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Abstract: Reactive non-stoppable software systems perform tasks continually to face environmental changes. These
changes require for adapting strategies of the set of behaviors, or to add new ones according to the ability of the
underlying hardware capabilities. Current approaches to runtime adaptation focus only on information which
is provided by the implementation phase. Design information is not involved, even though it is extremely
useful for adaptation, because they holds the semantics of the regarding software system. We present an
evolutionary life cycle for self-evolving software systems by combining the traditional spiral life cycle model,
known from software development with a reflective architecture which processes design information. This
allows the iterative evolution of software systems at runtime. The reflective architecture (especially the meta-
level) evolves the behavior and structure of the software system using its design information. Furthermore,
we propose the concept of meta-feedback to react flexibly on the continuous changes of the environment. The
proposed life cycle practicability is illustrated through a case study, a robot control software.

1 INTRODUCTION

A major issue in the software engineering research
area is to develop software systems which can be
adapted and customized to fit the environment and re-
quirements. A special class, reactive non-stoppable
software systems, needs to autonomously adapt itself
to runtime changes of the requirements and runtime
events, occurring in the environment. One prominent
approach to implement self-adaptable software sys-
tems are reflective architectures (Maes, 1987; Dowl-
ing and Cahill, 2001; Roman et al., 2001). Reflective
architectures provide information about their internal
structure and behavior. This information can be in-
spected and adapted to react to changes of the envi-
ronment or application requirements.

Our approach is based on our previous work onar-
chitectural reflection(Cazzola et al., 2002; Cazzola
et al., 2004). Architectural reflection map the knowl-
edge from the design phase, e.g.UML diagrams, to
the running phase of the application, represented as
meta-data. This mapping makes it easier to decide
which runtime events are relevant and how to adapt.
The contribution of this article is the combination of
architectural reflection with the spiral life cycle model

for software development (cf. Sec. 2): In short, the
spiral software life cycle evolves a software system
by passing through different development phases (e.g.
analysis, design, implementation, etc.) iteratively
several times. Each phase modifies and evolves the
software system. Our approach transfers this iterative
evolution to runtime. Doing so, we combine the spiral
life cycle model with a reflective architecture and an
evolution based on design information (architectural
reflection). This makes software evolution possible at
runtime, in order to adapt to changes of the environ-
ment and requirements.

To accomplish that, we divide the software system
into a base-level and a meta-level: The base-level con-
tains the running application and harvests and stores
the design information. The design information is
represented asUML/XMI documents(OMG, 2002).
The meta-level evolves and validates the systems be-
havior. It reacts to runtime changes, indicated by run-
time events, by triggering meta-cycles. Each meta-
cycle evolves and validates the behavior according to
one runtime event. The evolution and validation takes
place in theUML/XMI document using graph trans-
formation (cf. (Cazzola et al., 2004)). If multiple run-
time events occur the meta-cycles are processed se-
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quentially, one by one. To reduce the gap between
the currently processed meta-data and the base-level
state, the meta-data are updated between two cycles at
a time. The updates, namedmeta-feedback, are reified
continuously from the base-level. If no more runtime
events occur, the meta-data are propagated back to the
base-level. Having done so, the behavioral changes
are applied to the base application at runtime.

The remaining paper is organized as follows: Sec-
tion 2 provides a brief overview of the methods and
tools we have adopted in our work; Section 3 de-
scribes the evolutionary life cycle; To exemplify, Sec-
tion 4 applies the proposed life cycle to a robot control
software. Finally, Section 5 concludes.

2 BACKGROUND

2.1 Computational Reflection

Computational reflection (Maes, 1987) is a technique
for inspecting the current structure and behavior of
a software system. When using reflection, the sys-
tem is able to reason about its own behavior and per-
form selected changes at runtime. A reflective system
is divided into two levels, a base-level and a meta-
level. The base-level is the part of the system that
performs processing for the application, for instance
controlling transaction executions. The objects at the
base-level provide meta-interfaces that at the meta-
level gives access to the internal representation of the
system. The services provided by the meta-interfaces,
often referred to as the meta-object protocol (MOP),
allow inspection and modification of system behavior
and structure (Kiczales et al., 1991).

Reflection is a technique that allows a software
system to maintain information about itself (meta-
information) and using this information to change
(adapt) its behavior. This is implemented by a causal
connection between base- (monitored system) and
meta-level (monitoring system).

2.1.1 Architectural Reflection

In (Cazzola et al., 2002; Cazzola et al., 2004) we have
proposed an infrastructure that dynamically adapts
software systems usingarchitectural reflection. The
key idea of architectural reflection is to reuse the
knowledge of the design phase to evolve and vali-
date the structure and behavior of a software system
at runtime. The base-level consists of the running ap-
plication as well as of design information in form of
UML/XMI documents. The meta-level is composed of
an interpreter engine for managing the evolution and
validating consistency processes for runtime changes.

The evolution and validation is based on graph trans-
formation (Cazzola et al., 2004) which takes place
on the reified design information (UML/XMI docu-
ments).

2.2 Software Engineering Models

Software engineering models define how to develop
a software system. There are two schools of thought
in software engineering: first, linear thinking fostered
by thewaterfall life cycle(Royce, 1970). The water-
fall life cycle is divided into sequential phases analy-
sis, design, implementation and testing phase, which
evolve the software system sequentially. Second, iter-
ative or evolutionary thinking, fostered by thespiral
life cycle model(Boehm, 1988; Cotton, 1996; Gilb,
1988). It divides the software engineering space into
four quadrants: management planning, formal risk
analysis, engineering, and customer assessment. The
development cycle is divided into n-cycles. Each cy-
cle consists of waterfall phases. The result of each cy-
cle is a prototype, until the final version of the product
is reached. Furthermore, user feedback is considered
at the output of each cycle. Therewith, new additional
features are included into the next cycle.

3 EVOLUTIONARY LIFE CYCLE
FOR DYNAMIC ADAPTATION

The structure of the evolutionary life cycle is based
on the spiral life cycle model. The life cycle is com-
posed of two cycles: the base-cycle and one or more
meta-cycles, as shown in Figure 1. The processes of
the base-cycle execute in sequential flow. At the base-
cycle, thebase-engineextracts the design information
in form of UML/XMI documents from the base appli-
cation to constitute the base-data. Adopting the ideas
of the spiral life cycle model, we instantiate multi-
ple meta-cycles, each for one runtime event. These
meta-cycles evolve and validate the behavior (using
the reified design information) in order to react to the
runtime events. The processes of the meta-cycles exe-
cute in an incremental flow. The meta-processes start
by the reification of the base-data to constitute the
meta-data at meta-level. Runtime events trigger the
instantiation of meta-cycles. Each meta-cycle evolves
the meta-data representation of the design informa-
tion using the evolutionary engine. The evolutionary
phase inside a meta-cycle is responsible for building
new meta-data including the runtime changes. Af-
terwards, the validation phase checks the consistency
(consistency checker) of the evolved meta-data ac-
cording to the effects of the runtime events. If a run-
time event occurs during a running meta-cycle, the
event is cached and a new cycle is instantiated after

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

212



...
cycle 2 cycle n

initialize update

design information
collect

data 0 cycle 1 data 1

UML/XMI documentsbase application

design

data n

reflectionreification

evolutionary engine

back propagation

consistency checking

meta− meta− meta− meta− meta− meta−

meta−feedback

meta−object protocol

base−engine

meta−level

base−level

current

information

Figure 1: The Evolutionary Life Cycle

the former cycle has finished. It starts after the finish-
ing of the previous one. From the predecessor cycle
each meta-cycle gets the resulting meta-data as input.
To minimize the gap between the evolution phase us-
ing multiple meta-cycles and the base-level we pro-
pose the concept ofmeta-feedback. As mentioned
this idea is adopted form the spiral life cycle model.
The input meta-data of a new meta-cycle have to be
merged with the current base-data. Finally, if no new
event occurs in a defined time interval the modified
meta-data are reflected back to the base-level. In the
following we discuss both cycle types in more detail:

Base-cycle.The base-cycle includes two linear
phases: The first phase contains all base imple-
mentation units as requirements; that includes ob-
jects, attributes, methods, states, and their graphical
representation by usingUML. By using the base-
engine the design information will be extracted.
The second phase: includes theUML/XMI docu-
ments.UML/XMI provides a simple translation of
UML diagrams which are more suitable for run-
time manipulation. The internal representation of
the base cycle is illustrated in Algorithm 1.

Data : objects, states, collaborations,UML represen-
tations

Result : UML/XMI schemas
repeat

if object, collaboration or state has changedthen
create newUML/XMI document;
provide documents via meta-object protocol;

end
until base application is finished;

Algorithm 1: Base-cycle flow

Meta-cycle. The meta-cycles can access design in-
formation of the base-level (base-data) using the

meta-object protocol. First,UML/XMI documents
are reified to constitute the meta-data. In fact they
are transferred from base- to meta-level at runtime.
Afterwards, multiple meta-cycles are instantiated,
each for processing one runtime event. If a runtime
event occurs during a running meta-cycle, the event
is cached. When the meta-cycle has finished, a new
cycle is instantiated. This new cycle processes the
cached event. Each meta-cycle evolves and val-
idates the meta-data in order to react to runtime
events, while the base-level system runs in paral-
lel. After each meta-cycle the resulting meta-data
are merged with the updated base-data, received
from the base-level. This reduces the gap between
the time used for the meta-cycle to modify reified
data and the changes for the running base appli-
cation during the meta-cycle processes. After the
last meta-cycle the meta-data are propagated back
to the base-level. The internal representation of the
meta-cycles is illustrated in Algorithm 2.

Evolution and validation as well as the merging and
update operations are based on graph transforma-
tions. These take place on theUML/XMI docu-
ments (cf. (Cazzola et al., 2004)). The following
section describes theUML operators which work on
UML/XMI documents and the overall evolutionary
life cycle.

Data : meta-data, runtime events
Result : new meta-data includes the runtime changes
repeat

if meta-data reifiedthen
meta-level starts its processes to evolve and
validate consistency for the reified meta-data;
update meta-data;
for each runtime eventdo

evolutionary engine evolve the meta-data;
validate the modified data by using the
consistency checker;

end
end

until runtime events detected;
reflect modified meta-data back to the base-level;

Algorithm 2: Meta-cycle flow

3.1 Formalized Design Information

This section introduces two operators, which are used
in the evolutionary life cycle to process design in-
formation: (1) theUML update operator which up-
dates oneUML/XMI document using up-to-date de-
sign information. This operator is used to merge the
reified meta-data with the meta-feedback. (2) The
UML intersection operator, which processes the inter-
section between twoUML/XMI documents is used to
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get insight if consistency problems occur. To describe
these operators and clarify the internal processes, we
formalize the specification of the design information
(UML/XMI documents):

General definitions. Starting point is the general de-
finition of a tree: G = {V,E}. The nodes of the
graph correspond to all possible tags of UML/XMI
documents (OMG, 2002), except the relations (e.g.
inheritance, association, etc.). The edges corre-
spond to the relations between theUML entities
(e.g. classes, objects, etc.). In the following we call
these graphsUML trees. We define two operations
onUML trees:

UML intersection operator. This operator deter-
mines the intersection of twoUML trees. The
result is a tree with the intersection of the node
and edge set. To allow empty intersections the
root nodevr is left (the root node of UML/XMI
documents is not anUML entity. It serves only as
root for allUML entities.):

G1⊖G2 = {(V1∩V2)\{vr}, {e | e ∈ E1∩E2 ∧

e /∈ {vr} × (V1 ∪ V2)}} (1)

UML update operator. The UML update operator
defines how twoUML trees are merged. Thereby,
the first operand is dominant. That means, if in both
node or edge sets equal elements are included, the
element of the first operand is chosen to become
part of the resulting set. Therefore this operand is
not commutative:

G1⊕G2 = {{v, w | v ∈ V1, w ∈ V2 ∧ w /∈ V1},

{e, h | e ∈ E1, h ∈ E2 ∧ h /∈ E1}} (2)

The intersection operator is used to find conflicts
between two versions of design information, e.g.
the currently processed meta-data conflict with the
currently occurred changes at the base-level (meta-
feedback). The update operator is used to merge the
meta-data and the meta-feedback.

3.2 Formal Description of the
Evolutionary Life Cycle

The evolutionary life cycle consists of several meta-
cycles (Φi with i = 0, 1, . . . , n andn ∈ N). Each
meta-cycle gets reified base-data in form of anUML
tree as argument. It modifies/evolves and validates
these input data according to its corresponding run-
time event. If a meta-cycle is active and a run-
time event occurs, it is interrupted and a successor
cycle is invoked. All meta-cycles except the first
(∀Φi with i > 0) get the modified data as input from
its predecessor cycle. We define a meta-cycleΦi as a
function which transforms the input graphGi to G′

i
:

G′

i
= Φi(Gi) (3)

The input data of the first meta-cycle (Φ0) is the rei-
fied (by the base-engine)UML tree which describes
the current base-level state. For every other meta-
cycle (Φi, with i 6= 0) the input tree is the result of
Φi−1 merged with new reifiedUML tree Ui of the
base-level (meta-feedback) using theUML update op-
erator:

Gi = Ui ⊕ G′

i−1 (4)

In the following a sequence of two meta-cycles is de-
picted:

G′

i
= Φi(Gi)

Gi+1 = Ui+1 ⊕ G′

i

G′

i+1 = Φi+1(Gi+1)

(5)

A consistency problem occurs if the resulting treeGi
′

of meta-cycleΦi overlaps the treeUi+1 with updated
base-level state. The problem can be found out using
the UML intersection operator. In the current form
UML update operator replaces all nodes and edges of
Gi

′ with equal ones ofUi+1. Several others are think-
able.

To clarify the functionality of the evolutionary cy-
cle we present the required algorithm for the pre-
sented algebraic operations:

UML intersection operator. The intersection opera-
tor gets twoUML trees as input and returns a graph
as output which contains all nodes and edges which
are in both input trees except of the root nodevr

and the edges which are connected tovr. The algo-
rithm is depicted in Algorithm 3:

Data : firsttree, secondtree
Result : resulttree
for each node∈ firsttreedo

if node∈ secondtreeand node6= vr then
add node to resulttree;

end
end
for each edge∈ firsttreedo

if edge∈ secondtreeand edge is not connected to
vr then

add edge to resulttree;

end
end

Algorithm 3: Algorithm of theUML intersection opera-
tor

UML update operator. The update operator gets
two UML trees as input and returns a tree whose
nodes and edges belong to the first input tree and
the nodes and edges which belong to the second in-
put graph and are not part of the first input graph.
The corresponding algorithm is depicted in Algo-
rithm 4:
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Data : firsttree, secondtree
Result : resulttree
for each node∈ firsttree and edge∈ firsttreedo

add node and edge to resulttree;

end
for each node∈ secondtree and edge∈ secondtreedo

if node and edge/∈ firsttreethen
add node and edge to resulttree;

end
end

Algorithm 4: Algorithm of theUML-update operator

Evolutionary life cycle. The evolutionary life cycle
reifies base-data (see Alg. 5). In the main running
phase it instantiates multiple meta-cycles (init).
Runtime events can occur during a running meta-
cycle. In this case the event is cached and after the
finished cycle an new one is instantiated. The new
cycles get the meta-data merged with the updated
base-data as input (update). If the last meta-cycle
has finished the meta-data are passed back to the
base-level.

Data : event, reified inputtree
while event && current metacycle not finisheddo

init(metacycle, event);
modifiedtree = startmetacycle(metacycle,
inputtree);
if metacycle not finishedthen

inputtree = update(reify(), modifiedtree);

end
end

Algorithm 5: Algorithm of the evolutionary life cycle

4 CASE STUDY: ROBOT
CONTROL SOFTWARE

Robot control software is one representative exam-
ple for a reactive non-stoppable software system. Ro-
bots interact strongly with their environment and react
continuously to external changes and events. In this
section we discuss how to apply the proposed evolu-
tionary life cycle to robot systems, e.g. working Sony
Legged Robots (SLR) (Fujita et al., 1999). For ex-
planation, we use a robot soccer scenario: Each robot
team consists of three robots including a goalkeeper.
Robots can move, shoot and have sensors to observe
the field, the ball and the other robots.

To clarify the appliance of our approach to this sce-
nario, we discuss the internal phases of the evolution-
ary life for robot control software:

Base-cycle.In Figure 2, we illustrate the representa-

Base Engine

Player

RedTeam RobotRB:

States

instance of

Robot Instance,
Objects, Classes

Midfielder

Midfield
Defender

Midfield
Attacker

    <UML:attribute>

    <UML:states>

        < UML:attribute name="color"/>

    </UML:attribute>

<UML:Class name="RedTeam">

         UML:state name=midfielder .runtime="tr"/>
        <...>

    <UML:Class.instance>
    </UML:states>

        <UML:Class.instance name="RobotRB"/>
        <UML:attribute.value value="Red"/>
        <UML:states.value value="true" runtime="1 min"/>
    </UML:Class.instance>
    <...>
</UML:Class>

UML/XMI Document

Figure 2: A robots base-cycle

tion of theUML diagrams for a robot. As one can
see design information consists of class/object dia-
grams and state charts. This design information is
transformed by the base-engine toUML/XMI docu-
ments. The meta-level can access these documents
using the meta-object protocol.

Meta-cycle. When the base-engine has finished, the
extracted data will be reified to constitute the meta-
data. In Figure 3, we illustrate the structure of
meta-cycles in detail. The evolutionary controller
waits for runtime events, e.g., the ball or the goal
is near. If a runtime event occurs the meta-cycle
evolves the system behavior, e.g., pass the ball to
another robot. If there is no new runtime event
the modified meta-data are reflected back to the
base-level and therewith the behavior of the ro-
bot changes. But in dynamic environments like
the robot soccer scenario, runtime events occur fre-
quently. Because of this fact, we cache runtime
events which occur during a running meta-cycle.
After the cycle has finished, a new one is instan-
tiated to react on the new event, e.g. the shooting
line to the goal is blocked. To take the current base
application state into account, e.g. new knowledge
about the robot player distribution over the field,
the output meta-data from the finished cycle are
merged (using theUML update operator) with the
meta-feedback from the base-level. These merged
data are the input of the new cycle. If no more event
occur the meta-data are reflected back to the base-
level.

For a better understanding, imagine the following
example: A robot senses an opponent robot near the
ball. What is the best behavior for the robot? The ro-
bot can use the following knowledge in form of meta-
data to make decisions:
• position of the ball, and distance to the ball
• distribution of the robots over the field
• distance to the goal and opponents
Based on this knowledge about the environment, a ro-
bot can make several decisions, e.g.:
• move to the ball autonomously
• let another team member move
• block opponents to reach the ball
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• move to a defender position

Data : OppPos, BallPos, GoalPos, MyPos
if dist(OppPos, BallPos)< dist(MyPos, BallPos)then

move to defender position; switch to defender state;
else

if fireline is blockedthen
pass to nearest team member;
switch to attacker state;
else

shoot the ball; switch to kick-off state;
end

end
end

end

Algorithm 6: Rules to adapt the behavior of a robot.

Algorithm 6 shows possible rules to make a deci-
sion, based on the reified sensor information. If the
opponent is closer to the ball, the robot moves to a
defender position to block the offense. If the robot
itself is closer to the ball, it has two alternatives: If
the fire line to the goal is blocked he passes the ball
to a team member; if there is no opponent robot in
the line to the goal it can shoot directly. It can be
seen that the robot uses reified sensor information to
make decisions. Moreover, robots use the reified de-
sign information to switch between states (defender,
attacker, kick-off).

5 CONCLUSION

We have proposed an evolutionary life cycle that is
suitable for self-adapting object-oriented information
systems. The key idea of our approach is to com-
bine the concepts of the spiral life cycle model and
architectural reflection, to map the ability of contin-
uous evolution from the development phase to run-
time execution. In this context, we have proposed the
meta-feedback concept to update the meta-data itera-

tively in order to consider the current base-level state.
Furthermore, we have illustrated the formal descrip-
tion of evolutionary life cycle. Finally, we have pre-
sented an application of our evolutionary life cycle on
a working Sony Legged Robot (SLR).

In future work, we will provide a consistency run-
time formal framework for all phases of the proposed
life cycle as well as extensive experiments.
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