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Abstract: Materialized view selection plays an important role in improving the efficiency of an OLAP system. To 
meet the changing user needs, many dynamic approaches have been proposed for solving the view selection 
problem. Most of these approaches use some form of caching to store frequently accessed views and a 
replacement policy to replace the infrequent ones. While some of these approaches use on-demand fetching, 
where the view is computed only when it is asked, a few others have used a pre-fetching strategy, where 
certain additional information is used to pre-fetch views that are likely to be accessed in the near future. In 
this paper, we propose a global pre-fetching scheme that uses user access pattern information to pre-fetch 
certain candidate views that could be used for efficient query processing within the specified user context. 
For specific kinds of query patterns, called drill-down analysis, which is typical of an OLAP system, our 
approach significantly improves the query performance by pre-fetching drill-down candidates that otherwise 
would have to be computed from the base fact table. We compare our approach against dynamat; a well-
known on-demand fetching based dynamic view management system that is already known to outperform 
optimal static view selection. The comparison is based on the detailed cost savings ratio, used for 
quantifying the benefits of view selection against incoming queries. The experimental results show that our 
approach outperforms dynamat and thus, also the optimal static view selection. 

1 INTRODUCTION 

Decision Support Systems (DSS) involve complex 
queries on very large databases. While operational 
databases maintain state information, data 
warehouses typically maintain historical 
information. As a result, data warehouses tend to be 
very large and grow over time. To facilitate 
answering such complex queries that span over large 
amounts of data, the data is extracted, transformed 
and loaded into the warehouse and is stored in a way 
that supports common analytical operations. The 
data warehouse is generally organized as a set of fact 
tables and is indexed by attributes (primary keys) of 
the dimension tables that store dimension 
information. Fact tables are thin and long whereas 
dimension tables are thick and small. A star schema 
model, as shown in Figure 1 is used to represent a 
data warehouse.  

In Figure 1, there are two dimension tables 
namely Product and Location and a central fact table 
Sales. The fact value that is measured is sales, which 
indicates the total sales of a particular product sold 
to a particular customer. In most real life 

applications, the dimensions are organized as 
hierarchies of attributes that are functionally 
dependent on the primary attributes of each 
dimension. A simple example is organizing the 
Product dimension into the hierarchy: productId, 
and type. A sample hierarchy for the schema of 
Figure 1 is shown in Figure 2. 

While the data warehouse approach solves the 
problem of representing data in a form suitable for 
analytical queries, it does not completely address 
several other performance issues; for example, query 
response time for a given aggregated query. An 
Online Analytical Processing (OLAP) system 
consists of alternating query processing (i.e. when 
data warehouse is online) and maintenance windows 
(i.e. when data warehouse is offline). In a typical 
OLAP scenario, called drill-down analysis, a user 
successively asks queries that are more detailed. 
Roll-up is just the opposite. To improve query 
response times for such complex queries, 
intermediate results are materialized so that, when a 
query is asked, it can be answered from the already 
materialized results (if available). An obvious issue 
in using materialized results to answer queries is 
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selecting views that should be pre-computed. The 
view selection problem has been shown to be an NP-
Hard problem (Gupta Harinarayan and Rajaraman, 
1997) and has been one of the major research issues. 
Several approaches have been proposed towards 
solving this problem. Some of the approaches 
(Gupta, 1997; Harinarayan, 1996; Shukla, 1998; 
Baralis, 1997; Bauer, 2003) suggest static selection 
of views before each query window and then using 
these pre-selected views to answer subsequent 
queries. The obvious drawback of this approach is 
that the selection algorithm needs to be run 
frequently enough to keep up with the changing user 
needs. Even under the assumption that query access 
patterns (see definition 3.4 for details) change only 
between successive query windows, the static 
approach is very inconvenient, since the algorithm 
has to be rerun after every query window and, as 
pointed out by (Shukla, 1998), this could take a long 
time. 

Figure 1: Sample Star Schema 

Figure 2: Dimension Hierarchy 

To meet the changing user needs, several 
dynamic approaches (Kotidis, 2001; Sapia, 2000; 
Yao, 2003) have been proposed. These approaches 
work in a way similar to the principles of cache 
management in memories. The views may be 
fetched (or selected) on demand (on-demand 
fetching) or they may be pre-fetched using some 
prediction strategy. In cases where there are space 
constraints, a replacement algorithm may be used to 
identify the candidate victims for replacing the 
views in the materialized pool with new selections. 
The dynamic approach could be made to 
automatically adapt itself to changing query patterns.  

The rest of the paper is organized as follows: 
Section 2 describes some of the related works in this 
field. In section 3, we introduce the lattice 
framework to model the dependency among views. 

Section 4 describes our proposed approach in more 
detail. In section 5, we provide experimental results 
of our work and compare it with (Kotidis, 2001). 
The last section summarizes, draws conclusions and 
presents the future work. 

2 RELATED WORK 

The Dynamat (Kotidis, 2001) approach implements 
dynamic view selection using the on-demand 
fetching strategy. The granularity of the materialized 
results is fixed to accommodate certain class of 
queries called Multidimensional Range Queries 
(MRQ). A MRQ is very similar to a view with the 
exception that the queries can also be single valued 
with respect to one of the dimensions (In OLAP 
context, these are called slice queries). The 
granularity of the MRQ is a compromise between 
choosing to materialize many small, highly specific 
queries and, materializing a few large queries and 
then answering incoming queries, at each stage, 
using them. Their approach, however, does not take 
the user access pattern information into account 
before making a selection. 

The PROMISE (Sapia, 2000) approach goes one 
step further by predicting the structure and value of 
the next (incoming) query based on the current 
query. It argues that the number of possible queries 
is so large that predicting the next query as a whole 
(at a coarse granularity), is extremely time 
consuming. Instead, it requires that the granularity of 
the individual materialized results be detailed 
enough to capture the subtle differences between the 
values and structures of the addressed queries.  

A different approach to view materialization is 
proposed in (Yao, 2003), where a set of batch 
queries are rewritten using certain canonical queries 
so that the total cost of execution can be reduced by 
using intermediate results for answering queries that 
appear later in the batch. Obviously this approach 
requires that all the queries must be precisely known 
before hand, and hence, even though the approach 
might work well in an operational database scenario, 
it might not be very useful in dynamic OLAP where 
it is extremely difficult to accurately predict the 
exact nature of queries. 

In this paper, we propose a global pre-fetching 
scheme to pre-fetch certain candidate views that 
could be used for efficient query processing. Our 
scheme is global in the sense that the pre-fetched 
views are searched for in the global access lattice 
(for the particular user) at the beginning of a user 
query session or context. It emphasizes on the 
importance of the use of access pattern information 
to identify the user role so as to prune the access 
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space of the user accessing the lattice for selecting 
pre-fetching candidates. This information can be 
explicitly available by having a role associated with 
each user or it can be implicitly obtained by 
analyzing the query patterns of the user. For specific 
kinds of query patterns, called drill-down analysis, 
which is typical of an OLAP system, our approach 
significantly improves the query performance by 
pre-fetching drill-down candidates that otherwise 
would have to be computed from the base fact table. 

3 LATTICE FRAMEWORK 

OLAP views are typically represented as elements of 
lattices (Harinarayan, 1996) or ‘View Graphs’ 
(Gupta, 1997) to illustrate the fact that any view 
(except the top view, which is the base fact table) in 
the lattice can be computed by aggregating results 
from other (more detailed) views. For example, the 
schema of Figure 1 can be represented as a lattice as 
shown in Figure 3. Each node corresponds to a view 
in the multidimensional OLAP. 

Figure 3: Lattice Cube 

Definition 3.1 (partial ordering): Consider two 
views, v1 and v2. We say that v1p v2 if and only if v1 
can be computed from v2. We then say that v1 is 
dependent on v2. For example, in the lattice shown in 
Figure 3, the view (type) can be computed from 
(type, locationId). Thus (type)p (type, locationId). 
There are certain views that are not comparable with 
each other using the p  operator. For example, 
(type) and (state) are not comparable with each 
other. Note that  imposes a partial ordering on the 
views, and it is transitive. In order for a set of 
elements to be a lattice, any two elements must have 
a least upper bound and a greatest lower bound 
according to the  ordering. However, in practice, 
we only need the assumptions that: (a)  is a partial 

order, and, (b) there is a top element, a view upon 
which every view is dependent. 

p

p
p

Definition 3.2 (ancestors and descendents): 
ancestors and descendents of a view v in the lattice 
are defined as follows: 

ancestor(v) = {v′ | v  v′} p
descendent(v) = {v′ | v′  v} p

Definition 3.3 (parents and children): parents 
(children) of a view v in the lattice are defined as the 
immediate proper ancestors (descendents) of v. i.e. 

parent(v) = {v′ | v  v′, /∃   x, v  x, x  v′} p p p
child(v) = { v′ | v′  v, /∃   x, v′p  x, x  v} p p

Definition 3.4 (access pattern): A query access 
pattern is defined as an ordered sequence of queries 
q1, q2, …, qn, addressed to views v1, v2, …, vn, 
respectively, such that v1p v2, v2p v3, …, vn-1p vn 
i.e. given a query, a user successively drills-down 
the results for analytical processing. 

4 PROPOSED APPROACH 

The user access patterns play an important role in 
determining the granularity of materialization. For 
example, consider the scenario where a user, almost 
always, carries out a sequence of drill down 
operations on the lattice shown in Figure 3. Under 
such a situation, the MRQ level of granularity would 
be appropriate, since the user doesn’t spend much 
time in accessing a single view. In other words, he is 
interested in only a slice of the view. Now consider a 
different situation where the user addresses a 
number of slice queries to the view (productId) 
before drilling down to the view (productId, state). If 
the granularity is kept at the MRQ level, then each 
slice query that the user addresses to the view 
(productId) needs to be fetched from the 
materialized parent and materializing the fetched 
result doesn’t help in answering the future queries in 
any way. Instead, if the granularity were fixed at the 
view level, the whole view would be materialized 
when the first slice query is asked. The remaining 
slice queries addressed to the view can be answered 
directly from the materialized views. Thus, the 
access pattern information can be used to great 
advantage in determining the granularity and in pre-
fetching views for materialization. Without loss of 
generality, we fix the granularity at the view level to 
simplify the explanation of the proposed approach. 

There are two issues to be dealt with in the 
dynamic selection of views. The first issue deals 
with the amount of information that is used to   
select candidate views to be stored in the view pool 
(a view pool is a dedicated disk space for storing 
pre-computed views). At the most basic level, global 
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access frequencies can be used along with 
replacement strategies like least recently used, 
smallest penalty first, etc. for the selection of views. 
This approach, as used in (Kotidis, 2001), although 
very intuitive and simple, has some serious 
drawbacks. For example, in Figure 3, consider a 
scenario where the view (type, state) is seldom 
queried. Given that the most recent query asked by 
the user corresponds to the view (type) and that there 
isn’t enough space available to materialize the 
results of this query; a replacement candidate, hence, 
needs to be determined. Under such circumstances, 
the (type, state) view would be a prime candidate for 
replacement due to its low access frequency. But 
suppose the past access patterns indicate that, 
although the view (type, state) has a low access 
frequency, the probability that it is queried given the 
previous query was addressed to the view (type), 
could be very high. In such a situation, it may not be 
appropriate to use replacement policies based on 
pure global frequencies or recentness of use while 
considering view benefits.  

The second issue deals with the view fetching 
strategy, which can be either on-demand fetching 
(fetch on demand) or pre-fetching (fetch by 
prediction). On-demand fetching strategies are 
similar to the ones used in current operating system 
caches where pages are brought into memory only 
when requested. The advantage of this strategy is 
that the fetching algorithm need not be run unless 
the view corresponding to the query is absent from 
the view pool. However, the drawback of this 
approach is that for certain query patterns (drill-
down queries), the performance may be very poor. 
For example, consider a query access pattern in the 
given order: (none), (type), (type, state), (productId, 
state), (productId, locationId). If pure on-demand 
fetching approach is used, the system will have to 
query the base fact table for every query in the 
pattern, since views are brought only on demand and 
no materialized view is available to answer the next 
query in the pattern. This is a typical OLAP 
scenario, called drill-down analysis, where a user 
progressively asks queries that are more detailed.  In 
such a situation, even though it can be predicted 
(from past history) that the pattern may successively 
drill-down all through to the base fact table; the on-
demand fetching strategy would continue to fetch 
views only when the queries are asked and hence the 
performance could become a bottleneck. 

By pre-fetching certain views in advance, we can 
alleviate the above-mentioned drawbacks to a great 
extent. The most essential part of a pre-fetching 
strategy is a prediction algorithm that is able to 
predict the set of views that need to be brought in to 
the view pool.  

4.1 Global Pre-Fetching Algorithm 

We extend the Markov chain model (Howard, 1960) 
in developing a formal framework for modelling 
user interaction and navigation in an OLAP 
scenario. Each of the views visited (accessed) by the 
user map to the states of the Markov chain. The 
access pattern information that determines the 
probability that a user follows a particular navigation 
path can then be mapped to the state transition 
probabilities associated with a Markov chain. The 
probability that a user will drill-down to a particular 
view v2 given that he is currently querying another 
view v1 could be found by computing the transition 
probability between the two nodes in the nth degree 
probability matrix where n equals the number of 
hops (length of path) to reach state (view) v2 from 
state (view) v1. Drill-down analysis being the most 
natural (intuitive) way of querying an OLAP system, 
in our proposed approach, we do not explicitly 
emphasize roll-up queries since it can always be 
answered from the most recently materialized views. 

Figure 4: Lattice with Access Patterns and Roles 

We now propose a global pre-fetching algorithm 
for dynamic view selection that pre-fetches 
candidate views based on the current query and the 
information about the users past access patterns. The 
algorithm is shown in Figure 5. The terminology 
used in the algorithm is shown below and explained 
in terms of the lattice in Figure 4 (modified lattice of 
Figure 3 with access patterns information). 

q is a queue of vertices (nodes/views in lattice). 
v is the current node. 
w[] stores the weight (or benefit) of each of the 

nodes based on the probability of reaching them 
from the current node (the weight computation will 
be explained later). 

eh[i][j] stores the edge probability for an edge 
connecting nodes i and j. It is the probability that the 
next query will be addressed to view j given the 
current query is addressed to view i. For example, 
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the value .2 (in Figure 4) along the edge connecting 
nodes (type) and (productId) is the probability that 
the next query will be addressed to view (productId) 
given the current query is addressed to view (type). 
The user access pattern information is used to 
determine the edge probabilities. These values are 
updated periodically, between successive query 
windows. 

views is the set of all views/nodes in lattice. 
TS is the total space available for storing pre-

fetched views. 
startNode is the node that represents the 

beginning of a query session or context. 
prefetchedViews is the set of views returned by 

the pre-fetching algorithm. 
size[v] denotes the size of the view v. We use our 

proposed method (Shah, 2004) for estimating the 
storage requirements of views, without actually 
materializing them. 

The algorithm begins with the first user query 
(the start query). The algorithm carries out a breadth 
first search to compute the benefit (weight) for each 
of the ancestor views. According to this heuristic, 
the benefit of a view depends on the following two 
factors: 
1. The number of descendant (all descendants 

including children) queries it can answer if 
materialized.  

2. The probability that the user takes a path from 
the initial query (startNode) to the current view. 

Note that the views that are projected as 
beneficial by the first factor above have many 
descendants, and as a result of which they form 
excellent candidates not only in supporting efficient 
drill-down analysis but also in (implicitly) 
facilitating roll-up queries.  

The weight computation in line 9 in Figure 5 
takes these factors into account. The multiplying 
factor eh[c][a], which is the probability associated 
with the edges, takes the second factor into account 
while the summation of this value over all the edges 
emanating from the node accounts for the first 
factor.  

The stopping condition for the breadth first 
search can be fixed based on some threshold value 
that can be computed from the edge probability. In 
other words, if the edge probability falls below the 
threshold value, we stop pursuing nodes along that 
path. Once the weight values of nodes are computed, 
the best set of nodes can be selected for 
materialization depending on the available space. 
The threshold can be based upon one of the two 
different factors. The first factor is the maximum 
tolerable query response time. For example, as we 
go higher up the lattice, the cost of answering 
aggregated queries increases and hence the query 
response time increases. The second factor is the 
probability that the user queries a node given that he 
starts his analysis from startNode.  

To illustrate weights computation, consider the 
lattice shown in Figure 4. Assume that the user starts 
his analysis from the startNode (none) and drills- 
down the lattice and that the stopping condition is to 
process all nodes up to a certain level (length of 
navigation path) with respect to the startNode. 
Assume that level = 2 and w[startNode] = 1. 

when level=1 
w[type]=.6*1=.6, w[state]=.3*1=.3 

when level=2 
w[productId]=.2*w[type]=.12 
w[type,state]=.8*w[type]+.8*w[state]=.72  
w[locationId]=.2*w[state]=.06 

Since the stopping condition (stoppingCondition) 
is level = 2, using above values, the node (type, 
state) would be a good candidate for pre-fetch since 
it has the maximum weight. 

The materialized views can be used to answer 
user queries as long as the user stays in the same 
context. The context is defined by the past access 
patterns of the user. As long as the user navigates 
within the same context, no (or minimal) fetching is 
required after the initial fetch. However, to avoid 
intermittent delays, materialization of selected views 
could be done in parallel with query processing. 

Input: views, TS, startNode, size[] 
Output: prefetchedViews 

1. 
2. 
3. 
 
4. 
5. 
 
6. 
7. 
8. 
9. 
 
 
10. 
11. 
12. 
 
13. 
14. 
15. 
 

add startNode to q; 
initialize w[startNode]=1, w[j (j≠startNode)]=0; 
while (! isEmpty(q))  
begin 

v = first element of q; 
for all a in parent(v) 
begin 

 if (! stoppingCondition) 
    add a to end of q; 

    for each c in child(a) 
         w[a] += eh[c][a] * w[c]; 
end 

end  
sort descending views based on w[]; 
k = 0, space = 0; 
while ((space + size[views(k)])< TS) 
begin 

prefetchedViews = prefetchedViews ∪ views(k); 
space += size[views(k)]; 
k = k +1; 

end 
16. return prefetchedViews ; 

Figure 5: Global Pre-Fetch Algorithm

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

64



 

4.2 Lattice Pruning 

The number of views examined by the global pre-
fetch algorithm can be pruned by taking into account 
the access pattern information and the user role. In a 
typical OLAP scenario, most of the time, a user is 
confined to a region of the lattice that interests him 
based on his profile or role. The user has different 
roles depending on the start node and the navigation 
path pursued. For example, the lattice of Figure 4 
has two dimensions, namely product and location. A 
product manager drills-down through a region of the 
lattice that groups the facts by the product dimension 
(shown by dotted arrows) whereas; a regional 
manager drills-down a region of the lattice that 
groups the facts by the location dimension (shown 
by solid arrows). Even though the actual nodes 
accessed by the user could vary, the region of the 
lattice is more or less determined by the specific role 
of the user. By knowing the role of the user, one can 
prune the lattice space to search for nodes relevant to 
the current role. 

5 EXPERIMENTS 

A detailed set of experiments were carried out to 
measure the effectiveness of our proposed global 
pre-fetching scheme against a well-known dynamic 
view management system (dynamat) (Kotidis, 2001) 
that uses on-demand fetching strategy.  

Table 1: Schema 1 

 
Table 2: Schema 2 

 
 Synthetic data sets were used for generating 
multidimensional data. Table 1 and Table 2 contain 
the schemas and the number of distinct values of the 
dimensions and hierarchies of the two synthetic 
databases (schema 1 and schema 2) that we used. 
For example, the data in Table 1 means that the 
schema 1 has two dimensions. Dimensions 0 and 1 
have a two-level hierarchy. Both dimensions have 

1000 distinct values. Dimension 0 hierarchies have 
200 and 50 values respectively, while dimension 1 
hierarchies have 500 and 100 values respectively. 
The total number of views for schema 1 and schema 
2 are 16 and 240, respectively. The maximum size of 
the base fact table is 1 million tuples for schema 1 
and 9.375 million tuples for schema 2. For 
experimental purposes, a data density of 1% for 
schema 1 (approx. 10,000 tuples) and 10% for 
schema 2 (approx. 937,500 tuples) is selected and 
the total size of all the views in the multidimensional 
data cube is approximately 100,000 tuples for 
schema 1 and 5.6 million tuples for schema 2.  

5.1 Performance Evaluation 

To compare the two approaches, we measure the 
following: 
1. The cost of answering the query from the 

matching view. This is assumed to be equal to 
the number of tuples (size) in the view. The cost 
is measured using the Detailed Cost Savings 
Ratio (DCSR) (Kotidis, 2001). If ci is the cost of 
execution of query qi from the base fact table, cv 
is the cost of execution of qi from the matching 
view v and M is the set of materialized views in 
the view pool then, 

 

0 if qi cannot be answered from M 
ci if there is an exact match for qi in M si= {
ci–cv if v from M was used to answer qi

where
c

s
DCSR

i i

i i ,
∑
∑

=

Thus, to maximize the overall performance, 
DCSR values should be as high as possible. 

2. Given a space constraint, the total number of 
view replacements or Cumulative Replacement 
Count (CRC) in the materialized pool with new 
selections. 

5.2 Generating Query Patterns 

To compare our approach against the dynamat 
approach, we generated a set of query patterns (for 
drill-down analysis) that are representative of OLAP 
queries. The access information was embedded into 
the lattice by arbitrarily assigning probabilities 
between 0 and 1 to all edges emanating from each of 
the nodes (ensuring that the sum is never greater 
than 1). While generating the patterns, there are 
some issues that need to be taken into account. 
Given that a user is currently querying a view vi, the 
next view vj in the access pattern is chosen based on 
the emanating edge probabilities. For this purpose, 
we used the Roulette Wheel Selection strategy, 
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which randomly picks objects based on their 
assigned weights.  

For testing purposes, we generated a set of 10 
query patterns for schema 1 each consisting of 3 
queries and a set of 50 query patterns for schema 2 
each consisting of 9 queries. The patterns were 
generated by randomly choosing a node as start node 
and then generating the sequence of queries from the 
start node. Each new pattern denotes a change in the 
context. Our approach is affected by the context 
change, since its selection is based on views that are 
best suited for the current context. Dynamat, 
however, is not affected by the context change since 
it does not exploit the user access patterns. 

5.3 Results 

Performance was measured under different space 
constraints (i.e. view pool size expressed as a 
percentage of the full data cube size). The DCSR per 
view (in decreasing order of savings) for schema 1 
and schema 2 (for space constraints of 5%, 10% and 
20%) are shown in Figure 6 and Figure 7, 
respectively. The CRC for schema 1 and schema 2 
are shown in Figure 8 and Figure 9, respectively. 
The global pre-fetching scheme clearly outperforms 
the dynamat approach, especially when the available 
space is low. As the available space increases, the 
query performance (DCSR) of dynamat gradually 
approaches to that of ours. Dynamat chooses views 
for materialization as and when new queries are 
asked. Our pre-fetching approach selects views for 
materialization at the beginning of every context. 
With more available space, more views can be 
materialized, as a result of which the probability of 
finding a matching view to answer a query is high. 
Additionally, the global pre-fetching scheme uses 
the access patterns information, which further 
optimizes the selection of views in any given 
context, as seen by the high DCSR values. On the 
other hand, when the space constraints are high, 
dynamat, which updates its selection at each stage, 
requires replacing a lot of views. In the process, the 
DCSR per view drops since more views have to be 
answered from the base fact table. The global pre-
fetch, however, continues to perform better since it 
selects views at the beginning of every context and 
the selection is such that the queries in the given 
context are likely to be answered from the 
materialized view pool, instead of the base fact 
table. Additionally, the global pre-fetch requires 
fewer number of replacements since many of the 
selections persist over different contexts, as a result 
of which the reusability of these already materialized 
views for answering queries from other contexts 
increases. 

It has been experimentally proved in (Kotidis, 
2001) that dynamat outperforms the optimal static 
view selection. The results above show that our 
approach outperforms dynamat and thus, also the 
optimal static view selection. 

6 CONCLUSIONS 

Pre-computation of views is an essential query 
optimization strategy for decision support systems. 
To meet the changing user needs, the views may be 
fetched (or selected) on demand (on-demand 
fetching) or they may be pre-fetched using some 
prediction strategy. In this paper, we proposed a 
global pre-fetching scheme that uses user access 
pattern information to pre-fetch certain candidate 
views that could be used for efficient query 
processing within the specified user context. Our 
approach optimizes the selection of views for 
efficient drill-down analysis, which is the most 
natural way of querying an OLAP system. Roll-up 
analysis is not explicitly emphasized since such 
queries can always be answered from the most 
recently materialized views.  

We compare our scheme against dynamat, a 
dynamic view management system that uses on-
demand fetching and is already known to outperform 
optimal static view collection. The DCSR results 
show that the average cost savings of answering a 
query using our proposed scheme clearly exceeds 
the dynamat approach. The CRC results show that 
our scheme is more robust than dynamat since it 
requires relatively fewer number of view 
replacements.  

In future, we plan to test our approach by varying 
the granularity of the materialized results and also 
on large real-world data sets. 
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Figure 6: DCSR per view (Schema 1) 

Figure 8: CRC (Schema 1) 
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Figure 7: DCSR per view (Schema 2) 

Figure 9: CRC (Schema 2) 
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