
Trade-off Analysis of Misuse Case-based Secure 
Software Architectures: A Case Study 

Joshua J. Pauli1, Dianxiang Xu2 

1 Dakota State University, Madison, SD USA 57042 

2 North Dakota State University, Fargo, ND USA 58105 

Abstract. Based on the threat-driven architectural design of secure information 
systems, this paper introduces an approach for the tradeoff analysis of secure 
software architectures in order to determine the effects of security requirements 
on the system. We use a case study on a payroll information system (PIS) to 
show the approach from misuse case identification through the architecture 
tradeoff analysis. In the case study, we discuss how to make tradeoff between 
security and availability with respect to the number of servers present. 

1   Introduction 

In today’s software world, there is a great need for making software resistant to po-
tential attacks [5,6]. Based on the threat-driven architectural design of secure software 
[12], this paper introduces an approach for the tradeoff analysis of secure software 
architectures. Tradeoff analysis is needed to determine the effects of non-functional 
requirements on the system. For most software there is no clear mapping from re-
quirements specifications to architecture design. With use cases, misuse cases, and 
mitigation use cases as the source, requirements include both the functional uses and 
security related issues of the system. Our previous architectural analysis approach 
takes the completed use case model into account when proposing candidate architec-
tures [12]. This ensures the architectures map directly back to the requirements speci-
fications. This paper will take that research one step further by analyzing the pro-
posed architectures. The paper is organized as follows: section 2 summarizes misuse 
cases, architecture identification, and the ATAM. Section 3 covers the identification 
of architectures. Section 4 covers the Architecture Tradeoff Analysis Method as it 
relates to the PIS case study. We conclude in section 5. 

2   Background 

The three most important topics discussed in this paper are misuse cases, architecture 
analysis, and the tradeoff analysis of the architectures. Misuse cases, i.e. use cases 
with hostile intent, appear to be a new avenue to elicit security requirements 

J. Pauli J. and Xu D. (2005).
Trade-off Analysis of Misuse Case-based Secure Software Architectures: A Case Study.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 89-95
DOI: 10.5220/0002560100890095
Copyright c© SciTePress



[1,2,4,11,13,14]. Use case modeling is a proven method for the elicitation of, com-
munication about, and documentation of functional requirements [7]. The integral 
development of use cases and misuse cases provides a systematic way for the elicita-
tion of various system requirements, both functional and non-functional [2]. A critical 
issue is how misuse case based security requirements specification can further facili-
tate the design and implementation of software systems where security is a major 
concern. Prior papers presented an approach to bridge the gap between misuse case 
based security requirements and high-level architecture design [12]. We treat identifi-
cation of threats as part of requirements elicitation and model them with misuse cases 
[7,11]. We then drive architecture design by dealing with identified security threats in 
the process of application decomposition; this is opposite to the threat modeling ap-
proach that determines and mitigates threats later in development [15]. The treatment 
of security threats in the early phases of development can reduce overall development 
cost due to the absence of a variety of vulnerabilities. We also map between the 
use/misuse cases and the architectural components, since the software security re-
quirements are taken into account in the architecture design, the architecture specifi-
cation is an invaluable resource for detailed design, implementation, and validation. 
The Architecture Tradeoff Analysis Method (ATAM) is used as a way to ensure that 
the architecture is behaving in the intended way [3]. The ATAM is a structured tech-
nique for understanding the tradeoffs inherent in the architectures of software sys-
tems, thus providing a way to evaluate an architecture’s fitness with respect to secu-
rity [10].  

3   Architecture Identification 

The idea of identifying architectures from use case models was first covered in our 
prior research in an attempt to bridge the gap between requirements specification and 
architecture design [12]. Having misuse case models created early in the development 
cycle allows for both the misuses and mitigations to be used throughout the develop-
ment cycle. To begin, the actors and their use cases are identified to gain an overall 
context of the system. Because of space constraints, this case study will only look at a 
part of the payroll information system (PIS). We are also interested in which use 
cases have a relationship with security because it is these use cases that open the door 
for possible attacks. Listed are the users of the PIS, the use cases for each, and identi-
fication, (*), of security-related use cases. The Payroll Staff user has the use cases 
Enter User Information (*), Edit User Information, View Payroll Reports, Complete 
Administrative Tasks, and Log on to the System (*). The General Employee has the 
uses cases Log on to the System (*), Request Payroll Information (*), and View Pay-
roll Information. The Web Developer user has the use cases Create Code (*), Create 
Web Pages (*), and Create / Manage User Accounts. The Payroll Auditor user has the 
use cases Access Audit Entries (*), Review Audit Entries, Report on Audit Entries, 
and Log on to the System (*). Known misuses cases are also identified after use cases 
have been identified. The Malicious User misuser has the possible misuse case of 
View Confidential Payroll Information. The Spoof Computer misuser has the possible 
misuse case of Spoof Computer Identification. The Attacker misuser has the possible 

90



misuse cases Launch DoS Attack, Manipulate Payroll Information, Upload Rogue 
Code, Upload Rogue Web Pages, and Elevate Privileges. Once the use cases and the 
possible misuse cases have been identified, a use case model can be constructed as 
figure 1 shows. To gain a further understanding of the use case model, textual tem-
plates are used to convey more details about each use case and misuse case [4]. Be-
cause of space constraints, no textual case is shown. This same approach was applied 
to the misuse cases and the mitigation use cases. 

 
Fig. 1. High level use case model with users, misusers, and mitigating actors 

From detailed textual use cases and high level use case models, a more detailed use 
case model is created. Because of space constraints only one detailed use case is pre-
sented as figure 2 introduces. Sequence diagrams were also constructed to show the 
order of steps that each use case, misuse case, and mitigation use case take. These 
diagrams also help in the identification of candidate architectural components [13,15]. 
No sequence diagram is shown, but every use case, misuse case, and mitigation use 
case was modeled in this manner.  

 

91



Fig. 2. Detailed use case for “Complete Administrative Tasks” for the Payroll Staff actor in PIS 
Architectures can now be proposed that are constructed from these UML notations 

[9]. This is done by inspecting the detailed complete use case model, the detailed 
sequence diagrams, and the textual use cases. The issues in the architecture (fig. 3) 
that will be examined are what effect the number of servers will have on the system in 
terms of availability. 

 
Fig. 3. Candidate Architecture for the PIS 

4   Trade-Off Analysis of Architecture 

The main idea of completing a tradeoff analysis is to compare the effects of architec-
tural decisions on the entire system [10]. There is a natural tradeoff between security 
and availability in all software. This analysis follows the research done in [3] and can 
be used as a guide for equations and  values used concerning the ATAM. The first 
major step of ATAM is to identify sensitivities; any component that could incur 
changes based on the findings of the ATAM. These include “EnterInfo” (changes to 
this component), “Brower” (changes), “Crypto” (inclusion of this component), “At-
tach Hash” (inclusion), and “Digital Signature” (inclusion). Next, tradeoffs, defined 
as those architectural decisions that impact the sensitive components, are identified. 
Our only tradeoff is the number of servers in the PIS because as the number of serv-
ers increases it will adversely affect the security of the system by creating possible 
holes to exploit. At the same time, as the number of servers increases the availability 
of the PIS increases because numerous servers can act as back-ups for other servers. 
To start the tradeoff analysis, reasonable initial values are needed for the availability 
and the security of the PIS. The values for availability are Number of Servers (S) set 
to 2, Failures per Year (F) set to 2, and Repairs per Day (R) set to 2. 
According to [3], the fraction of downtime in availability analysis can be figured as: 

D = (2*F2) / ((R2 + 2) * F * (R  + 2) * F2) (1) 

For a hardware failure (power supply), assume that 1 to 2 failures occur per year 
and require a 4 hour visit by a technician to repair. The worst case would be F=2 
failures/year and P=2 repairs/day (730 repairs/year). For a software failure (O/S 

92



crash) it ranges from 8 to 24 failures/year and requires restarting the server (10 min-
utes). The worst case would be F=24 failures/year and P=144 repairs/day (52,560 
repairs/year). Solving each equation for the highest possible values for Hardware 
Fault (HF), Software Fault (SF), and the combined downtime (D) yields the following 
values 

HF = (2 * 22) / (7302 + 2 * 2 * 730 + 2 * 22) = 1.4930164157E-5 (2) 

SF = (2*242) / (52,5602 + 2 * 24 * 52560 + 2 * 242) = 4.1662483059E-7 (3) 

D = HF + (1 - HF) * SF = 1.5346782767E-5 (4) 

After converting these fractions of a year into hours, the results are shown in table 3. 

Table 3. PIS availability findings with 2 servers present 

Hardware failures (4 hours repair) Software failures (10 minute repair) Combined Failures 
Failures 
per year 

Availability 
(1-HF) 

Hrs. 
down/ 
year 

Failures 
per year 

Availability (1-
SF) 

Hours 
down/ 
year 

Availability Hours 
down/ 
year 

2 .99998507 .1307 24 .99999958 .0036 .99998465 .1344 
PIS security analysis is accomplished by calculating the probability of a successful 

attack. Once these values are known, it is up to the stakeholders to decide what is the 
optimal number of servers for the PIS to be as secure and as available as possible. 
The initial values that are reasonable for this case study are Exposure Window (EW) 
set at 90 minutes, Attack Rate (AR) set at .08 systems per minute, TCP Intercept 
(TCPI) set at .5 probability, Kill the Server Connection (KSC) set at .75 probability, 
Kill the Server (KS) set at .25 probability, Decrypt the Data (DD) set at .0006 prob-
ability, Replay (RP) set at .047 probability, and Key Distribution (KD) set at .082 
probability. These values would differ for each system, but are good estimations for 
the PIS [3]. Figuring the likelihood of an attack succeeding is just a matter of calcu-
lating the probability of each attack. “TCP Intercept” Attack with encryption is fig-
ured in equation 5. 

TSA = (((AR * TCPI) * EW) * DD) + (((AR * TCPI) * EW) * RP) + (((AR * TCPI) * EW) 
* KD); 

(5) 

TSA = (((.08 * .5) * 90) * .006) + (((.08 * .5) * 90) * .0470) + (((.08 * .5) * 90) * .0820) = 
.4860 

 

“Kill Server Connection” and “Kill Server” are shown in equations 6 and 7. 
TSA = (((.08 * .75) * 90) * .006) + (((.08 * .75) * 90) * .0470) + (((.08 * .75) * 90) * 

.0820) = .7290 
(6) 

TSA = (((.08 * .25) * 90) * .006) + (((.08 * .25) * 90) * .0470) + (((.08 * .25) * 90) * 
.0820) = .2430 

(7) 

The amount of likely successful attacks on the system within the 90 minute win-
dow of opportunity are TCPI = .486, KSC = .729, KS = .243; totaling 1.458. In 60 
minutes the total becomes .972 attacks. The tradeoff between security and availability 
is summarized in the table 4 with the sensitivity to the number of servers in the PIS 
being negatively correlated with respect to the number of servers in the PIS. Based on 

93



these findings, it is our opinion that having 2 servers in the PIS would be the optimal 
solution based on this tradeoff analysis. This would virtually eliminate any down 
time, while still keeping successful attacks under 1 per hour.  

Table 4. Sensitivity to the number of servers in the PIS 

 1 Server 2 Servers 3 Servers 
Combined downtime  
Hardware: (F=2/yr, R=730/yr)        
Software:(F=24/yr, R=52560/yr) 

27.922 hours/year .1344 hours/year .0010 hours/year 

Successful Attacks   F = 10/year .486 attacks/hour .972 attacks/hour 1.944 attacks/hour 

5   Conclusion 

This case study shows an added step to our previous research [12] by completing a 
tradeoff analysis on the architecture derived from a use case model. This tradeoff 
analysis, which followed the ATAM, helped solidify our overall approach [3]. It is 
important to realize that the architecture was constructed from the system information 
presented in the use case models and sequence diagrams. This bridges a gap between 
requirements specification and architecture design.  

References 

1. Alexander, I. Initial industrial experience of misuse cases. In Proc. of IEEE Joint Interna-
tional Requirements Engineering Conference, (2002) pp. 61-68 

2. Alexander, I. Misuse cases: Use cases with hostile intent. IEEE Software, (2003) pp. 58-66 
3. Barbacci, M., Carriere, J., Kazman, R., Klein, M., Lipson, H., Longstaff, T., and Weinstock, 

C. Steps Toward an architecture trade-off analysis method: Quality attribute models and 
analysis. CMU/SEI-97-TR-29, (1997) 

4. Firesmith, D. Security use cases. Journal of Object Technology, (2003)Vol. 2, No. 3, 53-64. 
5. Hoglund, G. and McGraw, G. Exploiting software: How to break code. Addison-Wesley. 

(2004) 
6. Howard, M. and LeBlanc, D. Writing secure code. Microsoft Press. 2nd edition, (2003)  
7. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object-Oriented SoftwareEn-

gineering: A Use Case Driven Approach. Addison-Wesley, (1994) 
8. Kantorowitz, E., Lyakas, A., and Myasqobsky, A. Use case-oriented software architecture. 

CMC03 (2003) 
9. Kazman, R., Abowd, G., Bass, L., and Clements, P. Scenario-based analysis of software 

architecture. IEEE Software. pp.47-55, (1996) 
10. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and Carriere, J. The archi-

tecture tradeoff analysis method. In Proc. of the 4th International Conference on Engineering 
of Complex Computer Systems (ICECCS98), (1998)   

11. McDermott, J. and Fox, C. Using abuse case models for security requirements analysis. In 
Proc. of the 15th Annual Computer Security Application Conference, pp. 55-66, (1999) 

12. Pauli, J., and Xu, D., Threat-driven architectural design of secure information systems.       
In Proc. of ICEIS’05. Miami, May 2005.  To appear.  

94



13. Ruhe, G. and Eberlein, A. Trade-off analysis for requirements selection. International 
Journal of Software Engineering and Knowledge Engineering, Vol. 13, No. 4 (2003) 345-
366.  

14. Sindre, G. and Opdahl, A.L. Eliciting security requirements by misuse cases. In Proc. of 
TOOLS Pacific 2000, pp. 120-131, (2001) 

15. Swiderski, F. and Snyder, W. Threat Modeling. Microsoft Press. (2004) 

95


