
SECURING THE ENTERPRISE DATABASE

V Radha, Ved P Gulati
Institute for Development and Research in Banking Technology,Hyderabad, India

N Hemanth Kumar
Institute for Development and Research in Banking Technology,Hyderabad, India

Keywords: Database, Security, and Enterprise Security

Abstract: Security is gaining importance once computers became indispensable in every organization. As the new
concepts like E-Governance in Government and E-Commerce in business circles etc are heading towards
reality, security issues penetrated even into the legal framework of every country. Database security acts as
the last line of defence to withstand insider attacks and attacks from outside even if all the security controls
like perimeter, OS controls have been compromised. Data protection laws such as HIPAA (Health Insurance
Portability and Accountability Act), Gramm-Leach-Bliley Act of 1999, Data protection Act, Sarbanes
Oxleys Act are demanding for the privacy and integrity of the data to an extent that the critical information
should be seen only by the authorized users which means the integrity of the database must be properly
accommodated. Hence, we aim at providing an interface service in between enterprise applications and
enterprise database that ensures the integrity of the data. This service acts as a security wrapper around any
enterprise database.

1 INTRODUCTION

A single appliance or a device cannot achieve
security. Hence, a layered security solution is to be
followed which includes physical security, perimeter
security, Access controls, and OS based controls and
finally database security. Database security is as
important as the other layers since actual data
resides on the database. The sensitive data must be
protected from viewing and modifying by the
unauthorized people. Even the administrator should
not have privileges to view/modify the database.
However, the administrator has sweeping privileges.
An attacker can obtain administrative privileges by
launching buffer overflow attacks and gains full
access rights not only on the tables but also on the
procedures, triggers, events and the configuration
settings.
In present enterprise application development, the
database and application are not being integrated
tightly. The developers treat them separate and
develop the final application in a much-disintegrated
fashion. Main reason for this is due to lack of
standards. Except SQL, ODBC and JDBC standards,

which allow the data to be interchanged/queried
across any kind of database, there is no standard for
triggers, procedures, access controls etc. To make
the application portable across any database, the
developers tend to use only standard features of the
database and ignore the special security features like
access controls, encryption etc offered by a
commercial RDBMS. So ultimately, the database
has become just a data store and developers depend
heavily on OS security controls even for database
security.
Section 2 deals with the problem description and the
motivation behind this paper and brief account on
the legal aspects. Section 3 gives a brief account on
the research work in this area. Section 4 deals with
the survey of products and their detail explanations.
Section 5 deals with our three proposals, their
architectures to ensure data integrity. Section 6 deals
with the simulations and performance evaluations of
first two solutions. Section 7 deals with the
conclusion and future work that we want to
implement.

76
Radha V., P Gulati V. and Hemanth Kumar N. (2005).
SECURING THE ENTERPRISE DATABASE.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 76-83
DOI: 10.5220/0002530600760083
Copyright c© SciTePress

2 MOTIVATION

Tampering and injecting or deleting certain fields in
the database by an administrator or a hacker with
administrative privileges in spite of various security
measures such as database access controls is a
serious issue. In this communications world, where
most of the transactions are done over the
web/internet, there is a need for the applications to
know whether the data they are retrieving from the
database is authentic or not. In addition, a number of
legislative and commercial initiatives are requiring
increased attention to the privacy, confidentiality
and authenticity/integrity of electronic stored data to
safeguard non-public personal information (NPI)
and other sensitive enterprise data. Information
security requirements associated with these
measures include:

HIPAA (Health Insurance Portability and
Accountability Act) (Arup, 2004) introduced in
United States to eliminate the problems concerning
the Health care access and made mandatory for all
healthcare companies to be HIPAA compliant by
2003. The main aim of HIPPA is to make patient
information available to authorized users only and to
maintain the Privacy of information.

The Gramm-Leach-Bliley Act (GLB Act,
2004), also known as the Financial Modernization
Act of 1999, is a federal law enacted in the United
States to control the ways that financial institutions
deal with the private information of individuals. It
stresses on the collection and disclosure of private
financial information and says that the financial
institutes must implement security programs to
protect such information so that the private
information is not accessed through false pretences.

Sarbanes-Oxley Act – Passed in 2002, places
strict requirements on company Boards and Officers
to proactively prevent mishandling of information
(Sarbanes, 2004). The Sarbanes-Oxley Act has
changed how companies must disclose information
regarding the responsibilities of corporate directors,
officers and reporting obligations. Public companies
must comply with these regulations or face
significant penalties.

The Data protection Act, 1998, came into
effect in March 2000 in United Kingdom. Data
protection act serves to protect people from their
personal information being treated, and used in a
harmful manner (DP Act, 2004). The main objective
of Data Protection law is to ensure that the
fundamental right to privacy is not infringed through
the abuse of today's technology. This act says the
personal data should be collected for specified
lawful means and should be processed fairly and
lawfully. Non-compliance with the data protection

provisions may result in exposing the institution to
civil and or criminal liability in addition to the
related negative publicity.

3 RELATED RESEARCH WORK

R Graubart in his paper on “The Integrity-Lock
Approach to Secure Database Management”
(Richard, 1984) has proposed the concept of using
checksums at record level and field level for
integrity purpose. In this architecture, a trusted front
end is introduced between the user/client and the
untrusted DBMS for the verification of checksums.
The paper also analysed the advantages and
disadvantages of this approach when checksums are
used at record level and at field level.

E Mykletun and M Narasimha proposed a new
scheme using Merkley’s Hash Trees for Integrity
and Authentication in Outsourced Databases
(Mykleuton, 2003a). Here a Hash Tree is
constructed and stored at the database in addition to
the records. All the records are placed at the leaves
of the tree, the interior nodes are the hashes of the
data at sons of that node, and the owner of data signs
the root node. Whenever the client queries the
database, all the relevant records and the necessary
hashes unto the root are sent to the client. The client
verifies the signature of the root and reconstructs the
tree using the data sent to it and checks all the
hashes of the Hash Tree. This approach solves the
problem of completeness of query replies in addition
to data integrity problem.

In a later paper by the same authors, they
proposed two new schemes using Condensed RSA
and BGLS signatures (Mykleuton, 2003b). The first
scheme is for single owner, multiple querier models,
and second one for multi owner and multi querier
model. Both the schemes concentrated on reducing
the amount of extra information to be transferred
from database sever to client for verification of
integrity of data.
Another recent approach by C N Zhang, proposed an
integrated approach for integrity of database and
Fault Tolerance (Chang, 2004). This approach
utilizes the redundant residue number systems and
Chinese remainder Theorem for checksum
generation and verification. This approach also
detects and corrects a single error in the data.
However, this approach requires finding n number
of big relatively primes where n is the number of
fields in the record and also the approach requires lot
of security analysis to be done.

SECURING THE ENTERPRISE DATABASE

77

4 SURVEY OF EXISTING
SOLUTIONS

Already many commercial products are available to
ensure database security. We studied the following
products:

4.1 DBMS_OBFUSCATION Toolkit

This toolkit is a built-in package delivered with
Oracle (Arup, 2004 & AppSecInc, 2004). This is an
Oracle crypto package, which provides functions
that provide raw encryption and decryption
capability. The encryption and hashing algorithms
provided in the package are DES, 3DES, MD5. The
disadvantages of this toolkit are 1.The encryption,
decryption and hashing functions can be used only
for a few data types. 2. As it is a built-in package, it
works only for Oracle databases. 3. There is no
Application transparency.

4.2 Db_Encrypt

Application Security Incorporation designed this
product for protection of data. DbEncrypt
(DbEncrypt, 2004 & AppSecInc, 2004) focuses on
encryption of data at column level so that attackers
cannot view the sensitive data in plain text. It
provides a vast number of industry standard
encryption algorithms offering strong encryption and
increased performance. It also provides a point and
click GUI interface where the table owner can
specify the columns to be encrypted or hashed, the
encryption algorithm, the key size and the users for
whom the columns to be decrypted. DbEncrypt itself
takes care of Key Management.

DbEncrypt provides data integrity by providing
signing and verifying functions to sign data at rest
with a digital signature. The advantages of this
product are: 1.DbEncrypt itself takes care of Key
Management. 2. It provides application
transparency. 3. It is a HIPAA compliant product.
As DbEncrypt utilizes triggers and procedures
internally, it is database dependent and presently, the
product is available for Oracle and MS Sql Server.

4.3 XP_CRYPT

Active Crypt developed this product. It supports
encryption algorithms like AES, DES, RC4 and
hashing algorithms like MD5, SHA1 and supports
ORACLE and SQL Server databases. XP_Crypt
(XP_Crypt, 2004) is compatible with OpenSSL
library and hence users can develop their own 3rd

party application that can work with encrypted data.
This product provides data integrity through hashing
algorithms and RSA. However, the key management
is complex, as it does not provide any GUI.

4.4 Nshield

This product is developed by nCipher, which is
Public Key Cryptographic Standard #11 (PKCS #11)
compliant device that generates and store certificate
authority (CA) keys. The integration of nCipher’s
encryption–based technology with RSA Keon
security infrastructure allows organizations to
protect electronic assets and intellectual property, as
well as take steps to ensure the integrity and privacy
of customer information. NShield (nCipher, 2004)
provides efficient key management through the use
of the centralized server that separates the
encryption keys from the encrypted data. This
centralized software is built with RSA BSAFE
encryption software, which provides encryption
services to all enterprise databases and to different
applications.

5 PROPOSED SOLUTIONS

The products mentioned above concentrated much
on data confidentiality rather than on data integrity.
The emphasis of the problem proposed is on data
authenticity/integrity. There is no single appliance as
of now that solves the data integrity problem that is
a just plug-in product applicable for any database
and any operating system. The need of the hour is to
design a system that is application transparent, and
database, operating system independent.

Our solution aims at empowering the
applications to accept or reject the data they pull
from the database based on the integrity verification
i.e., just because the data is in database, the
applications will not act upon it unless it has been
proved that the data is authentic. Therefore, in our
solution, hash will be taken for each record and hash
along with the primary key will be stored on a file
called hash files, which will be at service/interface.
Separate files are maintained for each table to store
the hash. Whenever a record is to be written onto the
database, the hash must be computed for the record.
The hashed value along with the primary key is
stored in the file. If a record is to be read from the
database, the record is retrieved and hash is
computed and checked with the corresponding value
stored in the file. If not tallied, a tampered message
is sent to the application. The solution presented
here can only detect the unauthorized changes made

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

78

to the database at record level but cannot be
prevented.

The following are the proposed solutions.

5.1 Security Wrapper Library

The architecture of Security Wrapper Library is as
specified in fig.1, which includes a package that
provides two APIs, namely readAPI and writeAPI.
The application must import this package and call
these APIs during each write or read on the
database. The format of readAPI is boolean readAPI
(file_name, primary_key, record) and that of
writeAPI is boolean writeAPI (file_name,
primary_key, record). In addition, delAPI is
provided in the package for handling deletions of
records in the file. For modification of any record
writeAPI can be used to modify the corresponding
record in the hash file.

Figure 1: Security Wrapper Library architecture

For writing/modification into database,
• The application writes/modifies the record into

the database and calls the write API.
• The write API takes the table name, record

name and the primary key as input arguments.
• The API opens the corresponding hash file for

the table.
• The hash value is stored in the file along with

primary key.
• The write API returns true to the application

whenever this process succeeds else an error
message is thrown onto the application.

For reading from the database:
• The application reads the record from the

database and calls the read API.
• The read API opens the hash file, and computes

hash on the retrieved record.
• This hash value is compared with the hash

value stored in the file and returns to the
application whether the record is tampered or
not.

• Now the file is closed with the corresponding
message returned to application.

For deletion from the database:

• The application deletes the record from the
database and calls the delAPI

• The delAPI opens the hash file, and searches for
the record with that primary key.

• If the record is found in the hash file, the record
is deleted in the file and the hash file is
rearranged.

• The file is and returns true to the application.
• If the record is not found then an exception is

thrown onto the application.
What happens when two applications are

accessing the same file at the same time? Since each
application will run on their own JVM (Java Virtual
Machine) instance, the resources used by one JVM
instance cannot be accessed by other JVM instance
until it is released. Hence, there is no chance of
overlap writes or reads on the file. In this
architecture, the application must execute the
operations (write/modify/read/delete) onto the
database first and after receiving acknowledgement,
the corresponding changes must be done onto the
file. Hence, the application providers must maintain
the synchronization between database and the file.

The idea here is to separate the hash file from the
database so that DBA has no control over the hash
file, hence any modifications done by the
administrator or hacker with privileges of DBA
cannot do the corresponding changes in the file, and
hence the modifications can be detected. This is
similar to the policy of ‘Separation of Duties’.

5.2 Security Wrapper Service

In the above solution, every time when the API is
called, the file will be opened and after doing the
necessary computations, the file is closed. If the API
is called 1000 times, the file will be opened and
closed 1000 times. Another drawback of the above
approach is that the applications cannot access the
file unless it is not accessed/used by any other
application at that time. These became a bottleneck
for the Security Wrapper Library Architecture. To
avoid the above problems, a new proposal is made,
called Security Wrapper Service whose architecture
is given in fig.2.

In order to overcome the aforementioned
performance and efficiency bottlenecks, this
architecture provides them as a service at a specific
port. The clients have to connect to the service at the
specific port and authenticate themselves by the
username and password of the application. Hence
any number of clients can be connected and get the
services concurrently. Using multithreading concept
and creating a separate thread for each client
connecting to the service can do this. The write/read

Read Write
API API

 Application

Data
base

SECURING THE ENTERPRISE DATABASE

79

overlaps are also avoided since only the service is
working on the file and not the clients.

The files are in encrypted form while they are
not in use by the service and the service can only
decrypt those files by using a secret key known to
the service. The service locks the file after
decryption so that no other application can
view/access the content of the file in plain text.
While closing, the service will first encrypts the file
and unlocks it. This adds an extra layer of protection
in addition to access controls to the hash files.

Re

ini
mu
ap
log
the
co
the
de
alg
pro
wi
ser
ser

to
Co
au
pa
Op
the
Re
cal
co
spe
Wr
co
ke
Cl

CloseConnection(): The service closes the
connection with the client.

Service role:
• The service is deployed at a specific port.
• During start up, the service opens the hash files,

decrypts them, locks these files and listens to the
clients.

• The files will be closed whenever the service is
stopped or when the file is not used by the
service for a specific period.

• The lock on the file is released and the hash file
is encrypted while closing.

Client role:

For writing into database:
• The applications connect to the service as

clients.
• The application writes data into the database.
• The application sends the database name, table

name, record name, and primary key as the
parameters with the write command to the
service.

S
E
R
V
 I
C
E

App 1

App 2

App n

Data
base

• Service computes the hash value on the record

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

80
Fig 2. Security Wrapper Service ArchitectureFigure 2: Security Wrapper Service Architecture

gistration at the service:
The applications have to register at the service

tially. In order to register, the application provider
st contact the service and must provide the

plication name and username, and password for
ging into the service. The application provider at
 time of registering must provide the following

nfiguration information to the service: the size of
 primary key and size of the hashed data which is

termined by choosing one of the hashing
orithms provided by the service. The application
vider can specify multiple configurations each

ll be distinguished by an id, returned by the
vice. A single file is maintained for each id by the
vice.
In order to connect to the service the clients have

use the following formats in their code:
nnection(username, password): The service
thenticates the client using the username and
ssword and establishes a connection.
en(id): The service opens the file determined by
 id.
ad(id, primary key, record): The service
culates the hash based on primary key, record and
mpares it with the hash retrieved from the file
cified by id.
ite(id, primary key, record): The service

mputes hash on the record and stores the primary
y and hash on the file determined by id.
ose(id): Closes the file determined by id.

and stores it in the hash file along with primary
key.

For reading into the database:
• The applications connect to the service as

clients.
• The application reads the data from the database
• Application sends the database name, record

name, and primary key as the input parameters
with the read command to the service.

• The service calculates the hash value on the
retrieved record and compares it with the value
stored in the file.

• If both the values match then a flag with value
set to true be returned else false is returned to
the application.

For modifying into database:
• The applications connect to the service as

clients.
• The application modifies the data at the

database.
• The application sends the database name, table

name, record name, and primary key as the
parameters with the modify command to the
service.

• The service searches in the hash file for the
primary key.

• The hash is computed for the record and
modifies the data at the node where the primary
key is found.

The advantages of this solution over the previous
one are: 1.The files need not be opened and closed
every time the service is called. 2. Multiple clients
can be connected and utilize the service
concurrently. 3. This service can be hosted as a
trusted third party service with in an enterprise or
across enterprises.

5.3 Enterprise Security Wrapper

The above two solutions need the application to
utilize the services or the APIs provided and hence
has to modify the code of the application. In order to
make this service an application transparent, we
propose a new architecture called Enterprise
security wrapper architecture, which is given in
fig.3.

Figure 3: Enterprise security wrapper Architecture

In this solution a Security Wrapper acts as

intermediary between the database and applications.
The applications instead of connecting to database
connect to the wrapper that in turn connects to the
database. Hence, The Security Wrapper intercepts
all the ODBC calls from the applications and
categorizes them into one of the DDL/DML
statements and processes them as done in the service
for each category and redirect the query to the
database through ODBC connection and get the
results and again necessary processing is done. The
result is returned to the application only when the
retrieved records are authentic else error messages
are thrown onto the application.
• Once the application is started, it is connected to

the Security Wrapper instead of connecting to
database.

• The Security Wrapper intercepts the odbc call
to the database.

• These calls are classified as Insert or Select or
Update or Delete, then is processed accordingly.

• For Insertion,
The wrapper connects to the database

through odbc and writes the record into the

database. Upon successful write on the
database, the wrapper computes the hash value
on the record. The security wrapper stores the
hash value along with the primary key in the
hash file.

• For Select operation,
 The wrapper retrieves the record from the
database through the odbc and computes the
hash value. This hash value is compared with
the value already stored in the hash file. If both
the values are same then the record is returned,
else a “TAMPERED MESSAGE” is retuned to
the respective application.

• For Updating,
The Wrapper writes the record into the

database. Upon successful write the hash value
is computed on the record. This new hash value
is replaced with the previous hash value in the
hash file.

App 1

App 2

App n

Security
Wrapper

Data
base

Intercepts all ODBC
calls to and from
database

• For deletion,
 The wrapper connects to the database deletes

the record. Upon successful deletion the hash
value for that particular record present in the
hash file is deleted.

Hence, this architecture accepts the

modifications that are done only through this
interface and notify the applications if any
modifications are done through any other means.
This architecture also provides database and OS
independency and application transparency where
the applications can just plug-in to this interface.
This security wrapper service acts as a firewall
between database and applications.

We can call the Enterprise Security Wrapper as
‘Database Firewall’ due to following reasons: 1. It
acts as an agent for the applications to access the
other side of wrapper i.e., the database. 2. As
Firewall filters outgoing traffic, the Enterprise
Security Wrapper also filters the data and allows
only authentic data to pass through it and blocks the
unauthentic data. 3. Extensive security/ validity
scans can be done at Firewall and in this wrapper
scans for the integrity of data is done. 4.
Authentication, logging and auditing can be done at
the Enterprise Security Wrapper.

Implementation Considerations

MD5, SHA-1, SHA-256, SHA-384, SHA-512
etc. can be used as hashing algorithms that are called
internally by the API’s of the package/library or by
the service. The next question is what the hash file
contains and how they are maintained for faster
retrieval. The hash file contains the primary key and
the hash of the records. To make the searching,

SECURING THE ENTERPRISE DATABASE

81

insertion, or deletion of a record computationally
faster, they must be maintained in a data structure in
the file. The strong contenders for this purpose are
B-trees and B+ Trees. We selected B-trees for the
following reasons. 1. B-trees store data in the
internal nodes also whereas the data is stored at
leaves only in B+ trees. 2. B+ Trees has added
advantages of faster retrieval than B-trees but it will
take more amount of space. 3. As our records
contain primary key and hash that is of small and
fixed size, B-Trees save more space.

6 PERFORMANCE EVALUATION

For performance Evaluation, a simple application is
developed that takes the number of records to be
generated as input and generate those many records
continuously. The application was developed using
java servlets and is run on Apache Tomcat 5(Apache
Jakarta). These records, of size 512KB, are used to
write into and read from the database. The time
taken to write the selected number of records into
the database in terms of seconds is noted and a graph
is drawn with the number of records on X-axis and
the time taken on Y-axis. Similarly, a graph is drawn
to perform read operation on the database. The
performance of the two solutions (Standalone & File
Service solution) is evaluated and results are
compared graphically. In this evaluation SHA-1 160
bit (SHS, 1995) is used as Hashing algorithm for
both the solutions. The experiments are performed
on a PC with Celeron 2.4GHz and 128 Mbytes of
main memory under the operating system Windows
XP.

Figure 4: performance evaluation while writing into
database

Fig 4 shows the performance graph of the first
two solutions while writing into the database, taking

number of records as a multiple of 500 on X-axis
and time in seconds on Y-axis (in units of 5 sec).
The Blue colored line represents the readings for
Security Wrapper Library, brown for the Security
Wrapper Service and the pink represents retrieval
with out using hash. Fig 5 shows the performance
graph of the first two solutions while reading from
the database, taking number of records as a multiple
of 500 on X-axis and time in milliseconds on Y-axis
(in units of 1 sec). The Blue colored line represents
the readings for Security Wrapper Library, brown
for the Security Wrapper Service and the pink
represents retrieval with out using hash.

7 CONCLUSIONS

Data privacy and protection is the need of the hour
to protect the sensitive data from malicious attacks.
The outsourcing countries like US also stress the
importance of them. Hence, in the near future acts
like Data Protection Act, HIPAA Act will be
enforced in India also.

We have worked on the first two solutions and
shown the performance evaluations and we would
like to extend our ideas to the Enterprise security
wrapper and make a product-based solution. We are
presently working on the records, however we have
to integrate the above solution to procedures,
triggers and configuration files. We can also extend
the solution to include Encryption algorithms, which
the applications can use for maintaining
confidentiality of certain sensitive information. Once
the acts are enforced in India, all the banking and
financial applications can go for a product of this
architecture.

Figure 5: performance evaluation while reading from the
database

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

82

REFERENCES

Arup Nanda & Donald, K.B. (2004), Oracle Privacy
Security Auditing, Rampant TechPress.

Apache Jakarta Tomcat Server. Retrieved August 8,
2004, from http://jakarta.apache.org/tomcat/index.html

Chang, N.Z. & Honglan, Z. (2004), An Integrated
Approach for Database Security and Fault Tolerance,
in Proceedings of the International Conference on
Information Technology: Coding and Computing
(ITCC ’04).

Data Protection Act. (n.d.). Retrieved August 8, 2004,
from http://www.dataprivacy.ie/6ai.htm.

DbEncrypt Product Details, (n.d.). Retrieved August 8,
2004, from http://www.appsecinc.com/products

Dave, D & Susan, D. (2004), Review: DB
Confidential. Retrieved August 8, 2004, from
http://nwc.securitypipeline.com/showArticle.jhtml?arti
cleID=18901525

Hacigumis, H & Iyer, B & Mehrotra, S. (2002a, March),
Providing database as a service, in Proceedings of the
18th International Conference on Data Engineering
(ICDE’02).

Hacigumis, H & Iyer, B & Mehrotra, S. (2002b),
Encrypted Database Integrity in Database Service

Provider Model, in International Workshop on
Certification and Security in E-Services.

Jef Poskanger, ACME Crypto Library. Retrieved August
8, 2004, from
http://www.acme.com/java/software/Package-
Acme.Crypto.html

Java Documentation. Retrieved August 8, 2004,
from http://java.sun.com/j2se/

Gramm-Leach-Bliley Act. (n.d.) Retrieved August 25,
2004,from

http://www.ftc.gob/privacy/glbact/glbsub1.html
Mykleuton, E & Narasimha, M & Tsudik, G. (2003a),

Providing Authentication and Integrity in Outsourced
Databases using Merkley Hash Trees, UCI_SCONCE
Technical Report, from
http://sconce.ics.uci.edu/das/MerkleODB.pdf

Mykleuton, E & Narasimha, M & Tsudik, G. (2003b),
Authentication and Integrity in Outsourced Databases,
University of California, Irvine.

Richard, G. (1984), The Integrity-Lock Approach to
Secure Database Management, The Mitre Corporation,
Bedford, MA.

Sarbanes Oxley Section 404, A Toolkit for Management
and Auditors. (n.d.). Retrieved August 8, 2004, from
www.pwc.com/ca/eng/about/svcs/sox_404_v2.pdf.

Secure Hash Standard, NIST. (n.d.). Retrieved August 8,
2004, from http://csrc.nist.gov/cryptval/shs.html

Secure hash Standard (1995), FIPS Publications
180-1. Retrieved August 8, 2004, from
http://www.itl.nist.gov/fipspubs/fip180-1.htm

White Papers from Application Security Inc. (n.d.).

Retrieved August 8, 2004, from http://www.
appsecinc.com/whitepapers/

White Papers from nCipher. (n.d.). Retrieved August 8,
2004, from http://active.ncipher.com/index.php

XP_Crypt Product Details. (n.d.). Retrieved August 8,
2004, from http://www.act

SECURING THE ENTERPRISE DATABASE

83

http://www.pwc.com/ca/eng/about/svcs/sox_404_v2.pdf

