
REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF
DATA MINING TECHNIQUES ∗

Marcello Esposito, Claudio Mazzariello, Francesco Oliviero,Simon Pietro Romano, Carlo Sansone
Dipartimento di Informatica e Sistemistica – Università degli Studi di Napoli “Federico II”

Via Claudio 21, 80125 Napoli (Italy)

Keywords: Intrusion Detection, Traffic Features.

Abstract: Rule-based Intrusion Detection Systems (IDS) rely on a set of rules to discover attacks in network traffic. Such
rules are usually hand-coded by a security administrator and statically detect one or few attack types: minor
modifications of an attack may result in detection failures. For that reason, signature based classification is
not the best technique to detect novel or slightly modified attacks. In this paper we approach this problem by
extracting a set of features from network traffic and computing rules which are able to classify such traffic.
Such techniques are usually employed in off line analysis, as they are very slow and resource-consuming. We
want to assess the feasibility of a detection technique which combines the use of a common signature-based
intrusion detection system and the deployment of a data mining technique. We will introduce the problem,
describe the developed architecture and show some experimental results to demonstrate the usability of such
a system.

1 INTRODUCTION

Security is one of the main concerns in the devel-
opment of new technologies and services over the
Internet. The most common and best known tools
used to ensure security of companies, campuses and,
more in general, of any network, are Firewalls and
Antiviruses. Though famous and well known, such
tools alone are not enough to protect a system from
malicious activities. Basing one’s own site’s secu-
rity on the deployment of these instruments relies on
the idea that intrusion prevention will suffice in ef-
ficently assuring data availability, confidentiality and
integrity. Indeed, an iteresting idea about intrusions is
that they will sooner or later happen, despite the secu-
rity policy a network administrator deploys. Based on
such assumption, the researchers started to develop
instruments able to detect successful intrusions and,
in some cases, trace back the path leading to the at-
tack source. This is a more pessimistic, though much
more realistic way to look at the problem of network
security.

∗Research outlined in this paper is partially funded
by the Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) in the framework of the FIRB Project
“Middleware for advanced services over large-scale, wired-
wireless distributed systems (WEB-MINDS)”

2 RELATED WORK

This work has many liaisons with bothintrusion de-
tectionanddata mining.

As to the first research field, intrusion detection is
the art of detecting inappropriate, incorrect or anom-
alous activity within a system, be it a single host or
a whole network. An Intrusion Detection System
(IDS) analyzes a data source and, after preprocess-
ing the input, lets a detection engine decide, based
on a set of classification criteria, whether the ana-
lyzed input instance is normal or anomalous, given a
suitable behavior model. Intrusion Detection Systems
can be grouped into three main categories:Network-
based Intrusion Detection Systems(N-IDS) (Vigna
and Kemmerer, 1999),Host-based Intrusion De-
tection Systems(H-IDS) (Andersson, 1995) (Tyson,
2000) andStack-based Intrusion Detection Systems
(S-IDS) (Laing and Alderson, 2000). This classifi-
cation depends on the information sources analyzed
to detect an intrusive activity. An N-IDS analyzes
packets captured directly from the network. By set-
ting network cards in promiscuous mode, an IDS can
monitor traffic in order to protect all of the hosts con-
nected to a specified network segment. On the other
hand, an H-IDS focuses on a single host’s activity:
the system protects such a host by directly analyzing
the audit trails or system logs produced by the host’s
operating system. Finally, S-IDS are hybrid systems,

120
Esposito M., Mazzariello C., Oliviero F., Pietro Romano S. and Sansone C. (2005).
REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF DATA MINING TECHNIQUES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 120-127
DOI: 10.5220/0002536601200127
Copyright c© SciTePress



which operate similarly to a N-IDS, but only analyze
packets concerning a single host of the network. They
monitor both inbound and outbound traffic, follow-
ing each packet all the way up the TCP/IP protocol
stack, thus allowing the IDS to pull the packet out of
the stack even before any application or the operating
systems process it. The load each IDS must afford is
lower than the total traffic on the network, thus keep-
ing the analysis overhead within reasonable bounds;
hypothetically, each host on the network could run a
S-IDS.

Intrusion Detection Systems can be roughly clas-
sified (Figure 1) as belonging to two main groups as
well, depending on the detection technique employed:
anomaly detectionandmisuse detection(Bace, 2000).
Both such techniques rely on the existence of a reli-
able characterization of what isnormal and what is
not, in a particular networking scenario.

More precisely, anomaly detection techniques base
their evaluations on a model of what is normal, and
classify as anomalous all the events that fall outside
such a model. Indeed, if an anomalous behavior is
recognized, this does not necessarily imply that an at-
tack activity has occurred: only few anomalies can be
actually classified as attempts to compromise the se-
curity of the system. Thus, a relatively serious prob-
lem exists with anomaly detection techniques which
generate a great amount of false alarms. On the other
side, the primary advantage of anomaly detection is
its intrinsic capability to discover novel attack types.
Numerous approaches exist which determine the vari-
ation of an observed behavior from a normal one. A
first approach is based on statistical techniques. The
detector observes the activity of a subject (e.g. num-
ber of open files or TCP state transitions), and creates
a profile representing its behavior. Every such profile
is a set of “anomaly measures”. Statistical techniques
can then be used to extract a scalar measure represent-
ing the overall anomaly level of the current behavior.
The profile measure is thus compared with a threshold
value to determine whether the examined behavior is
anomalous or not. A second approach, namedpredic-
tive pattern generation, is based on the assumption
that an attack is characterized by a specific sequence,
i.e. apattern, of events. Hence, if a set of time-based
rules describing the temporal evolution of the user’s
normal activity exists, an anomalous behavior is de-
tected in case the observed sequence of events signif-
icantly differs from a normal pattern.

Misuse detection, also known assignature detec-
tion, is performed by classifying as attacks all the
events conforming to a model of anomalous behav-
ior. This technique is based on the assumption that an
intrusive activity is characterized by a signature, i.e. a
well-known pattern. Similarly to anomaly detection,
misuse detection can use either statistical techniques
or even a neural network approach to predict intru-

Figure 1: Approaches to Intrusion Detection

sions. Indeed, the rule-based approach is the most
used to detect an attack (SNORT2(Baker et al., 2004)
and Bro3(Paxson and Terney, 2004)). Intrusions are
coded by means of a set of rules: as soon as the ex-
amined event matches one of the rules, an attack is de-
tected. A drawback of this approach is that only well-
known intrusive activities can be detected, so that the
system is vulnerable to novel aggressions; sometimes,
few variations in an attack pattern may generate an in-
trusion that the IDS is not able to detect.

The main problem related to both anomaly and
misuse detection techniques resides in the encoded
models, which define normal or malicious behav-
iors. Although some recent open source IDS, such
as SNORT or Bro, provide mechanisms to write new
rules that extend the detection ability of the system,
such rules are usually hand-coded by a security ad-
ministrator, representing a weakness in the defini-
tion of new normal or malicious behaviors. Recently,
many research groups have focused their attention on
the definition of systems able to automatically build a
set of models. Data mining techniques are frequently
applied to audit data in order to compute specific be-
havioral models (MADAM ID (Lee and Stolfo, 2000),
ADAM (Barbara et al., 2001)).

Coming to the second related research field, we
recall that a data mining algorithm is referred to as
the process of extracting specific models from a great
amount of stored data (Fayyad et al., 1996). Machine
learning or pattern recognition processes are usually
exploited in order to realize this extraction (SLIP-
PER4 (Cohen and Singer, 1999)). These processes
may be considered as off-line processes. In fact, all
the techniques used to build intrusion detection mod-
els need a proper set of audit data. The informa-
tion must be labelled as either “normal” or “attack”
in order to define the suitable behavioral models that

2http://www.snort.org
3http://www.bro-ids.org
4http://www-2.cs.cmu.edu/∼wcohen/

slipper/

REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF DATA MINING TECHNIQUES

121



represent these two different categories. Such audit
data are quite complicated to obtain. The data set
used for The Third International Knowledge Discov-
ery and Data Mining Tools Competition, the 1999
KDD data5 (Lee and Stolfo, 2000)(Elkan, 2000), is
probably the most well-known example of this kind
of information, representing a processed version of
the DARPA Intrusion Detection Evaluation Program
database, collected and managed by the MIT Lincoln
Laboratory. The DARPA database containstcpdump
data related to seven weeks of network traffic gen-
erated over a military emulated LAN. KDD is filled
with five million connection records labelled as “nor-
mal” or “attack”.

3 RATIONALE AND
MOTIVATION

Strategies for non punctual intrusion detection often
do not take into account the concern of real-time
processing of network traffic. Though, an effective
IDS should be able to produce the analysis results in
time to react and possibly activate countermeasures
against malicious behaviors.

The ability to detect an intrusion as soon as it oc-
curs is mandatory for an IDS. The most common
types of attacks, e.g.denial of service, can be very
dangerous if they are not detected in time. Although
some IDS store audit data for later analysis, most
of them examine such data in real-time so that the
system can perform the actions necessary in order
to avoid serious problems. Commonly used N-IDS
typically analyze packets captured from the network,
finding in the current packet the signature of an at-
tack in-progress. However, malicious activity cannot
be detected by examining just a single packet: some
types of attacks generate in a certain time interval a
great amount of packets belonging to different ses-
sions. Hence an efficient detection needs statistical
parameters taking into account the temporal relation
between sessions. As stated before, Stolfo et al. (Lee
and Stolfo, 2000) have defined a set of connection
features which summarize the temporal and statisti-
cal relations of the connections with reference to each
other. These features have been used to create the
connection records contained in the KDD database.
Several data mining processes use these connection
features to extract suitable behavioral models.

Traffic model definition based on an off-line analy-
sis does not consider the unavoidable problems of
real-time computation of connection features. The
data mining process operates on a database, in which
data can be organized in a suitable way in order to

5http://kdd.ics.uci.edu/

compute the features. In real-time intrusion detec-
tion, instead, the incoming packets do not contain all
of the information needed to compute the connection
features, but an appropriate system has to be imple-
mented in order to compute relations among the ex-
isting connections. Moreover, off-line analysis does
not consider the problem of potential packet losses in
the IDS, which has to be taken into account in the case
of real time analysis.

Our research aims to develop a framework for real-
time intrusion detection. The system we present
should be capable to effectively detect intrusions and
to operate under a variety of traffic conditions, thus
providing an exploitable solution to the issue of real-
time analysis. Anomaly detection proves to be the
most suitable solution for our purpose, even though
such technique has the well known drawback related
to the relatively high number of false alarms raised.

Our intrusion detection system can be classified as
rule-based. Unfortunately the definition of a rule for
every attack is not an efficient solution. On one hand,
this approach is not able to detect novel attack pat-
terns; on the other hand, the definition of new attacks
has a negative impact both on the computation load
and on the average time required to analyze every sin-
gle packet (hence, the related packet loss problem). In
order to overcome the above mentioned drawbacks,
by using a set of parameters derived by Stolfo’s con-
nection features — which cover a wide range of attack
types — it is possible to adopt different data min-
ing processes in order to characterize the attacks by
means of different sets of rules.

Summarizing the above considerations, with this
work we are interested in the analysis of real-time
intrusion detection. To this purpose, we will ex-
ploit data mining techniques to design a novel intru-
sion detection framework. We will present an imple-
mentation of the framework and evaluate i ts perfor-
mance in a real network scenario, by focussing on two
main performance figures: packets processing time
and system resources needed to compute the connec-
tion features.

4 THE REFERENCE MODEL

In this section we present our framework for real-time
intrusion detection. The overall model is composed
of two parts: the former is the data mining process,
which extracts behavioral models from pre-elaborated
network traffic, and consists of a database of labelled
connection features and a data mining algorithm; the
latter is a real-time intrusion detection system which
analyzes and classifies network traffic based on the
models inferred (Figure 2). In particular, we execute
the off-line data mining process on a data set in or-

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

122



Figure 2: Reference Framework Model

der to extract a set of rules; such a set is then used
in a real-time classification process deployed by the
IDS that analyzes these pre-computed network data
and compares it with informations evaluated by real-
time network traffic.

Data mining is part of a more complex KDD
(Knowledge Discovery in Databases) process consist-
ing of data analysis and discovery algorithms applied
to a database in order to extract high level informa-
tion — the patterns or the models — able to describe
a subset of the data. The models can be applied to un-
known data values in order to predict the right class to
which they belong. As we emphasized in the previous
section, such data mining processes operate on a set
of data which has been organized in a suitable fash-
ion (e.g. all the data are identified by a label which
explicitly specifies the category they belong to).

In order to implement an efficient classifier, it is
important to define a suitable set of features to be ex-
tracted from the network traffic contained in the data-
base. The greater the capability of the set of features
to discriminate among different categories, the better
the classifier. There are three levels at which feature
sets may be defined:

• The features may be referred to the single packet
captured from the network:
although this set is easy to compute, it is not able
to detect all the potential attack types.

• A set of features related to the entire session which
the packet belongs to may be defined:
this is due to the fact that some intrusions may be
realized by means of a sequence of packets belong-
ing to either the same connection or different con-
nections.

• The computed set of features may perform a sta-
tistical analysis of the relation between the current
session and the other ones:
this is needed in order to capture intrusions which
affect the interrelation among different sessions.

To cope with the aforementioned requirements, we
have adopted a model descending from the one pro-
posed by Stolfo. We are interested in TCP, UDP and
ICMP traffic. Therefore, a clear definition of the term
connectionis necessary. For a TCP stream the con-
nection can be defined, relying on the protocol speci-
fications, as the collection of messages exchanged be-
tween a client process and a server process. For UDP
and ICMP we considered each packet as a single, self-
contained connection.

The features defined by Stolfo et al. can be clas-
sified in tree main groups:intrinsic features,content
features, andtraffic features. Intrinsic features spec-
ify general information on the current session, like the
duration in seconds of the connection, the protocol
type, the port number (i.e. the service), the number
of bytes from the source to the destination, etc. (see
Table 1).

Table 1: Intrinsic Features
duration connection duration (s)
protocol type type of transport protocol
service port number on the server side
src bytes bytes from source to destination
dst bytes bytes from destination to source
flag status of the connection
land land attack
wrong fragment number of wrong fragments
urgent number of urgent packets

The content features are related to the semantic
content of connection payload: for example, they
specify the number of failed login attempts, or the
number of shell prompts (Table 2).

Table 2: Content Features
hot number of hot indicators
failed logins number of failed login attempts
loggedin successfully logged in
compromised num compromised conditions
root shell root shell is obtained
su su root command attempted
file creations number of file creations
shells number of shell prompts
accessfiles number of file accesses
outboundcmds outbound commands in ftp
hot login the login belongs to the hot list
guestlogin the login is a guest login

The traffic features can be divided in two groups:
the same hostand thesame servicefeatures. The
same host features examine all the connections in the
last two seconds to the same destination host as the
one involved in the current connection. We also focus
on the either the number of such connections, or the
rate of connections that have a “SYN” error. Instead,
the same service features examine all the connections
in the last two seconds to the same destination ser-
vice as the current one. These two feature sets are de-

REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF DATA MINING TECHNIQUES

123



finedtime-basedtraffic features because they analyze
all the events which have occurred in a time interval of
two seconds (Table 3); some types of attacks, instead,
as the slow probing, may occur every few minutes.
Therefore these features might not be able to detect all
the attack types. To this aim a new set of traffic fea-
tures, calledhost-based, has been defined;same host
and same servicetraffic features are also computed
over a window of one hundred connections rather that
over a time interval of two seconds. In our frame-
work we will only adopt intrinsic and traffic features.
Our purpose is to implement a network-based intru-
sion detection system, and we deem the content fea-
tures more suitable for a host-based scenario. Thanks
to the access to the operating system’s audit trails or
system logs, an H-IDS is more efficient in the analysis
of the execution of dangerous commands on a single
host.

The proposed real-time IDS architecture consists of
three components: asniffer, aprocessor, and aclassi-
fier. The sniffer is the lowest component of the archi-
tecture; connected directly to the network infrastuc-
ture, this module captures all the packets on the wire.
Sniffing is made possible by setting the network card
in promiscuous mode. Usually the sniffer also trans-
lates raw packets into a human-readable format.

The processor component elaborates the packets
captured from the sniffer in order to extract the needed
set of features. The main issue of the features compu-
tation process is related to the need of keeping up-
to-date information about the current connection, as
well as the other active sessions. We have to keep in
memory a representation of the current network state
in order to evaluate the statistical relations among the
active connections. Data in memory have to be prop-
erly organized in order to reduce the features compu-
tation time.

The classifier is the core of the architecture; this
component analyzes the current connection features
and classifies them. Based on the misuse detection ap-
proach, the process of classification uses a set of rules
extracted by data mining algorithms. The features are
compared against all the rules in the set; when the ex-
amined vector of features matches at least one rule, an
intrusive action is detected. As to the connection data
in the processor component, the rules may be orga-
nized in memory in a suitable way in order to reduce
the time of analysis.

5 REAL-TIME IDS
IMPLEMENTATION ISSUES

The implemented architecture addresses the main re-
quirements of a real-time detection system: monitor-
ing the network traffic in order to extract a set of fea-

tures from it, as well as behavior classification based
on the extracted features. Monitoring, in particular,
is the most challenging issue to face from the point
of view of a real-time analysis. In our architecture,
the monitoring system can be divided into two com-
ponents: the sniffer that captures traffic from the net-
work, and the processor that computes both thein-
trinsic and thetraffic features. While in an off-line
analysis features computation is simpler, since all the
information about connections are stored in a data-
base, in a real time analysis statistic measures have to
be be computed every time a new packet is captured
from the network (DFP, 2004).

In order to extract features from the traffic, an ef-
fective processor must ensure two requirements:

• it holds information about the state of the connec-
tion which the analyzed packet belongs to;

• it holds comprehensive information about the traf-
fic flows that have already been seen across the net-
work.

According to the definition proposed in the previ-
ous section, every packet can be considered as a sin-
gle unit that is inserted in a more complex structure,
namely theconnection, and on which the features are
computed. While neither UDP nor ICMP traffic re-
quires a heavy load of computation, TCP traffic re-
quires to emulate the TCP state diagram on both the
client and the server sides and for every active con-
nection. In particular, when a new packet is captured,
the system retrieves information about the connection
to which such a packet belongs and updates the con-
nection state of both the client and the server based on
the TCP protocol specifications.

In order to compute the statistical relations, infor-
mation on the past TCP, UDP and ICMP flows is re-
quired, including those connections which have been
closed. Traffic features, in fact, are computed by an-
alyzing all the connections (either active or expired)
having similar characteristics — besides the destina-
tion IP address and/or the destination port — as the
current one. Every connection has to be kept in mem-
ory until it is not needed anymore for other computa-
tions.

Our architecture is implemented by means of the
open-source N-IDSSnort; we have used this system
as the base framework on top of which we have built
our components. Snort is a lightweight network IDS
created by Marty Roesch. Its architecture is made
up of four main blocks: asniffer, a preprocessor en-
gine that pre-computes of captured packets, arule-
based detection engine, and a set ofuser output tools.
Thanks to Snort’s modular design approach, it is pos-
sible to add new functionality to the system by means
of program plugins. Moreover, Snort provides an
efficient preprocessor plugin that reassembles TCP
streams and can thus be used to recover the TCP con-

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

124



Table 3: Time-Based Traffic Features
Same Host

count number of connections to the same host
serrorrate % of connections with SYN errors
rerror rate % of connections with REJ errors
samesrv rate % of connections to the same service
diff srv rate % of connections to different services

Same Service
srv count number of connections to the same service
srv serrorrate % of connections with SYN errors
srv rerror rate % of connections with REJ errors
srv diff host rate % of connections to different services

nections status.
We have implemented a new preprocessor plugin

which computes the connection features. The main is-
sue we tackled has been the computation of the traffic
features, which requires that a proper logical organi-
zation of the data is put into place in order to recover
information about the past network traffic. Moreover,
to assure that the real-time requirement of the system
is met, a fast access to stored data is mandatory.

As to the data structures, we have adopted a binary
search tree. In the worse case this structure guarantees
a performance comparable to that achievable with a
linked list from the point of view of search time; per-
formance further improves in case the tree is a sta-
tic and well-balanced one. Unfortunately, our struc-
ture is not a static tree because the connections are
not known in advance; though, a self-adjusting binary
tree can be adopted in this case in order to balance a
dynamic tree.

We have used a Snort library of functions to man-
age the so-calledSplay Trees. A Splay Tree is an ele-
gant self-organizing data structure created by Sleator
and Tarjan (Sleator and Tarjan, 1985): it actually is
an ordered binary tree, in which an item is moved
closer to the entry point — i. e. the tree root — when-
ever it is accessed, by means of a rotation of the item
with the parent node. This makes it faster to access
the most frequently used elements than the least fre-
quently used ones, without sacrificing the efficiency
of operations such as insert and search.

With the above mentioned tree structure, we have
implemented two trees, aSame Host Treeand aSame
Service Treeto compute the same host and the same
service traffic features, respectively. Every node in
the tree is identified by the destination IP address
in the first tree, or by the destination service in the
second one. In this way, we want to store in the
same node information about all the connections that
share the same characteristics. In order to compute
both the time-based and the host-based traffic fea-
tures, for every node in the tree we have implemented
two linked lists, one for each set. The linked lists con-
tain information like source IP address and/or source
port for all the connections that have been identified

and that have the same destination IP address and/or
the same destination service (Figure 3). The elements
of the list, one for every connection, are ordered in
time: the first element is the oldest one, the last is the
most recent.

Figure 3: Same-Host Tree Structure

When a new packet is captured from the network,
our preprocessor plugin first analyzes the protocol
of the packet in order to identify the most appropri-
ate procedure to compute intrinsic features. If the
packet belongs to either a UDP or an ICMP traffic,
the information required to compute intrinsic features
is entirely contained in the packet. In case of TCP
traffic, the procedure recovers the session which the
packet belongs to in order to determine some cru-
cial information, like the duration of the connection
or the number of bytes sent along both directions of
the stream, that cannot be directly inferred from the
packet. Then, the procedure analyzes the destination
IP address and the destination port to compute traf-
fic features. Search operations are performed in both
trees: if no preexisting node is found, a new one is
created, and the traffic features relative to the cur-
rent connection are initialized to zero. Otherwise, if
a node is already in the tree, the procedure analyzes
the two linked lists to compute the statistics for both
time-based and host-based traffic features. Every el-
ement in the list is analyzed and the statistics are up-
dated. During this process the elements that do not
belong neither to a time interval of two seconds, nor

REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF DATA MINING TECHNIQUES

125



to a window of the latest one hundred connections are
pruned off.

6 TESTING THE APPROACH

In this section we evaluate the performance overhead
due to the operation of the IDS, pointing out the in-
crease in CPU utilization and memory consumption
with respect to the values observed while running
Snort without our plugins. Our purpose is to show
the affordability of real-time intrusion detection, by
means of techniques which are usually employed in
off-line analysis. We evaluate both CPU and mem-
ory overhead, as well as packet loss ratio. Such tests
are deployed in two scenarios: in the former case, we
build a testbed to emulate network traffic in a con-
trolled environment; in the latter case, we analyze
traffic flowing across the local network at Genova Na-
tional Research Council (CNR). In this scenario, the
most important results concern packet loss analysis.
We show that the complexity increase due to the ap-
plication of our detection techniques does not affect
dramatically the percentage of lost packets. Thus we
demonstrate the affordability of intrusion detection by
means of such techniques. While working on the test-
bed, we consider the topology depicted in Figure 4.

Figure 4: Reference testbed

In order to work in a totally controlled environ-
ment, we have to emulate the depicted scenario rather
than working in a real network environment; for that
purpose, we use another topology which just emulates
the one depicted above, as drawn in Figure 5.

Figure 5: A traffic emulation scenario

Furthermore, we test the IDS using it on a real and

heavily loaded network, whose topology is drawn in
Figure 6. Such a test is useful to assess the limits
of applicability of our plugin, as well as to identify
directions for future improvements.

Figure 6: CNR Network Topology

In table Table 4 we see the values of CPU overhead
due to the use of Snort alone, versus Snort plus our
plugins. The machine operating as IDS in the emu-
lated traffic scenario is equipped with a 1GHz Pen-
tium III CPU and an amount of 256MB RAM, run-
ning Mandrake Linux 9.1 as operating system, kernel
version 2.4.19. In this case we can point out an almost
unperceptible increase in memory consumption (Ta-
ble 5). The doubling in CPU usage percentage, when
using the modified version of Snort with respect to
the case of Snort alone, is not such a negative result,
since overall CPU usage is still low and under rea-
sonable thresholds, also considering that we are using
general purpose, not dedicated, hardware.

Table 4: Average CPU Overhead
Snort-2.1.0 Snort + Plugins

Emulated Traffic 0.12% 0.22%
CNR Traffic 1.16% 2.42%

The extensive test on CNR network also shows a
slightly higher CPU usage for the modified version of
Snort, still within the limit of 8% overhead. The ma-
chine acting as IDS is equipped with a 2GHz Pentium
IV, 512MB RAM and RedHat Linux 8.0, using kernel
2.4.18.

Table 5: Memory Overhead
Snort-2.1.0 Snort + Plugins

Emulated Traffic 1.69% 1.70%
CNR Traffic 4.99% 9.46%

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

126



Figure 7: CPU Usage - CNR Network

Once again it is worth pointing out that the results
of our measures must be looked at under the perspec-
tive of the employment of non dedicated hardware.

Of course, the most interesting indication regards
the packet loss ratio. To attain the best results in in-
trusion detection, the main requirement is not to lose
any packets — no matter how much of the system
resources we use — if affordable with the available
hardware. Such result is sketched in Table 6. In the
test deployed using emulated traffic, we notice an in-
crease of less than 10% in packet loss with respect to
the plain version of Snort, though the values are lower
than the ones obtained by testing the system on a real
network. This may be ascribed to the hardware used
in the two cases: the setup used in the latter scenario
is much more suitable than the one used in the former
case. In both cases, anyway, we observe a very low
increase in packet loss ratio, showing the feasibility
of such a technique.

Table 6: Packet Loss
Snort-2.1.0 Snort + Plugins

Emulated Traffic 0.39% 0.42%
CNR Traffic 0.14% 0.16%

7 CONCLUSIONS AND FUTURE
WORKS

This paper shows how it is possible to combine real-
time intrusion detection with data mining techniques,
while at the same time keeping the system overhead
under reasonable thresholds and containing the packet
loss ratio within certain boundaries. Future develop-
ment of this project will involve building rule sets and
evaluating their detection capabilities. We may test
rulesets computed with different algorithms which
make use of various techniques.

The work has also been published on Source-

Forge6, to hopefully receive feedback from users and
to communicate and cooperate with the Snort com-
munity.

ACKNOWLEDGEMENTS

We would like to thank Maurizio Aiello and the staff
at CNR laboratory in Genova, Italy, for their coopera-
tion and for providing us with part of the data as well
as the equipment used for the tests.

REFERENCES

(2004). Operation Experience with High-Volume Network
Intrusion Detection. ACM.

Andersson, D. (1995). Detecting usual program behavior
using the statistical component of the next-generation
intrusion detection expert system (nides). Technical
report, Computer Science Laboratory.

Bace, R. G. (2000).Intrusion Detection. Macmillan Tech-
nical Publishing.

Baker, A. R., Caswell, B., and Poor, M. (2004).Snort 2.1
Intrusion Detection - Second Edition. Syngress.

Barbara, D., Couto, J., Jajodia, S., Popyack, L., and Wu,
N. (2001). Adam: Detecting intrusion by data min-
ing. pages 11–16. IEEE. Workshop on Information
Assurance and Security.

Cohen, W. W. and Singer, Y. (1999). A simple, fast, and
effective rule learner.

Elkan, C. (2000). Results of the kdd99 classifier learning. In
SIGKDD Explorations, volume 1, pages 63–64. ACM.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
From data mining to knowledge discovery in data-
bases.AI Magazine, pages 37–52.

Laing, B. and Alderson, J. (2000). How to guide - im-
plementing a network based intrusion detection sys-
tem. Technical report, Internet Security Systems, Sov-
ereign House, 57/59 Vaster Road, Reading.

Lee, W. and Stolfo, S. J. (2000). A framework for con-
structing features and models for intrusion detection
systems.ACM Transactions on Information and Sys-
tem Security (TISSEC), 3(4):227–261.

Paxson, V. and Terney, B. (2004). Bro reference manual.

Sleator, D. and Tarjan, R. (1985). Self Adjusting Binary
Search Trees.Journal of the ACM, 32(3).

Tyson, M. (2000). Derbi: Diagnosys explanation and re-
covery from computer break-ins. Technical report.

Vigna, G. and Kemmerer, R. (1999). Netstat: a network
based intrusion detection system.Journal of Com-
puter Security, 7(1).

6http://sourceforge.net/projects/
s-predator

REAL TIME DETECTION OF NOVEL ATTACKS BY MEANS OF DATA MINING TECHNIQUES

127


