
AN APPLICATION TO INTEGRATE RELATIONAL AND XML
DATA SOURCES

Ana Mª Fermoso García, Roberto Berjón Gallinas
Computer Science Faculty, Pontificia University of Salamanca, C/ Compañía, 5, 37002 Salamanca (Spain)

Mª José Gil Larrea
Engineering Faculty (ESIDE), Deusto University, Avda. Universidades 24, 48014 Bilbao (Spain)

Keywords: Relational databases, XML, data integration, heterogeneous data sources.

Abstract: Nowadays, special with the Internet explosion, enterprises have to work with data from heterogeneous
sources, such as data from conventional databases, or from new sources of Internet world like XML or
HTML documents. Organizations have to work with these different data sources at the same time, so, it’s
necessary to find some way to integrate this heterogeneous information.In this paper we are going to centre
in two main types of data, conventional data from relational databases, and the new web data format XML.
Traditional relational database continues being the main data store and XML has become the main format to
exchange and representation data on the web. At the end our purpose would be that the necessary data in
each moment were in the same and common format, in XML, because this is the most used format on the
web.This paper proposes an efficient environment for accessing relational databases from a web perspective
using XML. Our environment defines a query system based on XML for relational databases, called XBD.
XBD has a full XML appearance, query language and query results are in XML format. For the end user it
is similar to query a XML document. This system includes a model to adapt any relational database in order
it could be queried in two new query languages, derived from XSL and XQuery languages, and a software
tool to implement the functionality of the XBD environment.

1 INTRODUCTION

Nowadays business information systems are
suffering numerous changes. Business is
transforming in e-business and it has to manage
large data volumes and besides, from heterogeneous
sources.

When business gets into the web it has to
manage new types of web data as XML or HTML,
for example to exchange information with other
business. However, business information continues
also stored in the traditional databases as the
relational one.

At the same time, the volume of business
information is growing a lot. The information is the
power and data are transformed in information when
they are used to make business decision. This is
happening, for example, in the new data warehouse
store systems, where data are stored and analyzed

before using them like knowledge. Previously this
storing, it would be useful to integrate this
information from different formats.

In this context, where organizations have to
manage a lot of data but from heterogeneous
sources, like conventional database systems or the
new web data sources, it could be necessary to use
tools as mediators to integrate these different data to
a common format like XML, the main format
language on the web.

As we just say Internet has change the business
world and has also made to appear new data formats
as XML. The XML history has always been
connected to the Web evolution (W3C, 2004a). In
fact XML has reached the status of standard of data
exchange and representation in Internet.

In order to manage large amounts of
information, Database Management Systems
(DBMS) continue to be one of the most used tools,

313
Ma Fermoso García A., Berjón Gallinas R. and José Gil Larrea M. (2005).
AN APPLICATION TO INTEGRATE RELATIONAL AND XML DATA SOURCES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 313-319
DOI: 10.5220/0002555403130319
Copyright c© SciTePress

and the most extended model is the relational one,
although the object oriented model or data
warehouse is being used more and more.

Databases world, in order to manage data from
all these heterogeneous sources and formats, have
had to adapt also to the new market, allowing for
example to store these new types of web data, or
changing the way to work with the data using them
as knowledge, as in the data warehouse.

Therefore, because almost all organizations
eventually get into the web, where XML is emerging
as a more effective means of describing the semantic
content of WWW documents, and because the main
amount of business information continues stored in
relational databases, it would be useful to manage a
relational database from a web perspective using
XML. That is, not only to use XML language as
interface to pass information between systems that
interact with each other on the web, also to employ a
XML based language to access to the databases of
these systems.

In this paper we are going to centre only in these
two main data sources, the conventional relational
database system, because as we just say most of the
business data continuing store in them, and XML
data, because it is the most extended data format to
exchange and represent information on the web.

The idea would be how to integrate these two
types of data in order for example to use them later,
to store them in a data warehouse or exchange their
information in the web.

Besides, one of the main requirements of the
query system, as we just said, is its XML based
appearance.

Another important requirement would be that
data maintains its original format, the information
remains stored in the database and it does not have
to go through any migration process.

Our goal will be to permit to query a relational
database, without taking into account its complexity,
size or subject of its information, in a similar way
that if it was a XML document and obtaining XML
data after query execution too. The end user will not
need to know the real storage of the data, for him it
will appear as if he were querying a XML document.
The main contribution of this paper is to explain the
foundations of this new query system called XBD
(XML for Databases) which implements this
functionality. XBD is a query system based on XML
for querying relational databases.

2 OBTAINING XML FROM
RELATIONAL SOURCES

The purpose of this research is to help to integrate
relational database and XML data, obtaining XML
data from relational database data. One time all the
information, from databases or XML documents,
was in the same format, XML, will be easier to
manage it together.

Last versions of the traditional Database
Management Systems (DBMS) as Oracle (Oracle,
2002a) (Oracle, 2002b), Microsoft SQL Server
(Microsoft, 2002) or IBM DB2 (IBM, 2002), have
had to be updated to work with XML data.
According to this, they already can store XML data
together with relational information, carrying new
types of data like XMLType in Oracle and SQL
Server, or XML column and XML collection in
DB2. But in the present research we are not
interested in the storing of XML information in
databases systems, we are only interested in how to
obtain XML data from relational sources. In this
sense, these new versions of the most used DBMS,
allow to query relational data in the database query
language SQL, but returning the query results in
XML format.

Using active server pages designed with Java
Server Pages, Microsoft Active Server Pages or PHP
web pages, is also possible to attain the same effect.
The query to the database in SQL is included inside
the web page code, and they will return the database
query results in XML. These results are added when
the web page is showed in a explorer.

In both kinds of tools, DBMS tools or active
server pages, the query language is SQL. In our
query system we want not only the query results
have a XML appearance, also the query language
have to be derived from XML, so, we will not use
SQL as query language.

Other systems that could be in relation with our
research are the ones that transforming the data
model of a relational database model, to a special
XML View called virtual XML view. This view
show to the user the database content in order he can
make later, queries over this database using XML
languages and obtaining the results in XML format,
too. The virtual XML view is similar to a XML
document where would be stored the database
records content, but it is “virtual” because the
database data are not really translated physically to
XML.

The two main systems of this type are
XTABLES (Funderburk, 2002) and SilkRoute
(Fernández, 2002).

In XTABLES the virtual XML view are called
“default view”. This system use XQuery as query

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

314

language to obtain the default view and to make the
following queries over this view.

In SilkRoute the virtual view is called “query
view”. The first query to obtain this virtual view is
implemented in the RXL language, a special
language characteristic of this system. In the
following queries over this initial view, is used
XML-QL as query language.

To obtain XML data from databases is also our
purpose, but the problem is that in these systems it is
necessary a first query to create the Virtual XML
View, and only the database side affected by this
initial query, will be able to be queried in the
following queries. In our system each query will
have to be able to access any part of the database in
any moment.

One time we have made a short study about
some methods to obtain XML data from relational
sources, and studied their disadvantages compared to
our aims, we are going to explain our proposal,
called XBD system, to get the same goal. In
(Fermoso, 2004) we can find a detailed description
of this new query system.

3 XBD: A NEW QUERY SYSTEM

If we could access relational databases via XML,
this would make easy to integrate XML data
sources, not only with each other, also with
structured data like relational databases, and this is
the purpose of our new XBD system.

To develop our XBD query system, it would be
necessary a method to make any relational database
can be queried in this XML environment.

In the previous study, some analyzed systems
create first a virtual XML view allowing the
following queries over the database. In our case we
are going to implement other solution, we are going
to create the “database XML schema” document as
exit of the adaptation process. Only when we just
obtain this XML document, will be possible to make
queries in XML over the database. Later we will
explain the meaning of this document.

 One time we describe the model to adapt a
database to the XBD query system, we have to
define the syntax of the language we will have to use
to query the database.

Finally, we are not going to use SQL as query
language because it is not XML based, but at the end
the query over the database will have to be executed
in SQL, therefore, it would be necessary to describe
the method to translate the query in our XML
language, to a query over database in SQL, in order
to execute it and return the query results in XML.

As we just say, the first step to get our goal,
would be to adapt any relational database to our
query system, this is, to establish, the model that
allows rewriting the relational database structure in a
special format, XML accessible, but without any
kind of physical translation to XML from the
database records content, because this would be
inefficient (we would need additional store size and
queried data would not be always updated). This
step is called “adaptation database system”.

The second step would be to establish the query
XML based language, to access the databases in our
environment.

The last step would be to define the model to
translate the query from this query language into a
SQL SELECT clause, to make the final access to the
database using the own Database Management
System (DBMS), because it will execute the query
in a more efficient way and will already return the
query results in XML. This step is known as “query
evaluation system”

We can conclude that the architecture of the
proposed system will be made up of two
independent components. The first one, translates
the structured data model of the database to a special
XMLSchema, it is the adaptation database system.
The second component, the query evaluation system,
receives a query in a XML language over the
database, which should have already been adapted to
the system with the preceding component, producing
query results in XML. Figure 1. shows this
architecture.

We are going to analyze first the new languages
we have created to make queries in our XBD
environment and later, we will describe the tasks and
functions of the two main components of this
system, that is, how do the adaptation database and
query evaluation systems work.

Figure 1: XBD System Architecture

ADAPTATION
System QUERY System

 Relational DB

XML results XML Query

DBXML
Schema

AN APPLICATION TO INTEGRATE RELATIONAL AND XML DATA SOURCES

315

4 XBD QUERY LANGUAGES

If we want our system to have a XML appearance,
we should select a language from this environment.
On the other hand, we could have decided to create a
new language from the beginning, or use a language
that already exists. We believe it is better the second
solution because it is easier for the user to make the
query if he already knows the language.

The two main languages belonging to the group
of XML languages are XSL (W3C, 2004d) and
XQuery (W3C, 2004e). XSL (Extensible Stylesheet
Language) is XML fully defined, widely
implemented, and nowadays an industry de facto
standard. Actually, it is not a query language, but a
presentation language, although by its final results
could also be considered like a query language.
XQuery is not XML defined, but will be sure the
future query language for XML information. So, we
have decided our query language was based in these
languages and we will have to study how to adapt
the two languages to the database query.

At the end we have adapted both languages to be
used in our system and we have created two new
languages derived from them called Adapted XSL
and Adapted XQuery. It will be possible to use any
of these two languages to query databases.

We have added new characteristics and/or
modified others over their standard versions, to
adapt these languages to querying relational
databases. In every moment we have tried to keep
the similarity between the meaning of the standard
language constructions of these languages and the
equivalent SELECT clause in SQL, since at the end
the query in Adapted XSL or Adapted XQuery, will
have to be translated to SQL.

In both new languages, every query document is
translated to a single SELECT clause in SQL
language, although there could be other SELECT
clauses inside one (nested SELECT). The SELECT
clause obtained after the translation process will be
executed over the database.

4.1 Adapted XSL Language

To adapt the standard XSL language to XBD system
we only need to use some of the standard XSL
constructions: stylesheet, apply-
templates, template, value-of, if, for-
each, when and short.

We are going to explain the mining of these
constructions in relation with the database query
equivalent in SQL:

xsl_adapt:stylesheet: shows the file
where is the Database XML Schema obtained in the
adaptation process. In this document we find the

information about how to connect with the database
that we are going to query. The name of the
Database XML Schema document will appear in a
new attribute of this construction, called
“schema_db”.

xsl_adapt:apply-
templates/xsl:templates: every “template” is
translated to a single SELECT sentence in SQL.

The value of the match/select attributes of
these constructions show the main table of the query.
This table will appear in the FROM clause in the
equivalent SQL SELECT sentence. If other
constructions in the query, value-of, if, …
reference fields from other tables in the database,
these tables will also be added to the SELECT
sentence.

xsl_adapt:value-of: shows the database
fields queried. These fields will appear in the
SELECT clause when the query was translated to
SQL.

xsl_adapt:if: adds a condition to the query.
This construction will be translated to a WHERE
clause of the SELECT sentence in SQL.

xsl_adapt:for-each: allows grouping the
query. In SQL this construction is translated to the
GROUP BY clause of the SELECT sentence.

xsl_adapt:when: adds a condition to a
GROUP BY clause in SQL, the “HAVING” part of
the GROUP BY in SQL.

xsl_adapt:sort: allows to sort the query. It
is equivalent in SQL to the ORDER BY clause.

All these constructions have attributes (select,
match, test, …) where you can use path
expression. These path expressions refer to database
tables and fields in the query. To express these path
values the XPath language (W3C, 2004b) syntax is
used, where the symbol “/” separates the names of
tables and fields of the database referenced in the
query.

Besides, it is also possible to nest SELECT
sentences to permit the “joins” in the queries. Since
a “template” and the corresponding “apply-
template” are translated to a single SELECT
sentence, if inside a “template” appears an “apply-
template” construction, which will correspond to
other SELECT sentence, it means that this second
SELECT will be nested inside the SELECT of the
first “template”, and in the same way, inside of the
“template” associated to the “apply-template” could
be other apply-template equivalent to other nested
SELECT, and so on.

For example, the following select sentence,
which query the “name_prod” field from a table
“Product”: SELECT name_prod FROM
Product, in Adapted XSL language would be
equivalent to:

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

316

<?xml versión=”1.”>
<!DOCTYPE xsl_adapt:stylesheet system
“xsl_adapt.dtd”>
<xsl_adapt:stylesheet
version = “1.0”
schema_db= “schema_db_produc.xml”>
 <xsl_adapt:template match=/”>
 <xsl_adapt:apply_template
 select=”Product”>
 </xsl_adapt:template>
 <xsl_adapt:template
 match=//Product”>
 <xsl_adapt:value_of
 select=”name_prod”>
 </xsl_adapt:template>
</xsl:stylesheet>

In the “schema_db” attribute of the stylesheet
construction appears the name of the XML
document that contains the Database XML Schema.

4.2 Adapted XQuery language

To adapt XQuery language to database query we
only need to use the FROM-LET-WHERE RETURN
(FLWR) XQuery expression, because it is the most
similar to the SELECT clause in SQL. The mapping
to obtain the equivalent SQL clause would be:

FROM, RETURN WHERE: show the tables of the
query. This tables will appear in the FROM clause
of the equivalent SELECT sentence.

RETURN: shows the fields of the query. These
fields will be the database fields of the SELECT
clause in the SQL sentence.

WHERE: allows the addition of a condition to the
query. It is translated to a WHERE clause in the
SELECT sentence of SQL.

LET: allows grouping the result. It will be the
GROUP BY of the SELECT sentence in SQL.

SORTBY: this sentence appears inside a FROM
clause and allows the result to be sorted. It is
equivalent to the ORDER-BY clause in the
translation to SQL.

The path expressions which appear in the FLWR
sentences show the database fields and tables in the
query. These path expressions use the XPath syntax.

In the same FLWR expression it is also possible
to reference different tables and later, in the
RETURN clause, join their results. In this way it
will be possible to make nested SELECT when the
query is translated to SQL.

For example, the same query as in the last
section (SELECT nom_prod FROM products)
and being “schema_db_produc.xml” the XML
document with the Database XML Schema of the
queried database, which contains database structure
information once it has been adapted to XBD
system, in Adapted XQuery, would be:

FOR $p IN
document(“schema_db_produc.xml”)
RETURN Product/name_prod

5 XBD SYSTEM COMPONENTS

XBD system has two main functions, implemented
in a new software tool, that are described in the next
sections. The first is used to adapt any relational
database so that it could be queried in XBD and the
second, once the database has been adapted to our
system, it allows it may be queried in our Adapted
XSL or Adapted XQuery languages.

5.1 Adaptation Database System

This system allows any relational database to be
queried in XBD. To do this it is necessary to obtain
a special XML document called Database XML
Schema which will have all the necessary
information about the database structure: tables,
relations and fields and will be used as input for the
next query component. The appearance of this
document will be very similar to a XML Schema
document (W3C, 2004c). Besides, we can obtain
two types of Database XML Schema documents,
one with the appearance of a XSD schema document
of the W3C and another one with the XDR schema
of Microsoft, since these are the two types of
schemas used to validate XML documents.

The elements of these documents depend on the
format used, element and ElementType in XDR
schema and SympleType, ComplexType,
sequence and element in XSD. These elements
will contain all the information about the database:
tables, their relationships with other tables and
cardinality, fields of every table with their data types
and information on whether they are a key in this
table or not.

In this way, if we use a Database XML Schema
in XSD format, the “SympleType” element will
describe every database field or column, and the
“name” and “type” attributes of this element, will
specify the name and data type of the field. To
describe every database table it will have to be used
the “ComplexType” element. Nested with every
“ComplexType”, the “sequence” and “element”
elements will describe all the fields and linked tables
to the table of the “ComplexType”. For every
relationship the cardinality is showed with the
“minoccurs” and “maxoccurs” attributes. For every
field it is specified if the column is or not a key of
the table and the type of key, primary or foreign key
(pk or fk).

AN APPLICATION TO INTEGRATE RELATIONAL AND XML DATA SOURCES

317

Using the XDR schema format, we make a
parallelism to represent the database structure, but
now using “element” to define the name and type
(table or field) of every component of the database,
and “ElementType” to describe the content of every
table, similar to “Complextype” in the XSD Schema.

For example, if we have a database where we
have information about products and orders:
PRODUCTS (cod_prod, stock), ORDERS
(cod_ord, date_ord, cod_prod, cant_ord)
and we know a product can appear in many orders,
the representation of the PRODUCTS table in the
Database XML schema in XSD format could be the
following.

<SympleType name=”cod_prod”
type=”NUMBER”>
<SympleType name=”name_prod”
type=”VARCHAR2”>
<ComplexType name=”PRODUCTS”>
 <sequence minOccurs=”1”
 maxoccurs=”1”>
 <element type= ”cod_prod”
 pk=”true”>
 <element type= ”stock_prod>
 </sequence>
 <sequence maxoccurs=”unbounded”>
 <element type ORDERS>
 </sequence>
</ComplexType>

We have added to our both types of Database
XML Schema documents a new element called
conexion, which contains the necessary
information to connect the database queried. In this
element, the values of the “owner” and “cad_conex”
attributes, specify the necessary information to make
the connection to the database (driver, user and
password), although the details of this string depend
of the DBMS system of the database, Oracle in our
example:

<conexion type="basedatos" owner="pp"
cad_conex="jdbc:oracle:thin:pp/pword@
srvdes.upsa.es:1521:bd"/>

5.2 Query Evaluation System

This component allows querying a relational
database, adapted with the previous component, in
our XML languages. In practice our software tool
only implements queries in Adapted XSL language,
but the steps would be similar if we use our Adapted
XQuery language.

Thanks to the interface of the software
component which implements this query function,
the end user always believes he is querying a XML
document; he makes a query in a XML language and
obtains the results in a XML format too.

Query evaluation system allows, first to edit or
modify a query in Adapted XSL language, then to

test it, and finally to execute it, so, it has three
components.

The editor component allows us to edit or
modify a database query in Adapted XSL language.
To help the user to edit the query document, the
database structure is shown as if it were an XML
document, in a tree structure. The nodes and
branches of this tree will be the tables and fields of
the database.

Every table is represented in a node and
expanding the branch associated, you can find the
fields of this table and the tables in relation with it.
In this way, the user thinks he is accessing to a XML
document, the appearance is the same. Besides, this
component also provides editing on line facilities to
write the Adapted XSL constructions in the query. In
the figure 2 we can see the appearance of the editor
component.

Figure 2: XBD Query editor interface

The tester component allows us to test if the
query is or not correct in two senses. It tests if the
query syntax is correct applying the Adapted XSL
rules, and it also tests if all the elements referenced
in the query with the path attribute values, belong to
the database structure components, tables, fields and
relations.

Once the user has proved the query is correct, he
can execute it over the database with the evaluator
query component. This component executes the
query over database and returns the query results in
XML format. To execute it, first the component
translates the Adapted XSL query to the equivalent
SELECT clause in SQL, applying the rules of the
4.1 section. After that, the DBMS will execute this
SQL query, and thanks to the new DBMS tools, will
return the result in XML.

DB tree
structure

 Path
selection

On line edit
facilities

Query edit
screen

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

318

6 CONCLUSIONS

In this paper we have studied the need of a system
for querying relational databases in a web
environment using a XML appearance. XML is the
most useful standard to data exchange and
integration on the web and as such, can serve like a
link between heterogeneous data sources that have to
work together on the web, like structured databases
and XML documents.

Our new XBD system gives user the possibility
to query a relational database like if it was a XML
document. This makes easy the possibility to
integrate XML and relational data in a transparent
way for the user, that always thinks he is queried
XML data.

We have described the main characteristics of
the XBD system. These features, as we can see in
the next paragraphs, show that it is efficient and
transparent for the user, and this fulfils our aims.

We have also defined the language that will be
used for querying. Finally, we explain the main
components of this system that permit the adaptation
to any relational database and then to query it.

To show the efficiency of our system, we can see
that to adapt the database, we do not have to
translate the database data or records to any format,
XML or others, and this implies saving storage
space and that the queried data will always be
updated. Besides, with this adaptation process, user
can query any side of the database, because there
isn’t any initial query or XML view that restricts the
rest of queries.

Second, we get the query execution were very
fast because it is executed by the self DBMS where
the database is located, we have only added the
translation process from Adapted XSL to SQL, and
this extra time is minimum compared to the
complete query execution time. Finally, the whole
environment has an XML appearance, in this way
the user believes he is querying a XML document,
not a database, and this is very important when we
want to work in a web environment managing
different data sources, XML and databases, but in a
transparent way for the user.

In addition to all this advantages and to prove
them again, our XBD system has been satisfactory
tested in real production environments. For example,
it is being used with success in an application where
university students query the marks of their courses
in the web. XBD allows query the database where
teachers introduce the student data and shows the
query results in a XML format on the web. Besides,
if it is necessary, these results could be merged later
with other XML data, for example with other XML

information about the students that we have obtained
from other university databases.

REFERENCES

Fermoso, A., Berjón, R., 2004. Acceso a datos
relacionales en entornos Web. Un caso práctico.
Publicaciones Universidad Pontificia de Salamanca

Fernández, M., Kadiyska, Y., Morishima, A., Suciu, D.,
Tan., W.C., 2002. SilkRoute: a framework for
publishing relational data in XML. ACM Transactions
on Database Systems (TODS), Vol. 27, Nª 4,
December, pp. 438-493.

Funderburk, J. E., Kiernan, G., Shanmugasundaram, J. ,
Shekita, E., Wei, C., 2002. XTABLES: Bridging
relational technology and XML. IBM Systems
Journal, Vol. 41 , Nª 4.

IBM, 2002. IBM DB2 Universal Database. XML Extender
Administration and Programming. Version 8. IBM
Corporation.

Microsoft, SQL Server 2000. XML and Internet Support.
Microsoft Corp.

Oracle, 2002. Oracle 9i Release 2. Database Concepts.
Oracle Corp., March.

Oracle, 2002. Oracle 9i Release 2. XML Database
Developers's Guide-Oracle XML DB. Oracle Corp.,
October.

World Wide Web Consortium (W3C), 2004. Extensible
Markup Languaje (XML). http://www.w3c.org/xml.

World Wide Web Consortium (W3C), 2004. XML Path
Language (XPath). http://www.w3c.org/TR/xpath.

World Wide Web Consortium (W3C), 2004. XML
Schema. http://www.w3c.org/2001/XMLSchema.

World Wide Web Consortium (W3C), 2004. Extensible
Style Language (XSL).
http://www.w3c.org/Style/XSL.

World Wide Web Consortium (W3C), 2004. XQuery: A
Query Language for XML.
http://www.w3c.org/TR/xquery.

AN APPLICATION TO INTEGRATE RELATIONAL AND XML DATA SOURCES

319

