Using Timed Model Checking for Verifying Workflows

Volker Gruhn and Ralf Laue

Chair of Applied Telematics / e-Businéss
Computer Science Faculty, University of Leipzig, Germany
Klostergasse 3, 04109 Leipzig, Germany

Abstract. The correctness of a workflow specification is critical for the automa-
tion of business processes. For this reason, errors in the specification should be
detected and corrected as early as possible - at specification time.

In this paper, we present a validation method for workflow specifications using
model-checking techniques. A formalized workflow specification, its properties
and the correctness requirements are translated into a timed state machine that
can be analyzed with theRPAAL model checker. The main contribution of this
paper is the use of timed model checking for verifying time-related properties of
workflow specifications.

Using only one tool (the model checker) for verifying these different kinds of
properties gives an advantage over using different specialized algorithms for ver-
ifying different kinds of properties.

1 Introduction & Related Work

In recent years, interest in business process automation has raised. One reason for this is
that the concept of web services allows integrating web-based applications using open
standards.

Developing a large system using web services starts with specifying the flow of con-
trol and information between these services - the workflow. This task should be done
by domain experts. Different business process definition languages have been devel-
oped for specifying workflows, the most important ones are BPML, BPELAWS, XPDL
and UML2 activity diagrams. An increasing number of software tools abstract from
the syntax of the business process definition language, allowing the business process
analysts who specify the workflow to use a graphical notation (for example BPMN).

It should be possible to eliminate errors (like deadlocks or missed deadline con-
straints) in a workflow specification at specification time. Model checkers are sophis-
ticated tools that are able to find exactly this kind of errors for a given system. What
remains to do is to translate the workflow specification and the requirement we are
interested in into the input language of a model checker.

Our paper shows how this "translation” can be done. Similar approaches were pro-
posed by several other authors: [1] starts with an informal description of a business
process. This description is being translated into the input language of the NuUSMV
model checker which can check basic properties like liveness and reachability. [2]

* The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG

Gruhn V. and Laue R. (2005).

Using Timed Model Checking for Verifying Workflows.

In Proceedings of the 2nd International Workshop on Computer Supported Activity Coordination, pages 75-88
DOI: 10.5220/0002559500750088

Copyright © SciTePress

76

checks various properties of business process specifisatimdelled in Testbed, a
framework for business process reengineering. The buspresess specification can
be defined by business process analysts using the Testbedhde the model check-
ing must be done outside the tool by model checking experfelléw-up paper [3],
identifies some patterns of properties for business pramssfications. Queries about
these patterns are transformed automatically into an LTinéde, allowing people who
are not familiar with the details of model checking to testperties of the business
process specification based on these patterns. [4] traadlasiness process models de-
fined in the XPDL language into the input language of the SPtddehchecker in order
to check their properties.

In all these publications, the properties than can be chitlsik@ model checker, de-
pends on logical order between activities, not on theirigniOther than these existing
approaches, we take into account time-related proped&sd(ines etc.).

We give an example for checking very different workflow prdjes: structural cor-
rectness, resource constraints, deadlines and depessdastvecen different activities.
In the overview below, we will refer to algorithms that allaw check these different
classes of properties. The main contribution of this papés exploit onlyonetool for
checking the different properties instead of using onerélgo to check the structural
correctness, a second one for verifying the deadlines dm ohes for reasoning about
deadlocks, reachability or resource conflicts.

Scheduling of activities under resource constraints is l&stadied problem in op-
erations research, knownBgsource Constraint Project Scheduling Prob(@TPSP).
The general problem - finding a feasible schedule for a settfiges such that the
time for completing the project is minimized - has shown td\d&hard [5], therefore
different heuristic algorithms have been suggested forisglit [6]. Finding resource
conflicts in a given workflow is much easier than solving theSR([7] presents an al-
gorithm to find such conflicts. (Our example workflow is basadte example used in
this paper.) This is done by simply finding the earliest sigrtime and the latest com-
pletion time of each activity. However, the dependencidgs/ben the activities are not
taken into account which leads to many false positives. Cagtehchecking approach
gives a more accurate result than [7].

[8] discusses the use of timed automata for solving the sdimedproblem, which
is also the key idea for our model-checking approach. [9xasnded the net diagram
technique PERT to ePERT which can be used for workflow spatiifics.

Structural correctness can be verified using graph anaytsohniques [10, 11],
which require the use of special-purpose nontrivial athons. Graph analyzing tech-
nigues can also be used for answering "basic questions'tabaahability and depen-
dence between activities ("Will a receipt be sent for evedeo?”, "Is it guaranteed that
no receipt can be sent if the ordered item is out of stock?) etc

With our model checking approach, such specialized algmstfor checking spe-
cialized requirements (resource constraints, structogkectness etc.) can be substi-
tuted by using only one tool that can be used for verifyin¢edént kinds of properties.

77
2 Definitions

2.1 Workflow Specification

The Workflow Managemant Coalition defines a workflow as thematerized facilita-
tion or automation of a business process, in whole or pdrtfl@/orkflow Management
System (WfMS) is defined as a system that completely definesages and executes
workflows through the execution of software whose order @tetion is driven by a
computer representation of the workflow logic.

In order to be processed by a WfMS, a workflow has to be specfifiedformal
language that can be executed by computers. This languaged®iine the order of
activation of activities and the information flow betweeastrth

Before we give a formal definition of a workflow, we have to @duce the basic
concepts:

An activity is a description of a piece of work that forms one logical stéqnin
a process[12]. Activities are scheduled by a WfMS. Their akea order is specified
by transitions In the simple case of a (sequential) transition betweenites, one
activity completes and the thread of control is passed téh@n@ne, which starts. To
be able to define more complex business cases, we furthertineeontrol structures
AND-split, OR-split AND-join andOR-join with the usual semantics [12].

We define avorkflow specificatioms follows:

Definition 1 A workflow specification is a 4-tupleV, ng, f,T), where:

— N is a set of nodes which is defined as the unién= A U C, whereA =
{a1,...,a,} is a finite set of activities and’ = {c1,...,c,} IS a finite set of
control nodes. Each control node is either an AND-split, dR-€plit, an AND join
or an OR-join, which is denoted by the type functtgpe : C — {as, 0s, aj, 0j}.

— There are two distinguished nodes: The start negle A and the end nod¢ € A.

—TC(N\{f}) x (N\{no}) is aset of transitions between the nodes, where:

If (a € A)V (a € C Atype(a) = as)V (a € C A type(a) = os), then there
exists one and only one node b such ttbat)) € T. (These nodes have exactly one
predecessor.)

If (a € A)V (a € CAtype(a) = aj) V (a € C A type(a) = oj), then there
exists one and only one node b such thab) € T'. (These nodes have exactly one
successor.)

The usual semantics apply: The workflow starts in its stademg. During a work-
flow execution, activities are executed with respect to theditions between them.
Split nodes allow us to specify concurrency and alternagivet join nodes allow us to
specify synchronization between incoming flows. Finahg tvorkflow execution stops
when the final node f is reached.

To illustrate a workflow, we use a simple graphical represtion with these sym-
bols:

1 The name OR-splitin [12] is a little bit misleading: XOR-split would be a betten@secause
one and only one transition to the next node is selected.

78

Activity 1 .

Activity Transition AND-Split OR-Split AND-Join OR-J

Signature from
[7| Manager

Prepare Check

for ANZ Bank

A$ Signature from

Payment Finance

Request 0 Director

e o> Coe C

Prepare Check
for CITIBANK Transfer Funds
to US—-Account @
Approval Approved
from Finance
Director e
¢ Rejected -
Reject ¢
Request "
Update File
Payment
Account Request
done

Fig. 1. Sample workflow: Payment Requests

Split nodes have at least two outgoing transitions (arrpwkile join nodes have at
least two incoming transitions. Outgoing arrows from an §jiRt node can be labeled
with a short text describing a decision being made in the @R-that leads to the
selection of one of the outgoing arrows.

Figure 1 shows an example workflow taken from [10] and [7]hthwes a business
process model for expense request payments with an optidifféo between payment
in US-$ or in Australian $.

2.2 Structural Correctness

While def. 1 defines the syntax of a workflow specification, iesimot say anything
about its semantics. Not every workflow specification that ba constructed using
definition 1 makes sense when the semantics for splits amd jei considered. An
example is shown in Fig. 2: Only one of the activities 2 and IBlvéi performed after the
OR-split, but the following AND-join would wait for both agities being completed.
Even if the end node will be reached anyway via activity 1s iwéry unlikely that this

is the behavior intended by the person who has specified thidlaw. For this reason

it is reasonable to call such a workflow specification striattyincorrect.

79

Activity 1 END NODE

START NODE~<AND Activity 2

... (part after
@ @ the AND-joir
omitted)
Activity 3

Fig. 2. Semantically incorrect workflow

We will see later in this paper that structural correctndss workflow can be de-
cided with our model checking approach. In fact, this is epessible without much
reasoning about possible sources of structural conflicesjust have to take into ac-
count that the result of structural incorrectness is theeia possible execution exists
that does not reach the end node or there are still "Juncoetbtbings to do” when the
end node is reached. This leads us to:

Definition 2 A workflow specificatiom = (N, ng, f,T) is structurally correct if

— every workflow execution reaches the end node f after a finiter of transitions.
— when the end node is reached, all other activities that teeen started before are
completed and there are no remaining join nodes waitingrieoming transitions.

Because of the limited space in this paper, we omit the fodefhition of "a workflow
execution” and "taking a transition”, but it should be iriively clear what those phrases
stand for with respect to transitions and the semantics litf md join-node$. Def.

2 simply requires that every sequence of nodes and tramsifinally reaches the end
node f after a finite number of transitions, and there are ntaneing join nodes waiting
for an incoming flow when the end node is reached. Infinite $0@MND-joins waiting
for an incoming flow infinitely long and similar problems mumit occur. Sadiq and
Orlowska [13] have identified five types of possible struatwarrors in a workflow
specification. For all five types of errors, the workflow sfieation will be identified as
not being correct using def. 2 or it is already disallowedh®y/tequirements for unique
predecessors and successors in def. 1.

2.3 Timed Workflow Specifications with Ressource Constrairg

Activities can require human, material or machine resaréar example a director
who has to sign a bill (human resource), a vehicle to traridpeavy goods (material
resource) or write-access to a database (machine resource)

2 The only point that needs some clarification is that activities after an ORSfwaldnot be
activated more than once if more than one incoming flow reaches the i@Rfjahis point,
the semantics used in this paper differs from the one used in [10]

80

[1.2]
Signature from
57—
Prepare Check Manager
for ANZ Bank {ra, 18} [1,2]
[2,3] A$ Nr, 13, 17} Signature from
Payment Finance
Request Director
{r5, r8}
L 7] > e D Cor
[1,2] [3.8]
Prepare Chedk Transfer Fund @
to US—-Account
[4.8] for CITIBANK [4,6]
Approval Approved{ri, r3, r7} {r8, r9} Issue
from Finance @
Director _ Check
{r2, 17} Rejectefl[2,3] {r3, 8} l
Reject [1.3] F'[ILZ]
Update e
Request P Payment
Account
Request
’ {r6, r10} {r3, 7, r10}
done

Fig. 3. Workflow with information about time and resources

Often, these resources cannot be shared between diffetavities: When a work-
flow is executed, only one activity can access a resourceigixely.

This leads us to another possible source of incorrect warldecifications: When
one activity needs a resource that is occupied exclusiwegniother activity, the work-
flow is deadlocked and cannot proceed. In real life, we camtidaite the previous sen-
tence even more strictly: If the other activity occupiesrimguired resource exclusively
until some deadline is reachgthe workflow cannot be completed in time and hence
does not fulfill its purpose.

To find out whether such a situation can occur, we need to koavething about the
usage of resources by the activities and about the duratithe @xecution of activities.

Definition 3 LetR = R, ... R, be aset of resources, which cannot be shared between
different activities. For each activity € A, r(a) is the set of resources needed by this
activity.

Definition 4 The minimum time (expressed in some time unit like secoodss lor
days) that will be needed to execute an actiuity A is denoted by m(a), the maximum
execution time will be denoted by M(a).

We call a workflow specification with the information aboutimium and maxi-
mum execution time of its activities ttmed workflow specificatiornThis information
about timing is rather simple, but it has been shown to becserffi for answering basic

81

guestions about deadlines and resource conflicts (for ebeabypapplying the Criti-
cal Path Method [14]). Additional elements like an intetrapnstruct can be added if
necessary.

In Fig. 3, we add information about timing and resources ¢ogtaphical represen-
tation of the sample workflow. For each activitye A, m(a) and M(a) are given as
an ordered pair [m(a),M(a)] above the activity box, the &} is given below the box.
Empty sets r(a) are omitted. We have taken this example figmvith small modifica-
tions.

3 Model Checking of Timed Workflow Specifications

3.1 The Model CheckerUppAAL

To verify properties of a workflow specification, we use thal{ttme model checking
tool UpPPAAL [15]. We show how to translate a workflow specification intdraed
automata specification that can be processed bya4L.

An UpPPAAL model is a set of timed automata, clocks, channels for hakesh
synchronization, variables and additional elements.rin&dion about the syntax for
UpPPAAL models can be found in [15]. Here we describe some elemehts on

Each WPPAAL model is a set of processes (timed automata) which are eelpéct
states (circles) and transitions (arrows) between them.

For each automaton, one state is marked as initial stateqtwoentric circles). A
graphic representation of anPBAAL process can look like Fig. 4:

idle logging in transferring data abort connection
-
i 4

Fig. 4. Simple graphic representation of a process FPRAL

States can have the attribute "committed”, depicted by diiier C inside the cir-
cle. If a state is marked as "committed, no time may pass mdtadte, and it must be
left immediately (i.e. no interleavings with non-committstates in other automata are
allowed).

When a transition is taken, clocks can be reset. (In Fig. 5ldekamamect| ock1
will be reset to 0 when the transition from "idle” to "logging” is taken), and global
or local variables can be manipulated. (In Fig. 5, a variabi@edact i ve is changed
when the transition from "logging in” to "transferring datar from "abort connection”
to "idle” is taken).

3 Note that the meaning of an arrow in theekhAL model is different from the meaning of an
arrow in the graphical workflow representation. Also a circle in tireAlAL model does not
stand for an activity like the rectangle in the graphical workflow repregiem does. Instead,
one UWPPAAL process (depicted by some arrows and circles) stands for an activity.

82

idle logging in transferring data abort connection
))
clock1i=0 “_/ active:=1 -/
active:=0

Fig. 5. clocks, variables and an urgent location

Synchronization between different processes can take pising channels. When
a transition is taken, a channel can be written into (wrissgchannel nane!). To
achieve a handshake-synchronization, the correspondading operation (written as
channel nane?) can serve as a so-called guard of another transition widaomot
be taken unless reading from the channel is actually pesditd channel is defined as
urgent channel, the reading operation must be performedasas possible, i.e. im-
mediately and without a delay. Fig. 6 shows a synchronindi&tween a server process
and a client process:

idle need new data accept upload

listen!

waiting

O listen?

Fig. 6. Using channels for handshake-synchronization

uploading

Conditions on clocks or variables can also be used as guardsahsitions. This
means that a transition cannot be taken until some conditimrexample an equation
for some variable) holds. Finally, invariants can be addeal state. We will use invari-
ants of the typé cl ock<=n" which means that the system is not allowed to remain
in this state for more than m time units. In Fig. 7, the traasitvill be taken when the
clock named i e is in the interval [2,4] and the value of the variaklet i ve fulfills
the equatioract i ve ==

state 1 time >=2, state 2

@ active == 1 {)

time <=4

Fig. 7. Guards and invariants

83

3.2 Workflow Elements in UPPAAL

Using the elements introduced in the last section, we canelé&fimplates for the dif-
ferent kinds of nodes in a workflow specification (as definedigh 1). Urgent channels
are used to model the transitions between the nodes.

Start Node The start node process does nothing else than writing intbaarel
| et sstart and setting the variableunni ng (which stands for the number of cur-
rently running activities) to O:

letsstart!
@ running := 0 {>

Fig. 8. Start Node

Activity Node The UppAAL process for an activity node waits until it becomes acti-
vated by being able to read from a channelLchannel . When it is activated, it sets
a local clock to 0 and increments the variabl&sour ce. The variable unni ng (the
number of currently running activities) is incrementedteifstaying in the next state
for at least mintime, but not longer than maxtime, the prea=snes to and end which
it signalizes by writing to the channeut _channel . When the channel can be read
by another WPAAL process, the variableunni ng (the number of currently running
activities) is decremented.

AND-Split When activated (by the ability to read froom_channel), the UpPAAL
process for an AND-split writes repeatedly to the charmel _channel , thus being
able to activate more than one following node. For AND-spditth two incoming flows
as used in our definition, this happens twice.

OR-Split Other than the AND-split, an OR-split process writes to thermel
out _channel only once, thus only one following node can be activated laylirey
from this channel.

AND-Join An AND-join process tries to read from two channels, channel 1 and

i n_.channel 2, and proceeds if and only if both of them are readable. (Nweit is
not required that n_channel 1 is readabléeforei n_channel 2. If i n_.channel 2
is the first of the two channels being readable, it just "Waitsd the reading operation
can be performed aftéem_channel 1 became readable as well.)

OR-Join An OR-join process tries to read from two channéls,channel 1 and
i n_channel 2. It proceeds if it can read from one of them.

84

working processclock >= mintime out_channel! finished
in_channel? ressource-- running--
O O "™ o
processclock := 0, N N\
ressource++, processclock <= maxtime
running++

Fig. 9. Activity Node

in_channel?
out_channel!

Fig. 10.AND Split Node

in_channel? out_channel!
© -O -O

Fig. 11.0OR Split Node

in_channell’?\m in_channeIZ?\m out_channel!
@ U O {D

Fig. 12. AND Join Node

in_channell?

. out channel!

in_channel2?

Fig. 13.0OR Join Node

End-node The UpPAAL process end stands for the end node. This process will reach
the status namefdi ni shed at the end of the model’s execution.

finished

: in_channel? :

Fig. 14.End Node

85

h 2 orkin al0_channel!
s6_channel working clock9 >0 4 _channel! fini
_¢ ? ;

DY 8- =\ running--
@ clock9:=0, N =9 {D

8++,
running++

processclock <= maxtime

Fig. 15.”"Issue Check” - an instance of the Activity template

3.3 Translating Timed Workflow Specifications toUPPAAL Models

In the previous section we have shown how the general elesno¢atworkflow specifi-
cation can be expressed aBRAAL models. To "translate” a special workflow specifica-
tion into an LPPAAL model, we make use of RPAAL templates. The BPAAL models
of workflow nodes given in the last section are regarded aplass. This means that
the names for variables, clocks and channels in threAAL model are placeholders
(called parameters in RPAAL). To define an instance of an activity, we use this tem-
plate with parameters as follows:

Activity(processclock, mntinme, naxtinme, resource,
i n.channel , out channel), where

— processclock is a placeholder for a local clock variable,

— mintime and maxtime are placeholders for numeric constant

— ressource is the placeholder for a name of a single res@bocghe sake of sim-
plicity, we assume that each process uses at most one redoomt the resource
set R. By adding more placeholders, we can easily expand odehto the general
case.)

— in_channel and outhannel are placeholders for urgent channels,

To instantiate the model for an actual workflow activity frahe template, the place-
holders are substituted by actual variables:

For example, the definition of the activity "Issue Check’rfrehe example shown
in Fig. 3 can be done by defining an instance of the templat&ifcas follows:

| ssueCheck : = Activity(clock9,4, 6, r8, s6_channel,
al0_channel); (compare Fig.15 with Fig.9). The activity "File Payment Regt”
can be defined as:

Fi | ePayment Request := Activity(clockl1l,1, 2, r10,
alO_channel, all_channel); Note that synchronization between the both ac-
tivities can take place using chanreel0_channel , which replaces the parameter
out _channel in the "Issue Check” activity, butn_channel in the "File Payment
Request” activity.

Instances of control nodes can be built from the templatdhénsame way. If a
workflow specification is given according to def. 1, the tfatisn to the UPPAAL model
can be donautomatically For each node, an instance of amrAAL template will
be generated. This means that in general, only one line of wolll be added to the
UPPAAL model for each node in the workflow specificatioBplit nodes with, > 2

4 plus declarations of used variables, channels and clocks and the @fonrabout the fact that
the instantiated process is part of the system.

86

outgoing transitions or join nodes with> 2 incoming transitions can be transformed
into a sequence of n-1 split/join nodes with two outgoinggiming transitions.

The complete BrPAAL model of our example workflow can be downloaded from
ebus.informatik.uni-leipzig.deflaue.

3.4 Checking the Correctness of Timed Workflows

Having built the WPPAAL model of the workflow, we can use the model checker to
verify the required properties. The property specificataorguage used in RPAAL is
a subset of Timed Computational Tree Logic (TCTL) ([16].pperties that could be
checked include:

"The end node will always be reachedpart 1 of def. 2):
A<> end. fini shed
(The state "finished” in the process end will always be redghEhis property can be
checked to be true for our example workflow.

"When the end node is reached, no activities are waiting feing finished”(part 2
of def. 2):
Al] end.finished inply running == 0
This property can be checked to be true for our example wark{ldote that unni ng
will not be decremented until the outgoing channel can béevrinto.)
"There are no resource conflicts for resource r10”
A[] r1o<2
Can be checked to be true. Note that this requires reasomiogt dime: There are
no resource conflicts, because "Update Account” is alwaysh&d when the activity
"File Payment Request” starts. (Using the knowledge thaidate Account” and "File
Payment Request” are the only activities that use resoli@ewe will get the same
verification result by checking the property\]] Updat eAccount . wor ki ng +
Fi | ePaynment Request . wor ki ng <2. This makes use of the trick that boolean
values like UpdateAccount.working are converted to numi§@ror 1). We would not
need the variables r1,...,r10, which helps to reduce the spmce of the model.)
"There are no resource conflicts for resource r8”
A[] r8<2
The model checker does not only finds out that the propertyoisited, it also gives
a counterexample: a resource conflict between the actvi8@nature From Finance
Director” and "Transfer Funds to US-Account”

"If a request has been rejected, no check will be issued.”
Rej ect Request . fini shed --> not |ssueCheck. finished
Can be checked to be true.

"The whole process will be completed in no more than 30 timstn
A<> end. fini shed and cl ock1<30
To check this deadline constraint, we use clockl, the lolalkcof the first activity
"Payment Request”. It is started at the begin of the wholeflaw. This property can
be checked to be true. If we replace "30” by a smaller valuepunterexample of a
process that needs 29 time units to complete will be given.

87

3.5 Remarks

Resource PoolsThe approach can not only be expanded to multiple resouifaga)(
has more than one element, the model just needs more pldeetdbdr resources used
by activities), it can also be used for checking the usagesdurce pools, for example
a database that allows up to 10 parallel connections. Wedhwaye to check a property
like r esour cecount er <=10.

Abstraction The timed workflow specification can be transformed autaradiyi into
an UpPAAL model which can be used as the input of the model checker. Howe
complete translation of the workflow specification, presenall its properties, does
not necessarily have to be what we really want: Too many ldeéteihe model can lead
to too many states the model checker has to exafinstead of translating a work-
flow specification while preserving all its properties, ityrte a good idea to do some
abstraction before by asking which parts of the system degaet with respect to the
property being checked. If we check for resource confliatsX6 in the example work-
flow, information about other resources can be ignored. ¢h faven only the model
built from the very last part of the workflow ("Issue Checkpdate Account” and
"File Payment Request”) is relevant. Often, this abstoactan be done automatically.

4 Conclusion

The use of onlynetool for verifying different kinds of properties (with or wiout tim-
ing information) and the simplicity of translating workflaspecifications to BPAAL
models are the main benefits from the results presented ipapar.

We have highlighted reasoning about structural correstaed resource constraints,
but using the given approach, various other properties akflmv specifications can
be checked as well. This includes the patterns identifie@]iafid [17], including exis-
tence, absence, precedence and response patterns. Intber fasearch, we will inves-
tigate such patterns, including patterns for time-relgteaperties (see [18]). Another
direction of our work will be to enable the business archgecho are responsible for
defining workflow specifications to specify such propertiéhout a deeper knowledge
in model checking or temporal logics.

References

1. Koehler, J., Tirenni, G., Kumaran, S.: From business procestehto consistent implemen-
tation: A case for formal verification methods. In: EDOC. (2002) 96—

2. Janssen, W., Mateescu, R., Mauw, S., Springintveld, J.: Vegifyirsiness processes using
SPIN (1998)

® In general, models with a large number of clocks lead to a state-spaosiexpin timed model
checking. Please note, however, that this is not the case in our mdusig\wach activity adds
a clock): When an activity is completed, its clock is not used actively in @ispns and
cannot lead to new states.

88

10.

11.

12.
13.
14.
15.

16.

17.

18.

. Janssen, W., Mateescu, R., Mauw, S., Fennema, P., van g@e8i&.: Model checking for

managers. In: 5th and 6th International SPIN Workshops. (1990®2

. Matousek, P.: Verification of Business Process Models. PhD t2a08)
. Blazewicz, J., Lenstra, J., Kan, A.R.: Scheduling subject tauresoconstraints. Discrete

Appl. Math.5 (1983) 1124

. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resaonstrained project

scheduling problem: Classification and computational analysis (1999)

. Li, H., Yang, Y., Chen, T.Y.: Resource constraints analysis akflmv specifications. J.

Syst. Softw.73 (2004) 271-285

. Norstom, C., Wall, A., Yi, W.: Timed automata as task models for event-drasiems.

In: Proceedings of the Sixth International Conference on Real-TinnegQting Systems and
Applications. (1999) 182

. Pozewaunig, H., Eder, J., Liebhart, W.: ePERT: Extending PBRWérkflow management

systems. In: First EastEuropean Symposium on Advances in Databdseformation Sys-
tems ADBIS. (1997) 217-224

Sadiq, W., Orlowska, M.E.: Analyzing process models usinghgraguction techniques.
Information System&5(2)(2000) 117-134

Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: Definition eadlock patterns for busi-
ness processes workflow models. In: Proceedings of the 32ndafhawvaii International
Conference on System Sciences-Volume 5, IEEE Computer Soci€9) 5965

Workflow Management Coalition: Terminology and glossary. Testimeport, Workflow
Management Coalition (1999)

Sadig, W.: On correctness issues in conceptual modeling of wank{{L997)

Hillier, F.S., Lieberman, G.J.: Introduction to operations resedfiolden-Day, Inc. (1986)
Larsen, K.G., Pettersson, P., Yi, W.PRAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfet (1997) 134-152

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic t#b Checking for Real-
Time Systems. In: 7th. Symposium of Logics in Computer Science, |IE&EDter Scienty
Press (1992) 394-406

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property spedifizapatterns for finite-state
verification. In: FMSP ’'98: Proceedings of the second workshop amBl methods in
software practice, ACM Press (1998) 7-15

Gruhn, V., Laue, R.: Patterns for timed property specification.3dd Int. Workshop on
Quantitative Aspects of Programming Languages (QAPL 05), Edihbgotland, April
2005, to appear. (2005)

