
STORAGE TYPES IN THE SEMANTIC BINARY DATABASE
ENGINE

Naphtali Rishe, Malek Adjouadi, Maxim Chekmasov,
Dmitry Vasilevsky, Scott Graham, Dayanara Hernandez

Florida International University, Miami, FL

Ouri Wolfson
University of Illinois at Chicago, Chicago, IL,

Keywords: Semantic binary data model, storage type, database management system.

Abstract: Modern database engines support a wide variety of data types. Native support for all of the types is desirable
and convenient for the database application developer, as it allows application data to be stored in the
database without further conversion. However, support for each data type adds complexity to the database
engine code. To achieve a compromise between convenience and complexity, the semantic binary database
engine is designed to support only the binary data type in its kernel. Other data types are supported in the
user-level environment by add-on modules. This solution allows us to keep the database kernel small and
ensures the stability and robustness of the database engine as a whole. By providing extra database tools, it
also allows application designers to get database-wide support for additional data types.

1 INTRODUCTION

Conceptually, a semantic binary database is a set of
facts about objects, (Rishe, 1992). Objects belong to
categories. Relations are defined between categories,
and objects are connected by relations. Objects can
also have attributes, which are considered to be
relations from objects to values. The original
semantic database engine stores information about
schema and abstract objects as a set of facts at the
logical level. The following facts are stored:
• xC. This is a fact that an abstract object x

belongs to a category C. If an object belongs to
several categories, one fact is stored for each of
these categories. While the object may belong to
any number of different categories that are not
disjoint, it may most commonly belong to
several subcategories of one category. If the
object belongs to the subcategory, it also
belongs to the corresponding category.

• xRy. The object x is connected to the object y
by the relation R. Two objects can not be
connected twice by the same relation. They are
either connected or not.

• xRv. The attribute R of object x has value v.
Object attributes are like relations, therefore
they may be multi-valued. However, the object
can not have one specific value of the attribute
two times.

• Cx. This is an inverse (redundant) fact for xC. It
is used to query the objects that belong to a
certain category.

• yR-1x. This is an inverse (redundant) fact for
xRy. It is used to traverse relations in a reverse
order.

• R-1vx. This is an inverse (redundant) fact for
xRv. Inverse facts for attributes have a different
structure than the inverse facts for the relations
with abstract objects. They are used in queries
that search for all the objects with a certain
attribute value.

The facts are encoded as binary strings using
reversible encoding. Every y, x, C, R, or R-1 in the
above facts are encoded with object IDs. The object
ID is an integer; it is encoded with a variable length
encoding that maps the natural ordering of integers
into the lexicographical ordering of strings. This
encoding is compressed in the sense that small
values of object IDs result in short strings. The
encoding also allows the database to find the end of

437
Rishe N., Adjouadi M., Chekmasov M., Vasilevsky D., Graham S., Hernandez D. and Wolfson O. (2005).
STORAGE TYPES IN THE SEMANTIC BINARY DATABASE ENGINE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 437-440
DOI: 10.5220/0002535804370440
Copyright c© SciTePress

the encoded integer when it is used as a prefix of a
binary string. Every encoded string starts with an
object ID; we insert different separators to
distinguish between pairs and triples.

The only facts that have values other than object
IDs are xRv and R-1vx. The values are encoded in
such a way that natural ordering on the values is
mapped into the lexicographical order of encoded
strings. Encoding of xRv is a concatenation of three
encoded values and a separator. However, encoding
of R-1vx presents a problem. Simple concatenation
is no longer sufficient, since we need to be able to
find the end of the encoded v; this imposes a strict
restriction on encoding. Another separator is added
between v and x at the end of the fact.

The semantic binary database distinguishes
between two groups of data types – abstract data
types and concrete data types. Abstract data types
are categories of abstract objects, for example
Person, Professor, Student. Concrete data
types are Integer, String, Datetime among
others.

The hierarchy of data types shown in Figure 1 has
a single data type Binary at the root; only
Binary data type is supported by the engine kernel.
Other data types are supported in the user-level
environment by the add-on modules. This solution
allows us to keep the database kernel small and to
get database-wide support for additional data types.

Figure 1: Sub-schema of concrete types

2 FACT STORAGE

As we have mentioned, the original semantic binary
database engine stores the schema and content of the
database using facts. Every object is given a unique
object ID; the information about the object is
represented as a set of direct facts xC, xRy and xRv.
For every direct fact there is one redundant reverse
fact stored in the database. All facts are encoded into
binary strings which are stored in a B-Tree structure

in lexicographical order. We will call this storage
method fact storage.

With the fact storage method, every attribute of
an object is stored as one direct fact. The opposite is
also true, with every direct fact storing only one
attribute. This approach is inefficient in two ways:
space overhead and performance overhead.

With respect to space overhead, the direct fact
stores an object ID, a relation ID, and some data
related to the B-Tree structure in addition to its
attribute data. For example, an integer attribute of 4
bytes is stored in a fact with the object ID and the
relation ID. With the object ID requiring 4 bytes of
storage, the relation ID requiring 4 bytes, and the
storage infrastructure requiring 4 bytes, a total of 16
bytes is needed to store a single 4-byte integer.

The issue of space overhead was addressed in the
original semantic database design by introducing
two space saving techniques: special encoding of
integers and prefix compression of B-Tree blocks.
Unfortunately, the implementation of these
algorithms does not have acceptable performance.
Encoding of integers requires complex operations at
the bit level. Prefix compression of B-Tree blocks
makes binary searches within the block impossible.
Also, on average, only 4 bytes are saved for every
fact with the prefix compression, which is less than
the overhead introduced. Therefore this technique
does not eliminate space overhead, and significantly
decreases performance.

With respect to performance overhead, retrieval
of information from the fact storage requires several
time-consuming operations. The B-Tree has to be
searched for the correct range of facts. A linear
search of B-Tree blocks takes more time than a
binary search or direct record access. Complex
bitwise operations are needed to unpack relevant
information from the facts. If all the attributes for
one object are needed, unpacking of several facts is
required.

Another problem with fact storage was uncovered
by the standard TPC-D benchmark (TPC-D, 1998).
For some queries in TPC-D, it is necessary to scan
all the objects in a category and retrieve most of
their attributes. While only one elementary query is
required to find all objects in a category, retrieving
all the attributes of every object requires one
elementary query per object. This may result in as
many disk accesses as there are objects in the
category. However, if the objects belonging to one
category are stored closely together in one linear
file, many of them would fit into one disk block.
Scanning the set of objects would only require as
many disk accesses as there are blocks. These
inefficiencies prompted us to search for a better
representation of the data.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

438

3 RECORD STORAGE

Comparing the semantic binary database model and
the relational database model, we can state that a
category roughly corresponds to a table, an object
corresponds to a table row and an attribute
corresponds to a column. Relational databases do
not have a large overhead for infrastructure when
storing data. Typically, all attributes of an object are
stored in a fixed-size record in a positional form. A
fixed amount of space is reserved for the attribute,
requiring no overhead for object IDs or
infrastructure at this level. Several records are
grouped in pages and pages are stored in a linear
file.

The relational databases offer a different way of
storing information, which is called a clustered
index (England, 2001). In a clustered index, a
combination of attributes is designated as a key of a
clustered index. All other attributes are organized in
a record. The record is stored in a B-Tree along with
the key. Since a fixed amount of space is allocated
for every column (attribute) in a row (object), m:m
attributes do not fit into the picture, therefore they
are not directly supported by the relational database
model. Also, if the attribute has a value of NULL, the
record would still have space reserved for it. If data
is sparse and many NULLs are present, this form of
storage becomes space-inefficient.

We propose to adapt clustered index storage for
semantic binary database storage in certain cases to
improve space allocation and performance. Instead
of storing every object attribute in a separate fact,
one fact can be created to store some of the object’s
attributes. Not all the attributes can be stored in a
record. The following conditions have to be met for
the attribute to be qualified for record storage:
1. The attribute should be total. In other words it

can not be NULL, so no special handling of
NULLs is necessary.

2. Cardinality of the attribute should be 1:1 or
m:1. There is at most one attribute for every
object in the category, so no special handling is
required for multi-value attributes. In
combination with condition (1), this implies that
only one value of the attribute is present for
each object in the category.

3. The value of the attribute should have fixed
length and the length is the same for all the
objects; this allows us to allocate appropriate
space for the attribute in a record.

The attributes concatenated together result in a
record that is stored for all the objects in the
category and that has a fixed length equal to the sum
of lengths of all concatenated attributes. The record
v can be placed in one fact xR’v where R’ is a

special system relation introduced for the purpose of
storing the record. We will call this storage method
record storage. Figure 2 illustrates fact and record
storage.

A semantic binary database engine based on the
record storage was implemented and analyzed. It
achieved substantial performance improvements
over the original semantic engine on certain types of
workloads. The typical workload that benefits from
this representation is the TPC-D benchmark.

For some queries in TPC-D, it is necessary to
scan all the objects in a category and retrieve most
of their attributes. Records for the objects belonging
to the same category were placed in a separate file.
To answer the query, a full scan on the entire file
was performed and every record was retrieved. This
required only as many disk accesses as needed for
the size of the result set. In addition, no complex
operations were required to extract information from
the records. Once the record is in memory, several
CPU instructions are enough to retrieve an attribute.

Figure 2: Fact and record storage in semantic binary
engine

4 BITMAP STORAGE

Modern database management systems use bitmaps
as another way of storing information. Bitmap
indexes are available in many commercial systems,
such as IBM DB2 (Winter, 1999) and Oracle
(Jakobsson, 1997). Bitmaps offer the advantage of
saving storage space and improving disk retrieval
speed by requiring only one bit to store a Boolean
value. In the semantic database engine, bitmaps can
be used for storing reverse-fact information on
Boolean, enumeration, and small integer attributes
efficiently. An example of such a case is
representing category membership for objects.

A bitmap is an array of bits, where one bit
corresponds to one database object. Object ID is
used as an index value in a bitmap array. Eight
consecutive bits in a bitmap are stored as one byte.

STORAGE TYPES IN THE SEMANTIC BINARY DATABASE ENGINE

439

Consecutive bytes are stored in blocks. Typical
block sizes vary from 4 kilobytes to 64 kilobytes.
Blocks can be stored sequentially or organized and
referenced by a control structure. Logically, a
bitmap represents a set of objects as a set
membership vector. For every object in the database,
the corresponding Boolean element of the vector is
True if the object belongs to the set. For objects
that do not belong to the set, the corresponding
elements are False. Boolean values of the vector
are represented by bits.

Consider the following method for storing
category membership. Membership information for
each category C is represented by one bitmap, where
each bit corresponds to an object ID. Bit N in the
array is 1 if an object with the object ID N belongs
to category C, and 0 otherwise. Thus, the length of
the array in bits will be equal to the number of
objects in the database and access to this information
will be fast since it is equivalent to direct access to
an element of an array.

The size of the bitmap is proportional to the
domain size. Thus, one bit is allocated in a bitmap
for every abstract object regardless of whether it
belongs to a represented set or not. For example,
consider a set of objects that have certain Boolean
attribute values set to True. The bitmap requires
just one bit to represent each fact; it would otherwise
be represented in fact storage as a string consisting
of object ID, relation ID, and a Boolean value, thus
using at least 10 bytes of storage. Being stored in a
B-tree, this string would also require some space to
maintain the B-Tree block structure. Thus, the
bitmap is about 80 times more efficient in terms of
space for total Boolean attributes. Access to facts in
a B-Tree requires a B-Tree search and unpacking of
facts, which are both non-trivial and time-consuming
operations compared to retrieval of values from a
bitmap, which, in most cases, is a simple direct
access operation.

Operations to access individual bits are simple.
Suppose m is the first object ID in a block and we
need to access a bit that corresponds to the object
with object ID n. The byte number within the block
that the bit belongs to is i=(m-n)/8. Bit number
within the byte is j=(m-n)MOD8, where MOD is the
modulo operation (remainder of a division).

To read the bit, the following formula is used:
B[i]&(1<<j), where B represents block as a byte
array. Result is 0 if bit is 0 and non-zero if bit is 1.
Use B[i]|=(1<<j) to set the bit to 1 and
B[i]&=~(1<<j) to reset the bit to 0. To set the
bit to value x, use B[i]=(B[i]&~(1<<j))|(x
<<j).

Bitmaps have several attractive properties:
1. Bitmaps represent a set of objects in a compact

way since only one bit is used per object. Under

favourable conditions, this can be further
improved.

2. Operations on bitmaps are fast since only one
CPU instruction is needed to act on several
objects simultaneously.

3. A bitmap is a simple structure and the overhead
for accessing and maintaining it is small.

5 CONCLUSION

While designing a semantic database, the general
approach is to be flexible in selecting storage types.
Fact, record, and bitmap storage might be utilized
simultaneously for different purposes. Record
storage might be used for those attributes it suits
best, whereas fact storage might be used for other
attributes. Category membership might be stored as
bitmaps. With fact storage, it should be up to the
user to select the best storage type for various types
of data.

ACKNOWLEDGEMENTS

This material is based on work supported by the
National Science Foundation under Grants No.
HRD-0317692, EIA-0320956, EIA-0220562, CNS-
0426125, IIS-0326284, CCF-0330342, IIS-0086144,
and IIS-0209190.

REFERENCES

Rishe, N., 1992. Database Design: the Semantic Modeling
Approach, McGraw-Hill. 528 pp.

TPC-D, 1998. Transaction Processing Performance
Council. TPC Benchmark D, Standard Specification
Revision 2.1.

England, K., 2001. Microsoft SQL Server 2000
Performance Optimization and Tuning Handbook,
Digital Press; 1st edition, 320 pp.

Winter, R., 1999. Indexing Goes a New Direction,
Intelligent Enterprise, 2(2), pp. 70-73.

Jakobsson, H., 1997. Bitmap Indexing in Oracle Data
Warehousing. Database seminar at Stanford
University. http://www-db.stanford.edu/dbseminar/
Archive/FallY97/slides/oracle.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

440

