A METHODOLOGY OF FORECASTING DEMANDS OF THE COMMUNICATION TRAFFIC

Masayuki Higuma
NEC Corporation
5-7-1 Shiba Minato-KU Tokyo, Japan

Masao J. Matsumoto
Kyusyu Sangyo University, Japan
2-3-1 Shoukoudai Higashi-KU Fukuoka, Japan

Keywords: Modeling, Framework, Demand forecast, Statistical analysis, society, economy, Simulation.

Abstract: The Traffic demand of the communication has strong relations to the gross domestic product (GDP). Some statistical models are well known for the demand forecast. As such models, there are the Linear regression Model (LM) and the Auto Regression model (AR). However the LM cannot apply analyzing a traffic demand, because its relations between a GDP and a traffic demand have the non linear shape. Also the AR has problems which cannot reflect the impact of social and economical events, and have big forecasting errors, because a traffic demand has a trend component. Therefore this study considers new a methodology of forecasting demands of the communication traffic, which has high quality by resolving the above problems, by modeling and evaluating social and economical events.

1 INTRODUCTION

In recent years, skills of the demand forecast are more important for telecommunication operator companies. The mistake of judgements on their investments can be made by errors of forecasting. Then we study new a methodology of forecasting demands of the communication traffic, for solving such problems.

The traffic demand of the communication has strong relations to the gross domestic product (GDP). Some statistical models are well known for the demand forecast. As such models, there are the Linear regression Model (LM) and the Auto Regression model (AR)(Nakazawa, 2004). However the LM cannot apply analyzing traffic demands, because its relations have the non linear shape. Also the AR has problems which cannot reflect the impact of social and economical events, and has big forecasting errors, because a traffic demand has a trend component. Therefore this study considers new a demand forecast model of traffic demands, which has high quality by resolving the above problems, by modeling and evaluating social and economical events.

Our model has a parameter evaluated impacts of economical and social events, and forecasts traffic demands with a GDP and such evaluated parameters. However our study does not aim at predicting social and economical events. Also, this study aims at implementing on a system forecasting the traffic demand with information technologies, however this is only our private work.

Firstly, this article describes well known models and merits of this study. Secondly, our “K model” and “K parameter” is presented. Thirdly, this article analyzes that traffic demands are driven by the GDP growth and social and economical events. Fourthly, this article shows that these events can be evaluated with the content analysis(Janis, 1965)(Krippendorf, 1980), and an evaluated score has strong correlations to a K parameter. Finally, conclusions and future study issues are described.

2 WELL KNOWN METHODOLOGIES

As statistical analyzing correlations between quantitative variables, there are the Auto Regression Model (AR) and the Linear Regression Model (LM)(Nakazawa, 2004) which can be applied forecasting traffic demands. The AR and the LM has the next weak points for forecasting traffic demands.

1. The AR has the next problems.
 (a) There are big errors forecasted traffic demands,
when targeted variables contain trend components.
(b) The impact of social and economical issues cannot be reflected.

2. The LM has the next problems.
(a) There are big errors forecasted traffic demands with the LM, because a correlation between the traffic demand and the Real GDP has a non linear correlation.
(b) Forecasting with the LM must be computed over the available section, then a forecasted traffic demand has no reliability.

Whereas, our new methodology can be reflected the impact of social and economical events, and will have smaller errors even if traffic demands contain trend components.

3 PRESENT OUR MODEL FOR THE DEMAND FORECAST

This section describes our new model of forecasting communication traffic demands.

Our model for the demand forecast is defined as the next equations.

\[
x(i) = x(i - 1) + K(i)Z(i)
\]

\[
K(i) = \sum_j G(e_{ij})
\]

\[
i = 1, 2, \ldots, n
\]

The above equation (1) is differential equation. \(x(i)\) is a future value of \(x\), \(x(i - 1)\) is a 1 order past values of \(x(i)\), and \(K(i)\) means the liveliness of the society, and is reflected the impact of social and economical events. In the equation(2), the function \(G(e_{ij})\) evaluates social and economical events \(e_{ij}\) shown every events \(e_i\) on every periods \(i\). Also in the equation(1), \(K(i)\) is called “K parameter”, because the society in English means “syakai” in Japanese, then we get “K” in spelling of “syakai”. And, by the same reason, this new model shown as the equation(1) and equation(2) is called “K model”. Also, \(Z(i)\) is the growth of the Real GDP.

In this K model; a future value \(x(i)\) is computed with a 1 order past traffic \(x(i - 1)\) and a K parameter \(K(i)\) and an economical growth \(Z(i)\). Also, \(K(i)\) is computed with the equation(2), and the function \(G(e_{ij})\) evaluates social and economical events. The function \(G(e_{ij})\) is defined as the next formulas.

\[
G(e_{ij}) = \sum_k a_k g_k(e_{ij})
\]

The \(g_k(e_{ij})\) means evaluating some aspects\(^1\) \(k\) of \(e_{ij}\) with the content analysis(Janis, 1965)(Krippendorf, 1980) and the text data mining(Hearst, 1999). Also \(a_k\) means weighted coefficients. The value of \(K(i)\) increases and decreases by happening social and economical events \(e_{ij}\) with the equation(2) and the equation(4). For example, \(K\) decrease by happening fear events (eg., the terrorism, the remarkable rise of the crude oil), and increase by happening relief events (eg., Olympic Games, the stabilization of the society).

4 EVALUATION

This section describes evaluating the above mentioned K model. This evaluation is used the telephone switching traffic data and GDP data in the USA, because these data can be gotten easily. Such traffic data is opened on the Internet during past 20 years.

Thus, we analyse a Dial Equipment Minutes (DEM) of the Incumbent Local Exchange Carriers (ILEC)(FCC,) and the Real GDP chosen from the National Economic Accounts(BEA,) in the United States of America (USA), from 1980 to 2002. Also targeted K model is built on the R(TheR, 2004).(see the next section)

4.1 Simulation

This section describes a simulation for the equation(1) of the above mentioned K model on the R(TheR, 2004) shown as the next paragraph. At this simulation, this K model is simulated from 1980 to 2001. And a K parameter (shown as Fig.1) is computed and assumed with a Real GDP and a DEM. By using this K parameter, simulated DEM (shown as Fig.2) with the R program (shown as the next paragraph) is good matched to the real DEM. In this figure, the line is simulated DEM, and the “x” is the real DEM. Thus we can describe past trends with this K parameter. It is important to study relations among this K parameter and events.

\[
\begin{align*}
Y[i] &\text{<} Y[i - 1] + K.ts[i] * dGDP.ts[i] \\
+ &\text{return}(Y)
\end{align*}
\]

4.2 Survey

This section describes surveying relations between the K parameter and events which contain social and\(^1\)eg.. how widespread on the map, how deep impact on the psychology
The K parameter on the K model in this evaluating

![Graph showing the K parameter over years from 1985 to 2000.]

Figure 1: The assumed K parameter on the K model in this evaluating.

4.3 Evaluation of social and economical events

In this section, it is verified that these events can be evaluated with the content analysis (Janis, 1965) (Krippendorf, 1980), and evaluated score has strong correlations to the above K parameter.

Firstly, it is selected that some news of social and economical events on the Wikipedia (Wikipedia,) from 1980 to 2001. Such selected news are labeled and weighted with two aspects: how wide spread on the map (SOM), how deep impact on the psychology (IOP). A SOM is weighted this way: 5 - in the world wide, 4 - in the EU and USA, 3 - in the USA, 2 - on the state in the USA, 1 - on the region except in the USA, 0 - does not impact in the USA. Also, an IOP is weighted this way: 5 - strong liveness impacts, 0 - neutral, -5 deep fearful impacts. Then, the next equation is evaluated with the score of such SOM and IOP.

\[
\dot{K}(i) = \sum_{j} G(e_{ij}) \cdot \sum_{k} \frac{SOM_{kj} \cdot IOP_{kj}}{25}
\]

(5)

An evaluated score \(\dot{K}(i)\) (this means a K parameter) is computed with equation(5). This results is shown at Table 1.

Secondly, the correlation between the above evaluated score \(\dot{K}(i)\) and the assumed K parameter \(K(i)\) statistically. Now the “null hypothesis” is assumed that the above correlation coefficient is zero. And it is tested with statistical test method that such null hypothesis is rejected. As a result, the probability of the above null hypothesis is \(4.958 \times 10^{-7}\), and the correlation coefficient is 0.87 with the peason test method (Nakazawa, 2004). Otherwise, the probability of the above null hypothesis is 0.002788, and the correlation coefficient is 0.64 with the speaman test method (Nakazawa, 2004). Then the above null hypothesis is rejected.

5 CONSIDERATION

Firstly, as mentioned earlier, it is shown that the position of the communication traffic demand is moved by the social and economical events.

Also, some characteristics are distinguished from the trend of \(\Delta \text{RealGDP}, \Delta \text{DEM}, K\), and social
Table 1: Relations among the K parameter and events

<table>
<thead>
<tr>
<th>year</th>
<th>$\Delta RealGDP$</th>
<th>ΔDEM</th>
<th>K</th>
<th>Events</th>
<th>SOM</th>
<th>IOP</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>-100975</td>
<td>65000</td>
<td>-0.46</td>
<td>The Falklands War</td>
<td>1</td>
<td>1</td>
<td>0.48</td>
</tr>
<tr>
<td>1983</td>
<td>212421</td>
<td>70000</td>
<td>0.33</td>
<td>the 'Star Wars'</td>
<td>4</td>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>1984</td>
<td>372930</td>
<td>123000</td>
<td>0.33</td>
<td>Los Angeles Olympic</td>
<td>4</td>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>1985</td>
<td>212294</td>
<td>100000</td>
<td>0.47</td>
<td>Creation of Domain Name System</td>
<td>4</td>
<td>3</td>
<td>0.48</td>
</tr>
<tr>
<td>1986</td>
<td>195566</td>
<td>61000</td>
<td>0.31</td>
<td>Space Shuttle Challenger explodes</td>
<td>3</td>
<td>-2</td>
<td>-0.24</td>
</tr>
<tr>
<td>1987</td>
<td>200284</td>
<td>55000</td>
<td>0.27</td>
<td>Black Monday</td>
<td>4</td>
<td>-3</td>
<td>-0.48</td>
</tr>
<tr>
<td>1988</td>
<td>255612</td>
<td>124000</td>
<td>0.49</td>
<td>Canada & US FTA</td>
<td>4</td>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>1989</td>
<td>223272</td>
<td>74000</td>
<td>0.33</td>
<td>Tiananmen Square, Peking</td>
<td>1</td>
<td>-5</td>
<td>-0.2</td>
</tr>
<tr>
<td>1990</td>
<td>116196</td>
<td>37600</td>
<td>0.32</td>
<td>Iraq invades Kuwait</td>
<td>4</td>
<td>-3</td>
<td>-0.48</td>
</tr>
<tr>
<td>1991</td>
<td>-31570</td>
<td>30300</td>
<td>-0.96</td>
<td>Iraq accepts cease-fire</td>
<td>5</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>1992</td>
<td>203779</td>
<td>90600</td>
<td>0.44</td>
<td>Aid Famine Relief In Somolia</td>
<td>4</td>
<td>3</td>
<td>0.48</td>
</tr>
<tr>
<td>1993</td>
<td>182184</td>
<td>121100</td>
<td>0.66</td>
<td>Internet in CBC TV</td>
<td>4</td>
<td>4</td>
<td>0.64</td>
</tr>
<tr>
<td>1994</td>
<td>284943</td>
<td>134300</td>
<td>0.47</td>
<td>800,000 Rwandans were killed</td>
<td>1</td>
<td>-3</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

and economical events shown these Tables (Table.1). Such characteristics are shown the next list.

1. If $\Delta RealGDP < 0$ then If $K < 0$ then ΔDEM is increased.
 - (a) The Falklands War from March to June 1982.
 - (b) ENDED: Iraq accepts cease-fire 1991.
2. If $\Delta RealGDP > 0$ then ΔDEM is moved by the K
 - (a) from 1983 to 1990.
 - (b) from 1992 to 2000.
3. If $\Delta RealGDP > 0$ then If $K < 0$ then ΔDEM is decreased.
 - (a) Sept. 11 attacks on the World Trade Center.

Hence, we can point out the next issues from the above results. If relief events have happened, the K parameter increases. Otherwise, if fear events have happened, the K parameter decreases.

Secondly, it is shown that the correlation between an evaluated score $\hat{K}(i)$ and an assumed K parameter $K(i)$ can be strongly. Consequently, if the above model (equation(5)) is improved, we can make $\hat{K} \simeq K$. And, a K parameter on our K model can be evaluated with the content analysis (Janis, 1965)(Krippendorf, 1980) from social and economical events on news sources (eg., Wikipedia(Wikipedia,)).

6 CONCLUSION

Consequently, it is sure that the position of communication traffic demands is moved by social and economical events. This article analyzes the relation among traffic demands and social events and economical events, and presents a “K model” (shown as equation(1)) which can improve the reliability of forecasted traffic demands with a “K parameter”. This K parameter can be computed with evaluating social and economical events (shown as equation(2) and equation(4)). Also the equation(4) can be realized with the content analysis(Janis, 1965)(Krippendorf, 1980). Since there are many volumes and kinds in social and economical events, sampling and coding of these events should be resolved with the text data mining(Heard, 1999).

Finally, automating and improving the K model is a theme in the next article.

REFERENCES