model, elaboration of a Func-
tional Model, and finally, setting of a Reference Model for implementation. The
proof-of-concept platform, developed on basis of the designed system, proved the
concept. Finally, conclusions about the work done and the concept future appli-
cations are considered.

1 Introduction

In the last decades we have been witnessing a tremendous evolution in the computer
hardware and software industry. Today we use a variety of personal computational de-
vices, ranging from desktop to mobile PC’s and PDAs. Although the computational
autonomy, and hardware diversity, provided for the user has increased, still, one can
notarbitrarily use any of these devices for one’s computational needs: the desired user
applications and environmental settings may not be found in one particular device the
user may actually be using in one particular circumstance.

We considered this problem in the campus of an academic institution. We want to
enable the access to the execution of arbitrary computer applications to users. Inde-
pendently of the computational device they may use in a particular moment. Without
requiring additional effort to the user. The computer applications are made available
from a distributed environment by a number of application servers.

For this purpose the first technical problem to be solved stems from the heterogene-
ity of computational platforms vs. nature of computer applications that may be found
on an academic campus. Namely, the problem is: how to give access to the execution
of applications that were compiled for other platforms. Another problem is the defin-
ition of a distributed system for the support of interaction between application clients

Valero Ribeiro N. and Manuel Brazio J. (2005).

A Platform for Universal Access to Applications.

In Proceedings of the 2nd International Workshop on Ubiquitous Computing, pages 60-66
DOI: 10.5220/0002561100600066

Copyright © SciTePress

61

and users. This results in a typical Distributed System riodeproblem and involves
the support and integration of aspects such as: data distriband transparent access,
security aspects, fault tolerance, and name and locatioragement. These problems
are well identified and studied in proper literature [1]. &tlssues arise due to the pos-
sible use ofmobile client platforms. They concern communication problemssas,
network location management or data synchronization, and been subject of study
in the area of Mobile Computing [2][3].

In this paper a distributed system for an academic campusoament will be stud-
ied. In section 2 the issue of non-native application exeaus examined, for which a
number of technological alternatives are listed and brigflyessed. In section 3 the ar-
chitectural design of the system is presented, togethéranlitrief description of MoNet
design methodology, followed by the results of its desigpst Section 4 shortly de-
scribes the developed proof-of-concept platform and sybes# lessons learned. Fi-
nally, section 5 enumerates major conclusions.

2 Using non-native applications

A survey made on the technological solutions for the exeoutif non-native applica-
tions shows that these solutions fit in four different maiprapches (more details in
chapter 3 of [4]):

1. Exporting the application user interface—which assumes running the application
on its native platform and redirecting its user interfacéh® client, eithedirectly
using built-in windows systems mechanismsiralirectly using proxy entities;

2. Running platform independent applications—developing applications in program-
ming languages that generate platform-independent code;

3. Platform emulation—running non-native applications on a emulator of the native
platform;

4. Process migration—migrating processes via specific operating system meamnanis
allowing application processes to move and run on othefgtas.

Direct mechanisms for exporting the application user interfateriantly restrict
themselves to a family of operating systems (and sometiroeswen the entire fam-
ily). In order to support different families of operatingssgmsndirect exporting mech-
anisms ought to be adopted. Java programming language éasidely accepted for
the development of platform-independent code. Of counseymfortunately, Java does
not easily integrate software that is already compiled fibleo platforms. Emulation
technology lacks the efficiency and performance of the abtivunning application.
Plus, most of times, it is not technically possible to enriatery feature of the native
platform. Migration of application processes, betweefed#nt operating system fami-
lies, is out of the question since it raises extremely compleblems due to operating
systems software complexity and architectural difference

This leaded us to elect the indirect way of exporting the igpfibn user interface
to the client device as the most suitable technique for usal@ccess to heterogeneous
computer applications.

62

3 Designing the system

For the design phase of the distributed system we adoptedattoRthodology [5], that
comprises four main steps: (1) identification of requiretaeand services; (2) design
of a Logical Model, which identifies the system main functiondules; (3) construc-
tion of a Functional Model, defining its Functional Entitigiseir relationships and in-
formation flow; and, (4) elaboration of a Reference Modeljothtakes into account
implementation aspects.

In the following subsections we summarize the system desigim results (from
hereon also referred as SDUA, standing $gstem for Universal Disponibilization of
Applications).

3.1 Requirements and services
Briefly, we have identified the following requirements fock&ind of user:

1. end user:

(a) universal application access — ability to access agfitins independently of
its physical location and terminal computer;

(b) access to the execution of heterogeneous applicatioabitity to use applica-
tions, which may be different in their nature and charastes, independently
of the device being used;

(c) support for access to a private data storage system -itydbihccess a private
file system, available for any device that may be used;

(d) session control — ability to start and terminate a sessibenever the user
wishes;

2. manager: capability to manage the system, creating users, settieiy profiles,
adding/removing applications, monitoring operation,jfyérg correct component
work, and auditing behavior to detect and trace wrong prosior security at-
tacks;

On the basis of the requirements, four SDUA main service® wihantified, as il-
lustrated in figure 1:

1. Universal Access to Applications
2. Access to Private Data

3. SDUA Management

4. Computational Services Registry

3.2 Logical Model

The Logical Model is the collection of the business logic mled identified for each
one of the main services. Each of these services is suppoytadet of functions, that
are initially identified and further refined, in an iteratis@p-down approach, until the
elementary functions are met. Then, these are grouped iicdldgntities, when related
to each other by one determined functional criteria. If hies Logical Entity is found

63

Universal
Access to
Applications

Access to
Private
Data

SDUA

SDUA Corggruvt;zcsmal
M.
langement Registry

Fig. 1. SDUA main services

in more than one Logical Model (there is one Logical Modeldach main service), it
is “promoted” generating one hierarchically superior laagiEntity.

As an example, figure 2 illustrates the two refinement stdgntéor achieving the
Logical Model of theUniversal Access to Applications service. Its Logical Entities are
fully described, enumerating its functions, textual dggion of interfaces and behav-
ior, in [4].

3.3 Functional Model

The Functional Model decomposes, further on, the systeorHnhctional Entities and
their relationships. It is derived from the Logical Model taking distribution aspects
into account like physical machine allocation of functions

Four different physical tiers were identified:

1. theclient: any computational device used for accessing the execofiapplica-
tions;

2. theapplication server: set of computers that offer the possibility of hosting the
applications execution;

3. theSDUA server: set of computers where the SDUA's main services are akagat

4. theData server: set of computers, and their respective operating file systéor
archiving user data.

Logical Entities may now be divided in disjoint sets of fuoas according to the
physical tier that hosts them. Each of these sets of funetiepresent a Functional
Entity. Additional Information Flow diagrams specify thetéraction between these
Functional EntitiesY).

3.4 Reference Model

The Reference Model defines groups of Functional Entifiesdtional Groups) taking
into account criteria related to implementation aspedt®s€ criteria are elected con-

3 Complete descriptions and diagrams may be found in [4]

64

Universal
Acccess to
Applications

15t iteration

’

Universal
Access to Applications

1. Session
Control

2. Application 4. Request
Search Engine Engine

12. Resource
9 Data Manager
Manager

11. Transmission
Channels
Manager

10. Data Transfer

4. Request
Engine

T 19. Remote
20. Application Visualization
Bridge Engine

Universal
Access to Applications

2. Application
Search Engine

14. Query 13. Database
Generator

6. Session

1. Session

Control
5. User
Authentication
Recorder
7. Initialize/Finalize 8. Recorder
Session GUI

Fig. 2. Refinement example of Universal Access to Applications Logical Mode

W

2nd jteration

sidering the goal of the analysis that may be done after irrge¢he Reference Model.
It may take into account either technological or economasalects.

Two technological criteria were considered. One takesactmunt the distribution
of Functional Entities among tiers (already identified i8, iamely:client, application
server, SDUA server, andData server). The other one concerns the logical distribu-
tion of these Functional Entities. This logical distrilmrtiadopted an architectural per-
spective of the Internet proposed by Miroslav Benda in [6{livides the system into
five logical parts: user interface, data, business logitively system, and middleware
(which “glues” all previous four).

From the analysis of the obtained Reference Model, aftelyaypthe two techno-
logical criteria previously exposed, we may state that:

1. the largest number of Functional Entities are hoste80OWA's server Functional
Group;
2. the most representative logic part is thieldleware.

We may now state that:

1. the hardware and software platform chosen for hosDGA's server Functional
Entities is fundamental for the overall system performance

2. a careful choice of the adopted middleware is essentialid@elopment and de-
ployment of the system since it strongly affects the funttig of the whole.

4 Proof-of-concept platform

A proof-of-concept platform, based on SDUA, was developmddsting the concept
of Universal Access to Applications on an academic campuBds platform offers

65

its users, on either Windows or Linux based client platfgrthe use of a Microsoft
application or a X windows based application hosted on appitins servers.

The implementation of this proof-of-concept platform riggd the development of
some key modules, from those already identified for the dlsjgtem, namely:

Initialise/Finalise Session, for being able to start and @ession;

End User Interface, for being able to interact with the syste

Request Engine for handling requests, Remote Visualiz&ingine for accessing
applications running on their servers;

System'’s Database, for archiving information about users.

We based the Remote Visualization Engine on VNC technol@ywa$ previously
supported in section 2. VNC system is based on a remote videwefbuffer protocol
and, therefore, can be used with any operating system family

During the development phase UML was used for object-cedmbodelling. The
correspondence between MoNet and UML models was readidpkstted by means
of:

— each Logical Entity defined one, or more, object classestlacklations between
these Entities defined their class associations;

— hierarchical groups of Logical Entities were set via pa@sg

— Information Flow diagrams, specified with the system’s Fiamal Model, identi-
fied method calls among objects;

— Functional Models also clarified how objects were physycdiktributed among
different computers.

The deployed platform was tested and worked properly. Ertsusere able to use
either a MS application or a X Windows application, as ineghdsimply by requesting
their remote execution through a basic system menu.

Next we intend to improve the developed platform by allowthg addition and
removal of applications in a dynamic fashion. We are comsideapplying Jini [8]
technology as an infra-structure for registering/unitegisg applications taken as in-
coming and outgoing services. Another improvement is beomgidered by means of
adding functionalities for load balancing the clusterapplication servers regarding
performance aspects.

5 Conclusions

We have considered the problem of using heterogeneouscaiplis at an arbitrary
computational device. We initially surveyed the technaabsolutions for accessing
the execution of non-native applications. For the detdilrchitectural development, a
system for an academic campus was considered. In the ddsige pf the system, we
concluded that middleware is a key factor for the develograad deployment of such
a system, and, hardware and software for hosting deternfimeddionalities are fun-

damental for the overall system performance. We also eatettisome bridge points
between MoNet's and UML design methodologies. The develgmeof-of-concept

66

platform used, as a solution for remotely access non-nafipdications, indirect mech-
anisms for exporting the user interface of the applicateothe end user device. It has
demonstrated the feasibility of the system.

As explained in [9], there is room in a campus environmentiferadvantageous use
of such system. For the same reasons, among others, cartamarcial organizations
may also benefit from such a computer system approach. A sedmame of offering
computational application services on demand may be alplitgsiunder this scenario
the user could get instantaneous and transparent accesyg @ fixes or upgrades
to applications. New services and application providetkhaive a potential market to
explore.

References

1. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems:é@pis and Design. Second
edn. Addison-Wesley (1994)

2. Rutgers, T.l., Korth, H.F.: Mobile Computing. Volume 353 of The\ér International Series
in Engineering and Computer Science. Kluwer Academic Publisher$)199

3. Milojicic, D.S., Douglis, F., Wheeler, R.: Mobility : Processes, Coteps; and Agents.
Addison-Wesley Publishing Company (1999)

4. Ribeiro, N.V.: Uma Plataforma para Acesso Universal a Apiea¢ Master’s thesis, In-
stituto Superior €cnico, Lisboa, Portugal (2000) URL, http://Itodi.est.ips.pt/nribeiro/#MSc
accessed July 2000.

5. Katoen, J.P.. The MoNet Design Methodology. MoNet deliveratdehmical Draft 3.1
MoNet/GA3/UT/006, University of Twente (1993)

6. Benda, M.: The Architecture of Global Access. IEEE Internet @ating1 (1997) pp. 78-80

7. : VNC — Virtual Network Computing (1999J0AT&T Laboratories Cambridge, URL,
http://www.uk.research.att.com/vnc/, accessed April 2000.

8. Sun Microsystems, Inc.: JM Architectural Overview. (1999) URL,
http://www.sun.com/jini/specs, accessed July 2000.

9. Ribeiro, N.V., Bazio, J.M.: Campus Personal Computing: uses, evolution, and mspygue
tives. In: Actas da lll Confémcia de Telecomunicaes, IT (2001) 315-318

