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Abstract: Modern database engines support a wide variety of data types. Native support for all of the types is desirable 
and convenient for the database application developer, as it allows application data to be stored in the 
database without further conversion. However, support for each data type adds complexity to the database 
engine code. To achieve a compromise between convenience and complexity, the semantic binary database 
engine is designed to support only the binary data type in its kernel. Other data types are supported in the 
user-level environment by add-on modules. This solution allows us to keep the database kernel small and 
ensures the stability and robustness of the database engine as a whole. By providing extra database tools, it 
also allows application designers to get database-wide support for additional data types. 

1 INTRODUCTION 

Conceptually, a semantic binary database is a set of 
facts about objects, (Rishe, 1992). Objects belong to 
categories. Relations are defined between categories, 
and objects are connected by relations. Objects can 
also have attributes, which are considered to be 
relations from objects to values. The original 
semantic database engine stores information about 
schema and abstract objects as a set of facts at the 
logical level. The following facts are stored: 
• xC. This is a fact that an abstract object x 

belongs to a category C. If an object belongs to 
several categories, one fact is stored for each of 
these categories. While the object may belong to 
any number of different categories that are not 
disjoint, it may most commonly belong to 
several subcategories of one category. If the 
object belongs to the subcategory, it also 
belongs to the corresponding category. 

• xRy. The object x is connected to the object y 
by the relation R. Two objects can not be 
connected twice by the same relation. They are 
either connected or not. 

• xRv. The attribute R of object x has value v. 
Object attributes are like relations, therefore 
they may be multi-valued. However, the object 
can not have one specific value of the attribute 
two times. 

• Cx. This is an inverse (redundant) fact for xC. It 
is used to query the objects that belong to a 
certain category. 

• yR-1x. This is an inverse (redundant) fact for 
xRy. It is used to traverse relations in a reverse 
order. 

• R-1vx. This is an inverse (redundant) fact for 
xRv. Inverse facts for attributes have a different 
structure than the inverse facts for the relations 
with abstract objects.  They are used in queries 
that search for all the objects with a certain 
attribute value. 

The facts are encoded as binary strings using 
reversible encoding. Every y, x, C, R, or R-1 in the 
above facts are encoded with object IDs. The object 
ID is an integer; it is encoded with a variable length 
encoding that maps the natural ordering of integers 
into the lexicographical ordering of strings. This 
encoding is compressed in the sense that small 
values of object IDs result in short strings. The 
encoding also allows the database to find the end of 
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the encoded integer when it is used as a prefix of a 
binary string. Every encoded string starts with an 
object ID; we insert different separators to 
distinguish between pairs and triples.  

The only facts that have values other than object 
IDs are xRv and R-1vx. The values are encoded in 
such a way that natural ordering on the values is 
mapped into the lexicographical order of encoded 
strings. Encoding of xRv is a concatenation of three 
encoded values and a separator. However, encoding 
of R-1vx presents a problem. Simple concatenation 
is no longer sufficient, since we need to be able to 
find the end of the encoded v; this imposes a strict 
restriction on encoding. Another separator is added 
between v and x at the end of the fact. 

The semantic binary database distinguishes 
between two groups of data types – abstract data 
types and concrete data types. Abstract data types 
are categories of abstract objects, for example 
Person, Professor, Student. Concrete data 
types are Integer, String, Datetime among 
others. 

The hierarchy of data types shown in Figure 1 has 
a single data type Binary at the root; only 
Binary data type is supported by the engine kernel. 
Other data types are supported in the user-level 
environment by the add-on modules. This solution 
allows us to keep the database kernel small and to 
get database-wide support for additional data types. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Sub-schema of concrete types 

2 FACT STORAGE 

As we have mentioned, the original semantic binary 
database engine stores the schema and content of the 
database using facts. Every object is given a unique 
object ID; the information about the object is 
represented as a set of direct facts xC, xRy and xRv. 
For every direct fact there is one redundant reverse 
fact stored in the database. All facts are encoded into 
binary strings which are stored in a B-Tree structure 

in lexicographical order. We will call this storage 
method fact storage. 

With the fact storage method, every attribute of 
an object is stored as one direct fact. The opposite is 
also true, with every direct fact storing only one 
attribute. This approach is inefficient in two ways: 
space overhead and performance overhead. 

With respect to space overhead, the direct fact 
stores an object ID, a relation ID, and some data 
related to the B-Tree structure in addition to its 
attribute data. For example, an integer attribute of 4 
bytes is stored in a fact with the object ID and the 
relation ID. With the object ID requiring 4 bytes of 
storage, the relation ID requiring 4 bytes, and the 
storage infrastructure requiring 4 bytes, a total of 16 
bytes is needed to store a single 4-byte integer. 

The issue of space overhead was addressed in the 
original semantic database design by introducing 
two space saving techniques: special encoding of 
integers and prefix compression of B-Tree blocks. 
Unfortunately, the implementation of these 
algorithms does not have acceptable performance. 
Encoding of integers requires complex operations at 
the bit level. Prefix compression of B-Tree blocks 
makes binary searches within the block impossible. 
Also, on average, only 4 bytes are saved for every 
fact with the prefix compression, which is less than 
the overhead introduced. Therefore this technique 
does not eliminate space overhead, and significantly 
decreases performance. 

With respect to performance overhead, retrieval 
of information from the fact storage requires several 
time-consuming operations. The B-Tree has to be 
searched for the correct range of facts. A linear 
search of B-Tree blocks takes more time than a 
binary search or direct record access. Complex 
bitwise operations are needed to unpack relevant 
information from the facts. If all the attributes for 
one object are needed, unpacking of several facts is 
required. 

Another problem with fact storage was uncovered 
by the standard TPC-D benchmark (TPC-D, 1998). 
For some queries in TPC-D, it is necessary to scan 
all the objects in a category and retrieve most of 
their attributes. While only one elementary query is 
required to find all objects in a category, retrieving 
all the attributes of every object requires one 
elementary query per object. This may result in as 
many disk accesses as there are objects in the 
category. However, if the objects belonging to one 
category are stored closely together in one linear 
file, many of them would fit into one disk block. 
Scanning the set of objects would only require as 
many disk accesses as there are blocks. These 
inefficiencies prompted us to search for a better 
representation of the data. 
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3 RECORD STORAGE 

Comparing the semantic binary database model and 
the relational database model, we can state that a 
category roughly corresponds to a table, an object 
corresponds to a table row and an attribute 
corresponds to a column. Relational databases do 
not have a large overhead for infrastructure when 
storing data. Typically, all attributes of an object are 
stored in a fixed-size record in a positional form. A 
fixed amount of space is reserved for the attribute, 
requiring no overhead for object IDs or 
infrastructure at this level. Several records are 
grouped in pages and pages are stored in a linear 
file. 

The relational databases offer a different way of 
storing information, which is called a clustered 
index (England, 2001). In a clustered index, a 
combination of attributes is designated as a key of a 
clustered index. All other attributes are organized in 
a record. The record is stored in a B-Tree along with 
the key. Since a fixed amount of space is allocated 
for every column (attribute) in a row (object), m:m 
attributes do not fit into the picture, therefore they 
are not directly supported by the relational database 
model. Also, if the attribute has a value of NULL, the 
record would still have space reserved for it. If data 
is sparse and many NULLs are present, this form of 
storage becomes space-inefficient. 

We propose to adapt clustered index storage for 
semantic binary database storage in certain cases to 
improve space allocation and performance. Instead 
of storing every object attribute in a separate fact, 
one fact can be created to store some of the object’s 
attributes. Not all the attributes can be stored in a 
record. The following conditions have to be met for 
the attribute to be qualified for record storage: 
1. The attribute should be total. In other words it 

can not be NULL, so no special handling of 
NULLs is necessary. 

2. Cardinality of the attribute should be 1:1 or 
m:1. There is at most one attribute for every 
object in the category, so no special handling is 
required for multi-value attributes. In 
combination with condition (1), this implies that 
only one value of the attribute is present for 
each object in the category. 

3. The value of the attribute should have fixed 
length and the length is the same for all the 
objects; this allows us to allocate appropriate 
space for the attribute in a record. 

The attributes concatenated together result in a 
record that is stored for all the objects in the 
category and that has a fixed length equal to the sum 
of lengths of all concatenated attributes. The record 
v can be placed in one fact xR’v where R’ is a 

special system relation introduced for the purpose of 
storing the record. We will call this storage method 
record storage. Figure 2 illustrates fact and record 
storage. 

A semantic binary database engine based on the 
record storage was implemented and analyzed. It 
achieved substantial performance improvements 
over the original semantic engine on certain types of 
workloads. The typical workload that benefits from 
this representation is the TPC-D benchmark. 

For some queries in TPC-D, it is necessary to 
scan all the objects in a category and retrieve most 
of their attributes. Records for the objects belonging 
to the same category were placed in a separate file. 
To answer the query, a full scan on the entire file 
was performed and every record was retrieved. This 
required only as many disk accesses as needed for 
the size of the result set. In addition, no complex 
operations were required to extract information from 
the records. Once the record is in memory, several 
CPU instructions are enough to retrieve an attribute. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Fact and record storage in semantic binary 
engine 

4 BITMAP STORAGE 

Modern database management systems use bitmaps 
as another way of storing information. Bitmap 
indexes are available in many commercial systems, 
such as IBM DB2 (Winter, 1999) and Oracle 
(Jakobsson, 1997). Bitmaps offer the advantage of 
saving storage space and improving disk retrieval 
speed by requiring only one bit to store a Boolean 
value. In the semantic database engine, bitmaps can 
be used for storing reverse-fact information on 
Boolean, enumeration, and small integer attributes 
efficiently. An example of such a case is 
representing category membership for objects. 

A bitmap is an array of bits, where one bit 
corresponds to one database object. Object ID is 
used as an index value in a bitmap array. Eight 
consecutive bits in a bitmap are stored as one byte. 
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Consecutive bytes are stored in blocks. Typical 
block sizes vary from 4 kilobytes to 64 kilobytes. 
Blocks can be stored sequentially or organized and 
referenced by a control structure. Logically, a 
bitmap represents a set of objects as a set 
membership vector. For every object in the database, 
the corresponding Boolean element of the vector is 
True if the object belongs to the set. For objects 
that do not belong to the set, the corresponding 
elements are False. Boolean values of the vector 
are represented by bits. 

Consider the following method for storing 
category membership. Membership information for 
each category C is represented by one bitmap, where 
each bit corresponds to an object ID. Bit N in the 
array is 1 if an object with the object ID N belongs 
to category C, and 0 otherwise. Thus, the length of 
the array in bits will be equal to the number of 
objects in the database and access to this information 
will be fast since it is equivalent to direct access to 
an element of an array. 

The size of the bitmap is proportional to the 
domain size. Thus, one bit is allocated in a bitmap 
for every abstract object regardless of whether it 
belongs to a represented set or not. For example, 
consider a set of objects that have certain Boolean 
attribute values set to True. The bitmap requires 
just one bit to represent each fact; it would otherwise 
be represented in fact storage as a string consisting 
of object ID, relation ID, and a Boolean value, thus 
using at least 10 bytes of storage. Being stored in a 
B-tree, this string would also require some space to 
maintain the B-Tree block structure. Thus, the 
bitmap is about 80 times more efficient in terms of 
space for total Boolean attributes. Access to facts in 
a B-Tree requires a B-Tree search and unpacking of 
facts, which are both non-trivial and time-consuming 
operations compared to retrieval of values from a 
bitmap, which, in most cases, is a simple direct 
access operation. 

Operations to access individual bits are simple. 
Suppose m is the first object ID in a block and we 
need to access a bit that corresponds to the object 
with object ID n. The byte number within the block 
that the bit belongs to is i=(m-n)/8. Bit number 
within the byte is j=(m-n)MOD8, where MOD is the 
modulo operation (remainder of a division). 

To read the bit, the following formula is used: 
B[i]&(1<<j), where B represents block as a byte 
array. Result is 0 if bit is 0 and non-zero if bit is 1. 
Use B[i]|=(1<<j) to set the bit to 1 and 
B[i]&=~(1<<j) to reset the bit to 0. To set the 
bit to value x, use B[i]=(B[i]&~(1<<j))|(x 
<<j). 

Bitmaps have several attractive properties: 
1. Bitmaps represent a set of objects in a compact 

way since only one bit is used per object. Under 

favourable conditions, this can be further 
improved. 

2. Operations on bitmaps are fast since only one 
CPU instruction is needed to act on several 
objects simultaneously. 

3. A bitmap is a simple structure and the overhead 
for accessing and maintaining it is small. 

5 CONCLUSION 

While designing a semantic database, the general 
approach is to be flexible in selecting storage types. 
Fact, record, and bitmap storage might be utilized 
simultaneously for different purposes. Record 
storage might be used for those attributes it suits 
best, whereas fact storage might be used for other 
attributes. Category membership might be stored as 
bitmaps. With fact storage, it should be up to the 
user to select the best storage type for various types 
of data. 
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