
DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-
ACCESS PATTERNS IN AN OLAP SYSTEM

Karthik Ramachandran, Biren Shah, Vijay Raghavan
P. O. Box 44330, CACS, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Keywords: data warehouses, OLAP, view selection, decision support systems, enterprise information systems

Abstract: Materialized view selection plays an important role in improving the efficiency of an OLAP system. To
meet the changing user needs, many dynamic approaches have been proposed for solving the view selection
problem. Most of these approaches use some form of caching to store frequently accessed views and a
replacement policy to replace the infrequent ones. While some of these approaches use on-demand fetching,
where the view is computed only when it is asked, a few others have used a pre-fetching strategy, where
certain additional information is used to pre-fetch views that are likely to be accessed in the near future. In
this paper, we propose a global pre-fetching scheme that uses user access pattern information to pre-fetch
certain candidate views that could be used for efficient query processing within the specified user context.
For specific kinds of query patterns, called drill-down analysis, which is typical of an OLAP system, our
approach significantly improves the query performance by pre-fetching drill-down candidates that otherwise
would have to be computed from the base fact table. We compare our approach against dynamat; a well-
known on-demand fetching based dynamic view management system that is already known to outperform
optimal static view selection. The comparison is based on the detailed cost savings ratio, used for
quantifying the benefits of view selection against incoming queries. The experimental results show that our
approach outperforms dynamat and thus, also the optimal static view selection.

1 INTRODUCTION

Decision Support Systems (DSS) involve complex
queries on very large databases. While operational
databases maintain state information, data
warehouses typically maintain historical
information. As a result, data warehouses tend to be
very large and grow over time. To facilitate
answering such complex queries that span over large
amounts of data, the data is extracted, transformed
and loaded into the warehouse and is stored in a way
that supports common analytical operations. The
data warehouse is generally organized as a set of fact
tables and is indexed by attributes (primary keys) of
the dimension tables that store dimension
information. Fact tables are thin and long whereas
dimension tables are thick and small. A star schema
model, as shown in Figure 1 is used to represent a
data warehouse.

In Figure 1, there are two dimension tables
namely Product and Location and a central fact table
Sales. The fact value that is measured is sales, which
indicates the total sales of a particular product sold
to a particular customer. In most real life

applications, the dimensions are organized as
hierarchies of attributes that are functionally
dependent on the primary attributes of each
dimension. A simple example is organizing the
Product dimension into the hierarchy: productId,
and type. A sample hierarchy for the schema of
Figure 1 is shown in Figure 2.

While the data warehouse approach solves the
problem of representing data in a form suitable for
analytical queries, it does not completely address
several other performance issues; for example, query
response time for a given aggregated query. An
Online Analytical Processing (OLAP) system
consists of alternating query processing (i.e. when
data warehouse is online) and maintenance windows
(i.e. when data warehouse is offline). In a typical
OLAP scenario, called drill-down analysis, a user
successively asks queries that are more detailed.
Roll-up is just the opposite. To improve query
response times for such complex queries,
intermediate results are materialized so that, when a
query is asked, it can be answered from the already
materialized results (if available). An obvious issue
in using materialized results to answer queries is

60
Ramachandran K., Shah B. and Raghavan V. (2005).
DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-ACCESS PATTERNS IN AN OLAP SYSTEM.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 60-67
DOI: 10.5220/0002528700600067
Copyright c© SciTePress

selecting views that should be pre-computed. The
view selection problem has been shown to be an NP-
Hard problem (Gupta Harinarayan and Rajaraman,
1997) and has been one of the major research issues.
Several approaches have been proposed towards
solving this problem. Some of the approaches
(Gupta, 1997; Harinarayan, 1996; Shukla, 1998;
Baralis, 1997; Bauer, 2003) suggest static selection
of views before each query window and then using
these pre-selected views to answer subsequent
queries. The obvious drawback of this approach is
that the selection algorithm needs to be run
frequently enough to keep up with the changing user
needs. Even under the assumption that query access
patterns (see definition 3.4 for details) change only
between successive query windows, the static
approach is very inconvenient, since the algorithm
has to be rerun after every query window and, as
pointed out by (Shukla, 1998), this could take a long
time.

Figure 1: Sample Star Schema

Figure 2: Dimension Hierarchy

To meet the changing user needs, several
dynamic approaches (Kotidis, 2001; Sapia, 2000;
Yao, 2003) have been proposed. These approaches
work in a way similar to the principles of cache
management in memories. The views may be
fetched (or selected) on demand (on-demand
fetching) or they may be pre-fetched using some
prediction strategy. In cases where there are space
constraints, a replacement algorithm may be used to
identify the candidate victims for replacing the
views in the materialized pool with new selections.
The dynamic approach could be made to
automatically adapt itself to changing query patterns.

The rest of the paper is organized as follows:
Section 2 describes some of the related works in this
field. In section 3, we introduce the lattice
framework to model the dependency among views.

Section 4 describes our proposed approach in more
detail. In section 5, we provide experimental results
of our work and compare it with (Kotidis, 2001).
The last section summarizes, draws conclusions and
presents the future work.

2 RELATED WORK

The Dynamat (Kotidis, 2001) approach implements
dynamic view selection using the on-demand
fetching strategy. The granularity of the materialized
results is fixed to accommodate certain class of
queries called Multidimensional Range Queries
(MRQ). A MRQ is very similar to a view with the
exception that the queries can also be single valued
with respect to one of the dimensions (In OLAP
context, these are called slice queries). The
granularity of the MRQ is a compromise between
choosing to materialize many small, highly specific
queries and, materializing a few large queries and
then answering incoming queries, at each stage,
using them. Their approach, however, does not take
the user access pattern information into account
before making a selection.

The PROMISE (Sapia, 2000) approach goes one
step further by predicting the structure and value of
the next (incoming) query based on the current
query. It argues that the number of possible queries
is so large that predicting the next query as a whole
(at a coarse granularity), is extremely time
consuming. Instead, it requires that the granularity of
the individual materialized results be detailed
enough to capture the subtle differences between the
values and structures of the addressed queries.

A different approach to view materialization is
proposed in (Yao, 2003), where a set of batch
queries are rewritten using certain canonical queries
so that the total cost of execution can be reduced by
using intermediate results for answering queries that
appear later in the batch. Obviously this approach
requires that all the queries must be precisely known
before hand, and hence, even though the approach
might work well in an operational database scenario,
it might not be very useful in dynamic OLAP where
it is extremely difficult to accurately predict the
exact nature of queries.

In this paper, we propose a global pre-fetching
scheme to pre-fetch certain candidate views that
could be used for efficient query processing. Our
scheme is global in the sense that the pre-fetched
views are searched for in the global access lattice
(for the particular user) at the beginning of a user
query session or context. It emphasizes on the
importance of the use of access pattern information
to identify the user role so as to prune the access

DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-ACCESS PATTERNS IN AN OLAP SYSTEM

61

space of the user accessing the lattice for selecting
pre-fetching candidates. This information can be
explicitly available by having a role associated with
each user or it can be implicitly obtained by
analyzing the query patterns of the user. For specific
kinds of query patterns, called drill-down analysis,
which is typical of an OLAP system, our approach
significantly improves the query performance by
pre-fetching drill-down candidates that otherwise
would have to be computed from the base fact table.

3 LATTICE FRAMEWORK

OLAP views are typically represented as elements of
lattices (Harinarayan, 1996) or ‘View Graphs’
(Gupta, 1997) to illustrate the fact that any view
(except the top view, which is the base fact table) in
the lattice can be computed by aggregating results
from other (more detailed) views. For example, the
schema of Figure 1 can be represented as a lattice as
shown in Figure 3. Each node corresponds to a view
in the multidimensional OLAP.

Figure 3: Lattice Cube

Definition 3.1 (partial ordering): Consider two
views, v1 and v2. We say that v1p v2 if and only if v1
can be computed from v2. We then say that v1 is
dependent on v2. For example, in the lattice shown in
Figure 3, the view (type) can be computed from
(type, locationId). Thus (type)p (type, locationId).
There are certain views that are not comparable with
each other using the p operator. For example,
(type) and (state) are not comparable with each
other. Note that imposes a partial ordering on the
views, and it is transitive. In order for a set of
elements to be a lattice, any two elements must have
a least upper bound and a greatest lower bound
according to the ordering. However, in practice,
we only need the assumptions that: (a) is a partial

order, and, (b) there is a top element, a view upon
which every view is dependent.

p

p
p

Definition 3.2 (ancestors and descendents):
ancestors and descendents of a view v in the lattice
are defined as follows:

ancestor(v) = {v′ | v v′} p
descendent(v) = {v′ | v′ v} p

Definition 3.3 (parents and children): parents
(children) of a view v in the lattice are defined as the
immediate proper ancestors (descendents) of v. i.e.

parent(v) = {v′ | v v′, /∃ x, v x, x v′} p p p
child(v) = { v′ | v′ v, /∃ x, v′p x, x v} p p

Definition 3.4 (access pattern): A query access
pattern is defined as an ordered sequence of queries
q1, q2, …, qn, addressed to views v1, v2, …, vn,
respectively, such that v1p v2, v2p v3, …, vn-1p vn
i.e. given a query, a user successively drills-down
the results for analytical processing.

4 PROPOSED APPROACH

The user access patterns play an important role in
determining the granularity of materialization. For
example, consider the scenario where a user, almost
always, carries out a sequence of drill down
operations on the lattice shown in Figure 3. Under
such a situation, the MRQ level of granularity would
be appropriate, since the user doesn’t spend much
time in accessing a single view. In other words, he is
interested in only a slice of the view. Now consider a
different situation where the user addresses a
number of slice queries to the view (productId)
before drilling down to the view (productId, state). If
the granularity is kept at the MRQ level, then each
slice query that the user addresses to the view
(productId) needs to be fetched from the
materialized parent and materializing the fetched
result doesn’t help in answering the future queries in
any way. Instead, if the granularity were fixed at the
view level, the whole view would be materialized
when the first slice query is asked. The remaining
slice queries addressed to the view can be answered
directly from the materialized views. Thus, the
access pattern information can be used to great
advantage in determining the granularity and in pre-
fetching views for materialization. Without loss of
generality, we fix the granularity at the view level to
simplify the explanation of the proposed approach.

There are two issues to be dealt with in the
dynamic selection of views. The first issue deals
with the amount of information that is used to
select candidate views to be stored in the view pool
(a view pool is a dedicated disk space for storing
pre-computed views). At the most basic level, global

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

62

access frequencies can be used along with
replacement strategies like least recently used,
smallest penalty first, etc. for the selection of views.
This approach, as used in (Kotidis, 2001), although
very intuitive and simple, has some serious
drawbacks. For example, in Figure 3, consider a
scenario where the view (type, state) is seldom
queried. Given that the most recent query asked by
the user corresponds to the view (type) and that there
isn’t enough space available to materialize the
results of this query; a replacement candidate, hence,
needs to be determined. Under such circumstances,
the (type, state) view would be a prime candidate for
replacement due to its low access frequency. But
suppose the past access patterns indicate that,
although the view (type, state) has a low access
frequency, the probability that it is queried given the
previous query was addressed to the view (type),
could be very high. In such a situation, it may not be
appropriate to use replacement policies based on
pure global frequencies or recentness of use while
considering view benefits.

The second issue deals with the view fetching
strategy, which can be either on-demand fetching
(fetch on demand) or pre-fetching (fetch by
prediction). On-demand fetching strategies are
similar to the ones used in current operating system
caches where pages are brought into memory only
when requested. The advantage of this strategy is
that the fetching algorithm need not be run unless
the view corresponding to the query is absent from
the view pool. However, the drawback of this
approach is that for certain query patterns (drill-
down queries), the performance may be very poor.
For example, consider a query access pattern in the
given order: (none), (type), (type, state), (productId,
state), (productId, locationId). If pure on-demand
fetching approach is used, the system will have to
query the base fact table for every query in the
pattern, since views are brought only on demand and
no materialized view is available to answer the next
query in the pattern. This is a typical OLAP
scenario, called drill-down analysis, where a user
progressively asks queries that are more detailed. In
such a situation, even though it can be predicted
(from past history) that the pattern may successively
drill-down all through to the base fact table; the on-
demand fetching strategy would continue to fetch
views only when the queries are asked and hence the
performance could become a bottleneck.

By pre-fetching certain views in advance, we can
alleviate the above-mentioned drawbacks to a great
extent. The most essential part of a pre-fetching
strategy is a prediction algorithm that is able to
predict the set of views that need to be brought in to
the view pool.

4.1 Global Pre-Fetching Algorithm

We extend the Markov chain model (Howard, 1960)
in developing a formal framework for modelling
user interaction and navigation in an OLAP
scenario. Each of the views visited (accessed) by the
user map to the states of the Markov chain. The
access pattern information that determines the
probability that a user follows a particular navigation
path can then be mapped to the state transition
probabilities associated with a Markov chain. The
probability that a user will drill-down to a particular
view v2 given that he is currently querying another
view v1 could be found by computing the transition
probability between the two nodes in the nth degree
probability matrix where n equals the number of
hops (length of path) to reach state (view) v2 from
state (view) v1. Drill-down analysis being the most
natural (intuitive) way of querying an OLAP system,
in our proposed approach, we do not explicitly
emphasize roll-up queries since it can always be
answered from the most recently materialized views.

Figure 4: Lattice with Access Patterns and Roles

We now propose a global pre-fetching algorithm
for dynamic view selection that pre-fetches
candidate views based on the current query and the
information about the users past access patterns. The
algorithm is shown in Figure 5. The terminology
used in the algorithm is shown below and explained
in terms of the lattice in Figure 4 (modified lattice of
Figure 3 with access patterns information).

q is a queue of vertices (nodes/views in lattice).
v is the current node.
w[] stores the weight (or benefit) of each of the

nodes based on the probability of reaching them
from the current node (the weight computation will
be explained later).

eh[i][j] stores the edge probability for an edge
connecting nodes i and j. It is the probability that the
next query will be addressed to view j given the
current query is addressed to view i. For example,

DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-ACCESS PATTERNS IN AN OLAP SYSTEM

63

the value .2 (in Figure 4) along the edge connecting
nodes (type) and (productId) is the probability that
the next query will be addressed to view (productId)
given the current query is addressed to view (type).
The user access pattern information is used to
determine the edge probabilities. These values are
updated periodically, between successive query
windows.

views is the set of all views/nodes in lattice.
TS is the total space available for storing pre-

fetched views.
startNode is the node that represents the

beginning of a query session or context.
prefetchedViews is the set of views returned by

the pre-fetching algorithm.
size[v] denotes the size of the view v. We use our

proposed method (Shah, 2004) for estimating the
storage requirements of views, without actually
materializing them.

The algorithm begins with the first user query
(the start query). The algorithm carries out a breadth
first search to compute the benefit (weight) for each
of the ancestor views. According to this heuristic,
the benefit of a view depends on the following two
factors:
1. The number of descendant (all descendants

including children) queries it can answer if
materialized.

2. The probability that the user takes a path from
the initial query (startNode) to the current view.

Note that the views that are projected as
beneficial by the first factor above have many
descendants, and as a result of which they form
excellent candidates not only in supporting efficient
drill-down analysis but also in (implicitly)
facilitating roll-up queries.

The weight computation in line 9 in Figure 5
takes these factors into account. The multiplying
factor eh[c][a], which is the probability associated
with the edges, takes the second factor into account
while the summation of this value over all the edges
emanating from the node accounts for the first
factor.

The stopping condition for the breadth first
search can be fixed based on some threshold value
that can be computed from the edge probability. In
other words, if the edge probability falls below the
threshold value, we stop pursuing nodes along that
path. Once the weight values of nodes are computed,
the best set of nodes can be selected for
materialization depending on the available space.
The threshold can be based upon one of the two
different factors. The first factor is the maximum
tolerable query response time. For example, as we
go higher up the lattice, the cost of answering
aggregated queries increases and hence the query
response time increases. The second factor is the
probability that the user queries a node given that he
starts his analysis from startNode.

To illustrate weights computation, consider the
lattice shown in Figure 4. Assume that the user starts
his analysis from the startNode (none) and drills-
down the lattice and that the stopping condition is to
process all nodes up to a certain level (length of
navigation path) with respect to the startNode.
Assume that level = 2 and w[startNode] = 1.

when level=1
w[type]=.6*1=.6, w[state]=.3*1=.3

when level=2
w[productId]=.2*w[type]=.12
w[type,state]=.8*w[type]+.8*w[state]=.72
w[locationId]=.2*w[state]=.06

Since the stopping condition (stoppingCondition)
is level = 2, using above values, the node (type,
state) would be a good candidate for pre-fetch since
it has the maximum weight.

The materialized views can be used to answer
user queries as long as the user stays in the same
context. The context is defined by the past access
patterns of the user. As long as the user navigates
within the same context, no (or minimal) fetching is
required after the initial fetch. However, to avoid
intermittent delays, materialization of selected views
could be done in parallel with query processing.

Input: views, TS, startNode, size[]
Output: prefetchedViews

1.
2.
3.

4.
5.

6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

add startNode to q;
initialize w[startNode]=1, w[j (j≠startNode)]=0;
while (! isEmpty(q))
begin

v = first element of q;
for all a in parent(v)
begin

 if (! stoppingCondition)
 add a to end of q;

 for each c in child(a)
 w[a] += eh[c][a] * w[c];
end

end
sort descending views based on w[];
k = 0, space = 0;
while ((space + size[views(k)])< TS)
begin

prefetchedViews = prefetchedViews ∪ views(k);
space += size[views(k)];
k = k +1;

end
16. return prefetchedViews ;

Figure 5: Global Pre-Fetch Algorithm

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

64

4.2 Lattice Pruning

The number of views examined by the global pre-
fetch algorithm can be pruned by taking into account
the access pattern information and the user role. In a
typical OLAP scenario, most of the time, a user is
confined to a region of the lattice that interests him
based on his profile or role. The user has different
roles depending on the start node and the navigation
path pursued. For example, the lattice of Figure 4
has two dimensions, namely product and location. A
product manager drills-down through a region of the
lattice that groups the facts by the product dimension
(shown by dotted arrows) whereas; a regional
manager drills-down a region of the lattice that
groups the facts by the location dimension (shown
by solid arrows). Even though the actual nodes
accessed by the user could vary, the region of the
lattice is more or less determined by the specific role
of the user. By knowing the role of the user, one can
prune the lattice space to search for nodes relevant to
the current role.

5 EXPERIMENTS

A detailed set of experiments were carried out to
measure the effectiveness of our proposed global
pre-fetching scheme against a well-known dynamic
view management system (dynamat) (Kotidis, 2001)
that uses on-demand fetching strategy.

Table 1: Schema 1

Table 2: Schema 2

 Synthetic data sets were used for generating
multidimensional data. Table 1 and Table 2 contain
the schemas and the number of distinct values of the
dimensions and hierarchies of the two synthetic
databases (schema 1 and schema 2) that we used.
For example, the data in Table 1 means that the
schema 1 has two dimensions. Dimensions 0 and 1
have a two-level hierarchy. Both dimensions have

1000 distinct values. Dimension 0 hierarchies have
200 and 50 values respectively, while dimension 1
hierarchies have 500 and 100 values respectively.
The total number of views for schema 1 and schema
2 are 16 and 240, respectively. The maximum size of
the base fact table is 1 million tuples for schema 1
and 9.375 million tuples for schema 2. For
experimental purposes, a data density of 1% for
schema 1 (approx. 10,000 tuples) and 10% for
schema 2 (approx. 937,500 tuples) is selected and
the total size of all the views in the multidimensional
data cube is approximately 100,000 tuples for
schema 1 and 5.6 million tuples for schema 2.

5.1 Performance Evaluation

To compare the two approaches, we measure the
following:
1. The cost of answering the query from the

matching view. This is assumed to be equal to
the number of tuples (size) in the view. The cost
is measured using the Detailed Cost Savings
Ratio (DCSR) (Kotidis, 2001). If ci is the cost of
execution of query qi from the base fact table, cv
is the cost of execution of qi from the matching
view v and M is the set of materialized views in
the view pool then,

0 if qi cannot be answered from M
ci if there is an exact match for qi in M si= {
ci–cv if v from M was used to answer qi

where
c

s
DCSR

i i

i i ,
∑
∑

=

Thus, to maximize the overall performance,
DCSR values should be as high as possible.

2. Given a space constraint, the total number of
view replacements or Cumulative Replacement
Count (CRC) in the materialized pool with new
selections.

5.2 Generating Query Patterns

To compare our approach against the dynamat
approach, we generated a set of query patterns (for
drill-down analysis) that are representative of OLAP
queries. The access information was embedded into
the lattice by arbitrarily assigning probabilities
between 0 and 1 to all edges emanating from each of
the nodes (ensuring that the sum is never greater
than 1). While generating the patterns, there are
some issues that need to be taken into account.
Given that a user is currently querying a view vi, the
next view vj in the access pattern is chosen based on
the emanating edge probabilities. For this purpose,
we used the Roulette Wheel Selection strategy,

DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-ACCESS PATTERNS IN AN OLAP SYSTEM

65

which randomly picks objects based on their
assigned weights.

For testing purposes, we generated a set of 10
query patterns for schema 1 each consisting of 3
queries and a set of 50 query patterns for schema 2
each consisting of 9 queries. The patterns were
generated by randomly choosing a node as start node
and then generating the sequence of queries from the
start node. Each new pattern denotes a change in the
context. Our approach is affected by the context
change, since its selection is based on views that are
best suited for the current context. Dynamat,
however, is not affected by the context change since
it does not exploit the user access patterns.

5.3 Results

Performance was measured under different space
constraints (i.e. view pool size expressed as a
percentage of the full data cube size). The DCSR per
view (in decreasing order of savings) for schema 1
and schema 2 (for space constraints of 5%, 10% and
20%) are shown in Figure 6 and Figure 7,
respectively. The CRC for schema 1 and schema 2
are shown in Figure 8 and Figure 9, respectively.
The global pre-fetching scheme clearly outperforms
the dynamat approach, especially when the available
space is low. As the available space increases, the
query performance (DCSR) of dynamat gradually
approaches to that of ours. Dynamat chooses views
for materialization as and when new queries are
asked. Our pre-fetching approach selects views for
materialization at the beginning of every context.
With more available space, more views can be
materialized, as a result of which the probability of
finding a matching view to answer a query is high.
Additionally, the global pre-fetching scheme uses
the access patterns information, which further
optimizes the selection of views in any given
context, as seen by the high DCSR values. On the
other hand, when the space constraints are high,
dynamat, which updates its selection at each stage,
requires replacing a lot of views. In the process, the
DCSR per view drops since more views have to be
answered from the base fact table. The global pre-
fetch, however, continues to perform better since it
selects views at the beginning of every context and
the selection is such that the queries in the given
context are likely to be answered from the
materialized view pool, instead of the base fact
table. Additionally, the global pre-fetch requires
fewer number of replacements since many of the
selections persist over different contexts, as a result
of which the reusability of these already materialized
views for answering queries from other contexts
increases.

It has been experimentally proved in (Kotidis,
2001) that dynamat outperforms the optimal static
view selection. The results above show that our
approach outperforms dynamat and thus, also the
optimal static view selection.

6 CONCLUSIONS

Pre-computation of views is an essential query
optimization strategy for decision support systems.
To meet the changing user needs, the views may be
fetched (or selected) on demand (on-demand
fetching) or they may be pre-fetched using some
prediction strategy. In this paper, we proposed a
global pre-fetching scheme that uses user access
pattern information to pre-fetch certain candidate
views that could be used for efficient query
processing within the specified user context. Our
approach optimizes the selection of views for
efficient drill-down analysis, which is the most
natural way of querying an OLAP system. Roll-up
analysis is not explicitly emphasized since such
queries can always be answered from the most
recently materialized views.

We compare our scheme against dynamat, a
dynamic view management system that uses on-
demand fetching and is already known to outperform
optimal static view collection. The DCSR results
show that the average cost savings of answering a
query using our proposed scheme clearly exceeds
the dynamat approach. The CRC results show that
our scheme is more robust than dynamat since it
requires relatively fewer number of view
replacements.

In future, we plan to test our approach by varying
the granularity of the materialized results and also
on large real-world data sets.

REFERENCES
Baralis, E., Paraboschi, S., Teniente, E., 1997.

Materialized View Selection in a Multidimensional
Database. In Proc of 23rd VLDB Conf., pp. 156-165.

Bauer, A., Lehner, W., 2003. On Solving the View
Selection Problem in Distributed Data Warehouse
Architectures, In Proc. of SSDBM Conf., pp. 43-51.

Harinarayan, V., Rajaraman, A., Ullman, J., 1996.
Implementing Data Cubes Efficiently. In ACM
SIGMOD Conference, pp. 205-216.

Gupta, H., 1997. Selection of Views to Materialize in a
Data Warehouse. In Proc. of Intl. Conf. on DB Theory,
pp. 98-112.

Gupta, H., Harinarayan, V., Rajaraman, A., 1997. Index
Selection for OLAP. In 13th Conf. on Data Engg, pp.
208-219.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

66

Howard, R., 1960. Dynamic Programming and Markov
Processes. MIT Press.

Kotidis, Y., Roussopoulos, N., 2001. A Case for Dynamic
View Management. In ACM Transactions on
Database Systems, vol. 26, no. 4, pp. 388-423.

Sapia, C., 2000. PROMISE: Predicting Query Behaviour
to Enable Predictive Caching Strategies for OLAP
Systems. In Proc. of Intl. Conf. on Data Warehousing
and Knowledge Discovery, pp. 224-233.

Shah, B., Ramachandran, K., Raghavan, V., 2004. Storage
Estimation of Multidimensional Aggregates in a
Datawarehouse Environment. In Intl. Conf. on
Systemics, Cybernetics and Informatics, pp. 283-290.

Shukla, A., Naughton, J., Deshpande, P., 1998.
Materialized View Selection for Multidimensional
Datasets. In Proc. of 24th VLDB Conf., pp. 488-499.

Yao, O., An, A., 2003. Using User Access Patterns for
Semantic Query Caching. In Intl. Conf. on Database
and Expert System Applications, pp. 737-746.

(a) space = 5%

(b) space = 10%

(c) space = 20%
Figure 6: DCSR per view (Schema 1)

Figure 8: CRC (Schema 1)

(a) space = 5%

(b) space = 10%

(c) space = 20%
Figure 7: DCSR per view (Schema 2)

Figure 9: CRC (Schema 2)

DYNAMIC PRE-FETCHING OF VIEWS BASED ON USER-ACCESS PATTERNS IN AN OLAP SYSTEM

67

