
On the Use of Model Checking in Verification of
Evolving Agile Software Frameworks: An Exploratory

Case Study

Nan Niu, Steve Easterbrook

Department of Computer Science, University of Toronto
Toronto, ON, Canada M5S 3G4

Abstract. Evolution is a basic fact of software life. Domain-specific agile soft-
ware frameworks are key to modern enterprise information systems (EIS). We
propose a model checking approach to formal verification of agile frameworks
that evolve continuously. The results obtained can be used to justify the main-
tenance activities in software evolution and identify important but implicit as-
sumptions about the application domain of the framework. An industrially rele-
vant exploratory case study is conducted to validate our hypothesis and proac-
tively direct future research.

1 Introduction

Agile software frameworks capture the commonalities in design and implementation
among a family of related applications. Software engineers use frameworks to reduce
the cost of building complex systems. Frameworks promote reuse and rapid develop-
ment by constraining the space of possible solutions. Formal methods in constrained
situations have a greater chance of being useful. Also, investment in reusable frame-
works can justify the investment in formal methods.

Formal verification of agile frameworks is not trivial. Errors in the framework core
or library will affect all applications built with the framework. Although frameworks
are meant to have stable structures in particular application domains, they are subject
to change. Thus, formal verification of a single version of an agile framework may
overlook important properties in this ever-changing context. How to gain effective
comprehension within continuous evolution of agile software frameworks becomes
more and more crucial for software practitioners.

In this paper, we present a method of applying model checking techniques to verify
behavioral properties of evolving agile frameworks at an architectural level. Our hy-
pothesis is that the obtained results can be used to understand, evaluate, and justify the
maintenance activities in software evolution. Also, some important but implicit as-
sumptions about the application domain of the framework can be identified by carry-
ing out this rigorous approach.

Niu N. and Easterbrook S. (2005).
On the Use of Model Checking in Verification of Evolving Agile Software Frameworks: An Exploratory Case Study.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
115-117
DOI: 10.5220/0002560801150117
Copyright c© SciTePress

2 Verification of Evolving Software Systems by Model Checking

Figure 1 shows the process model of our approach. Square-, round-, dashed-boxes,
circle, and cylinder represent original inputs, abstracted models, hierarchical struc-
tures, external entity, and the knowledge base respectively. The output is the descrip-
tion of the model checking result (a proof or a counter-example) whereby software
practitioners can use as a feedback for further study of the effects in software evolu-
tion. Given the input of the source code, a sequence of well-defined reverse engineer-
ing operations, such as filtering, componentizing, projecting, collapsing, can produce
a structural model of the software system. To generate the behavioral model at a
higher level of abstraction, more human input is needed.

Fig. 1. Process model

3 Case Study

The subject software system of our case study is an industrially relevant, domain-
specific, light-weight, database-centric Web application framework – “Prothos” [1].
“Light-weight” means that Web applications developed from Prothos should not have
data-intensive or long-duration transactions. We focus on Prothos’ persistent object
manager (POM) (versions 4.1.3 and 4.1.4) that supports concurrent transactions based
on consistent data management. The models extracted from the source code are com-
pressed into one view shown in Figure 2. Prothos’ optimistic-locking concurrency-
control mechanism guarantees both serializability and deadlock freedom. However,
POM 4.1.3 suffers from a “starvation” problem: One “heavy-weight” transaction that
stays in executing for an arbitrary long time will keep others from successfully issuing
exclusive-mode locks. This also challenges Prothos’ specific domain assumption.

Run Reverse
Engineering

 Reverse
Engineering

Verify

Refine Derive

requirements

architecture
 design

design document

change logs

newly-added
feature report

bug report

 Auxiliary
Documents

Maintenance
 Documents

… …

 CTL
specifications

 SMV
 model
checker

Source code 1 Source code 2

CTL model 1 CTL model 2

Maintenance Evolution

116

We develop the input of the CTL models based on a simple banking scenario:
There are two accounts A and B with original balances of $100 and $200 respectively.
Let Tr1 and Tr2 be two transactions where Tr1 transfers $20 from A to B, and Tr2 trans-
fers $40 from B to A. The consistency constraint is that the total amount, A + B,
should always be $300, which is expressed in SPEC 1. If every transaction eventually
ends in committing or aborting states after starting, the system is both deadlock free
and starvation free. SPEC 2 states this behavioral property in CTL. Both models
shown in Figure 2 satisfy SPEC 1. However, SPEC 2 turns out to be false in POM
4.1.3’s model. As mentioned earlier, this is caused by the starvation problem. After
version 4.1.4 adds the new transition, SPEC 2 is satisfied, which effectively verifies
the corrective maintenance activities in software evolution. Since Prothos is purely an
agile framework, a genuine Web application, Hermes [1], has been used to faithfully
reflect our investigation and further show the validity of the case study.

Fig. 2. State transition models

AG((A_value + B_value) = 300) (SPEC 1)

AG((tr1.state=starting) (AF (tr1.state=committing | tr1.state= aborting))) &

AG((tr2.state=starting) (AF (tr2.state=committing | tr2.state= aborting))) (SPEC 2)

We have proposed a model checking process to effectively verify evolving agile

software frameworks by capturing behavioral changes at an architectural level. From
our experience applying this approach in the case study, we feel that it has rich value
in helping practitioners control software evolution and understand framework’s appli-
cation domain. More empirical studies need to be taken in a systematic way. Further-
more, techniques that permit round trip synchronization between models and source
code deserve further investigation. Whether and how to leverage formal methods in
software development and maintenance have been controversial for decades. Based on
our work, we feel that formal methods can help software engineers gain some insight-
ful comprehension about the system. But they are by no means a panacea.

Acknowledgments. We thank Jim Hoover and Kenny Wong for taking part in the
study of Prothos and their extensive help in improving the presentation of this paper.

References

1. Niu, N.: Formally Understanding the Behavior of a Framework’s Transaction Management.
Master’s Thesis, Department of Computing Science, University of Alberta, 2003.

>> starting requesting
waiting

issuing

aborting*

executing

releasing committing*

>> Start State * Accept State Transition New Feature Added by POM 4.1.4

Legend:

117

