
WRAPPING AND INTEGRATING
HETEROGENEOUS RELATIONAL DATA WITH OWL

Seksun Suwanmanee , Djamal Benslimane, Pierre-Antoine Champin
LIRIS laboratory, University of Lyon 1

 8, Bd Niels Bohr 69622 Villeurbanne cedex, France

Philippe Thiran
Computer Science Department, Eindhoven University of Technology

Den Dolech 2, 5600 MB Eindhoven, The Netherlands

Keywords: Database, Integration, Mediator, Wrapper, Semantic Web, Ontology, OWL

Abstract: The Web-based information systems have been much developed since the Internet is known as a global
accessible open network. The Semantic Web vision aims at providing supplementary meaningful
information (meta-data) about Web resources in order to facilitate automatic processing by machines and
interoperability between different systems. In this paper, we present an approach for the integration of
heterogeneous databases in the Semantic Web context using semantic mediation approach based on
ontology. The standard OWL language is used here as the ontology description language to formalize
ontologies of local data resources and to describe their semantic correspondences in order to construct an
integrated information system. We propose an architecture adopting mediator-wrapper approach for a
mediation based on OWL. Some illustrations of database wrapping and semantic mediation using OWL are
also presented in the paper.

1 INTRODUCTION

Since the explosive expansion of the Internet, the
technology in this area has been progressing and the
amount of data available on the Web has rapidly
increased. Many information systems can expose
their data via the internet that facilitates the remote
access. The information system that used to work
locally can become online accessible and ready to
communicate with other systems. In this work, we
focus on the semantic integration of data-oriented
information systems within the Internet. In such
systems, databases are modeled and implemented
independently. An adaptable mediation system is
therefore necessary to allow cooperation between
them. The mediation plays an important role in the
Semantic Web context in which information may not
be processed from a single data source, but instead
from combinations of multiple heterogeneous data
sources with different representations of a common
domain. Here we propose a mediator-wrapper

approach based on OWL ontology in the Semantic
Web context for integrating heterogeneous
databases.

The Semantic Web began with the idea that the
Web resources should also provide meta-data or
semantic description about the resources themselves.
These meta-data can allow intelligent agents to work
with. The W3C first introduced RDF/RDFS
(http://www.w3c.org/RDF/) as a Semantic Web
language. Then to support the needs of ontology
language for the Web resources, OWL
(http://www.w3c.org/2004/OWL/) was recently
designed based on the RDF graph model and the
semantic found of description logics.

Recently, OWL has become the determinant
standardization effort of the international research
community in this area. This implies that in the
future we will see many ontologies in specific
knowledge domains expressed in OWL. It is of
crucial importance therefore to be able to integrate

11
Suwanmanee S., Benslimane D., Champin P. and Thiran P. (2005).
WRAPPING AND INTEGRATING HETEROGENEOUS RELATIONAL DATA WITH OWL.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 11-18
DOI: 10.5220/0002527200110018
Copyright c© SciTePress

ontologies in order to provide the interoperability of
different independent data sources.

The rest of this paper is organized as follows. In
Section 2, we describe main characteristics of OWL.
Section 3 presents the general architecture of our
approach and describes in detail the database
wrapping and the ontology mediation using OWL.
An experimental implementation is shown in
Section 4. Finally, Section 5 concludes this paper.

2 OWL: WEB ONTOLOGY
LANGUAGE

An ontology describes concepts and relations for
representing and defining a specific knowledge
domain. Essentially, it consists of a hierarchical
description of concepts in a domain, along with
descriptions of the properties of each concept and
maybe instances of concepts.

As mentioned in many works such as (Cruz,
2004), (Horrocks, 2003a), (Mena, 2000), ontology
can play an important role in the semantic mediation
by providing a source of shared and precisely
defined terms that can be used in meta-data.

RDF (Resource Description Framework), and
RDF Schema (RDFS) have been widely accepted as
a formal language of meta-data describing any Web
resources. RDFS in particular is recognizable as an
ontology knowledge representation language: it talks
about classes and properties (binary relations), range
and domain constraints (on properties), and subclass
and subproperty (specialization) relations. RDFS
has, however, some limitations that cause difficulties
for automated reasoning process. A new Web
ontology language, DAML+OIL, was developed on
top of the RDF model. This work led to OWL (Web
Ontology Language), now officially recommended
as the ontology language for the Semantic Web by
W3C.

OWL uses the same syntax as RDF (and RDFS)
to represent ontologies. It may thus appear in several
formats such as RDF/XML serialization, N-Triples,
N3. It also has a compact abstract syntax which we
use in this paper since it is less verbose than pure
RDF syntaxes.

Concretely, an OWL ontology consists of
definitions and descriptions of concepts (or classes)
and relations (or properties) between them. There
are basic elements of OWL (some come from
RDF/RDFS) that allow to define classes, to describe
their hierarchical relations and also their properties.
All classes are typed owl:Class. The expression
rdfs:subClassOf decribes an inclusion relation
between classes in a hierarchy.

owl:equivalentClass is used to declared the
equivalence of classes.The properties are of two
types: owl:DatatypeProperty and
owl:ObjectProperty. A datatype property is a
binary relation that associates an individual of a
class to a value (or values) of a simple data type
defined in accordance with XML Schema datatypes
such as integer, string. On the other hand, an object
property relates individuals of classes (or of a same
class). When a property is defined, we usually
specify its domain (rdfs:domain) and its range
(rdfs:range). We can also characterise a property
by specifying its supplementary type such as
owl:transitiveProperty, etc.

OWL is classified into three species: OWL Lite,
OWL DL (description logic) and OWL Full. OWL
DL which is used in the scope of this work is
particularly interesting since it has enough
expressivity and a decidable reasoning mechanism
(Horrocks, 2003b).

3 APPROACH

In this section, first we present an overview of our
approach then show some motivating examples
which illustrate the functional aspects of the
proposed approach. The details of wrapping part and
the ontology integration are described in later
subsections.

3.1 General architecture

Our system consists of a collection of data sources
and a mediator that facilitates the access to local data
and reconciles semantic conflicts among those local
systems. Our approach adopts a so-called mediator-
wrapper architecture that allows local systems to
operate independently while the remote access can
be done via a mediator and adaptable wrappers. This
mediation system provides a transparent access of
different local sources to the user. Figure 1
illustrates the architecture of our approach that is
divided into three layers:

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

12

Local DatabaseLocal Database

Wrapper

local
ontology

Mediator
Integrated
ontologies

OWL reasoner
and

query processor

Wrapper

Local DatabaseLocal Database

local
ontology

. . .

Wrapper

local
ontology

Local DatabaseLocal Database

Source
layer

Wrapper
layer

Integration
layer

Figure 1: Overview of the general architecture

Source layer contains a set of autonomous

databases as local data sources of a common
domain. These databases model their data
independently according to thier requirements and
applications.

Wrapper layer includes wrappers for each local
database. These wrappers allow the interface
between local systems and the mediator. In the
context of Semantic Web, the wrapper provides an
OWL ontology representing a data source and a
means to access and to query the local source. More
details related to the Wrapper layer are given in
section 4.

Integration layer contains a mediator which
allows the interoperability of the local sources. One
of its main functions is to integrate local ontologies
in order to facilitate a global access of local sources.
Since different local ontologies may present some
semantic conflicts, ontology mappings are necessary
to overcome these differences. The mediator also
contains a reasoning engine that works on the OWL
ontologies and the mappings, and a query processor
which allows the users to retrieve data from local
sources.

The query processing is beyond the scope of this
paper. Let us now focus on the ontology mediation
based on OWL. The following subsection presents
an example of heterogeneous databases and
summarizes some semantic conflicts.

3.2 Motivating examples

Two relational databases are presented here as
example of local sources. Suppose that Database A
is a local music database of SchoolA. A simplified
schema of the database is shown in Figure 2. It
contains information about people and courses of the
school. The data concerning students and teachers

are kept separately in different tables. The column
teaches of Teacher indicates course(s) which a
teacher is responsible for. MusicClass contains
data of all music classes which are classified into
categories by their music instrument for example,
PianoClass and ViolinClass.

DATABASE A

People(pID, name, age)

Teacher(tID, teaches)
 FK: tID -> People.pID
 FK: teaches -> MusicClass.cID

Student(sID, attends)
 FK: sID -> People.pID
 FK: attends -> MusicClass.cID

MusicClass(cID, hours, level)

PianoClass(cID, beginDate)
 FK: cID -> MusicClass.cID

ViolinClass(cID, beginDate, room)
 FK: cID -> MusicClass.cID

DATABASE B

Instructor(instrID, name, officeRoom)

Student(stCode, name, age)

Course(courseID, usesInstrument, hours,
 startDate)
 FK: usesInstrument ->
 MusicInstrument.instrument

BeginnerCourse(courseID)
 FK: courseID -> Course.courseID

IntermediateCourse(courseID)
 FK: courseID -> Course.courseID

AdvancedCourse(courseID)
 FK: courseID -> Course.courseID

MusicInstrument(instrument)

taughtBy(course, instructor)
 FK: course -> Course.courseID
 FK: instructor ->Instructor.instrID

hasStudents(course, student)
 FK: course -> Course.courseID
 FK: student -> Student.stCode

Legend
Table(PrimaryKey, columns)
 FK:ForeignKey->TargetTable.column

Figure 2: Relational schemas of the example databases

WRAPPING AND INTEGRATING HETEROGENEOUS RELATIONAL DATA WITH OWL

13

Another school may model its music database in
a different way as shown in Figure 2. In Database B
of SchoolB the music classes are categorised into 3
tables according to the level (beginner, intermediate
and advanced). Table Instructor stores data about
teachers and Student contains those about students.
taughtBy and hasStudent associate a course to
its teacher and students respectively.

In our approach, these databases are exposed by
means of a wrapper which provides OWL ontologies
representing local databases.

3.3 Wrapping databases into OWL

Wrappers are developed on top of each local data
sources and provide a standard and common
interface to facilitate and homogenize their access.
This interface is made up of: (1) a local ontology of
the wrapped data source, expressed in OWL and (2)
a query language which uses the semantics defined
in the local ontology.

3.3.1 Local Ontology

In order to export the local sources in OWL, we
need to define how a source schema expressed in
any modeling language can be mapped onto the
OWL data model. For this purpose existing works
can be used. In (Lehti, 2004) a mapping of XML
schemas to OWL is presented. There is also tool
such as D2R (bizer, 2003) which propose a flexible
mapping language to generate RDF description of
relational data that can be easily adapted to OWL
format.

3.3.2 Query Language

In our case, queries need to be based on OWL; that
means that the query language needs a formally
defined semantics for the OWL data model.
Therefore one could use and slightly modify OQL or
one of the RDF query languages (Fransincar, 2004,
Karvounarakis, 2002) because there are also defined
on a graph models. Recently, (Lehti, 2004) proposed
the query language SWQL which specializes in
OWL.

3.3.3 OWL ontologies of the example
databases

In the present time, we develop a simple wrapper
that provides an OWL ontology corresponding to a
given relational schema (see Section 4 for the
prototype wrapper). The OWL ontology is generated
automatically according to predefined basic
translation rules: basically one class per table, one
data property per column, one object property per

foreign key and also one object property for a table
containing only a pair of foreign keys that forms the
primary key.

Legend

DatatypeProperty

Class
SubClass

subClassOfsubClassOf

ObjectPropertyObjectProperty

Class

pID
name
age

People

MusicClass

cID
level
hours

Teacher Student

PianoClass

beginDate

ViolinClass

beginDate
room

teachesteaches

 attends attends

Figure 3: Ontology of the music school SchoolA

As an illustration of the generation of ontology
by the translation rules, we apply them to the
example databases in the previous section. Figure 3
depicts the ontology of the SchoolA in a hierarchical
diagram of classes. This ontology is the result of the
automated application of the translation rules.
However, the user may also enrich the generated
ontology with additional descriptions. For instance,
the inheritance relation between Teacher (and
Student) and People is added into the initially
generated ontology.

The OWL abstract code below show some parts of
the ontology of SchoolA in Figure 3. partial
(complete) can be simply read as subClassOf
(equivalentClass, respectively). The rest is self-
explained.

Ontology (SchoolA
 Class (MusicClass partial)
 Class (PianoClass partial MusicClass)
 Class (ViolinClass partial MusicClass)

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

14

 Class (People partial)
 Class (Student partial People)
 Class (Teacher partial People)
 ObjectProperty(attends domain(Student)
 range(MusicClass))
 ObjectProperty(teaches domain(Teacher)
 range(MusicClass))
 DataProperty(level domain(MusicClass)
 range(xsd:string))
 DatatypeProperty(name domain(People)
 range(xsd:string))
 DatatypeProperty(age
 range(xsd:positiveInteger))
. . .
)

instrID
name

officeRoom

Course

courseID
startDate

hours

Instructor Student

BeginnerCourse

AdvancedCourse

taughtBytaughtBy
 hasStudents hasStudents

stCode
name
age

IntermediateCourse MusicInstrument

 usesInstrument usesInstrument

Figure 4: Ontology of the music school B.

Similarly, the OWL ontology SchoolB provided
by the wrapper is defined from its relational schema.
Figure 4 represents graphically the ontology and the
corresponding OWL code is described as follows:
Ontology (SchoolB
 Class (Course partial)
 Class (BeginnerCourse partial Course)
 Class (IntermediateCourse partial
 Course)
 Class (AdvancedCourse partial Course)
 Class (Student partial People)
 Class (Instructor partial People)
 ObjectProperty(taugtBy
 domain(MusicCoruse) range(Instructor))
 ObjectProperty(hasStudent
 domain(MusicCoruse) range(Student))
 ObjectProperty(usesIntstrument
 domain(MusicCourse)
 range(MusicInstument))
 DatatypeProperty(name
 domain(People) range(xsd:string))
 . . .
)

These two local ontologies present differences in
several aspects. In addition to the different
terminology (e.g. teacher/instructor, music

class/course, etc), the classification of music classes
uses different criteria. There are also some
differences in properties such as in SchoolA the
property teaches relates a music teacher to a class
(or classes) whereas the property taughtBy in
SchoolB does in the inverse direction. These two
properties are an inverse of each other.

In a general context, we have a set of independent
local data sources of a common domain and we need
to share and exchange information among them.
Each data source can be represented by its proper
ontology that uses a certain vocabulary with specific
semantics behind. An appropriate mediation system
is needed for allowing the interoperability of
different data sources. This mediation system must
provide a means to overcome the semantic
heterogeneity between the local systems and also a
means to access to local information with
transparency as much as possible. In the next section
we describe a way of integration our approach for
ontology integration based on the formalization in
OWL.

3.4 Integrating ontologies

The ontology integration in our approach consists of
mappings of elements of different OWL ontologies.
OWL provides sufficient elements for expressing
relations between classes and between properties as
well. Moreover, these expressions are not limited in
a same ontology. As a result, we can apply OWL to
describe the mappings of different ontologies. Our
objective is to obtain an integrated ontology which
contains semantic mappings of different local
ontologies.

We illustrate how to use OWL as ontology
mapping language by showing the mapping between
previous motivating examples.

3.4.1 Ontology importing

In the mediator level, it is important to specify the
predefined involved ontologies by their URI so that
the rest of ontology description can refer to the
existing elements that are previously defined in local
ontologies. This reference is described by the OWL
expression owl:import. OWL abstract code of
importing our predefined example ontologies
SchoolA and SchoolB is shown as follows:

Ontology (IntegratedAB
 Annotation (owl:imports
 “http://music.school/schoolA”)
 Annotation (owl:imports
 “http://music.school/schoolB”)
 ...
)

WRAPPING AND INTEGRATING HETEROGENEOUS RELATIONAL DATA WITH OWL

15

3.4.2 Class mapping

Basic relations of classes such as inclusion,
equivalence and disjunction allow us not only to
describe a hierarchical structure of classes in one
ontology but we can also apply these class relations
to establish mappings between classes from different
ontologies. The inclusion (expressed by
rdfs:subClassOf) represents the subsumption
between two classes (parent class subsumes
subclass). The class equivalence relation of two
classes (owl:equivalentClass) implies that the
inclusion holds in the two directions. On the other
hand, two classes which have no individual in
common can be declared mutually disjoint
(owl:disjointWith).

Here are examples of simple class mappings
which describe some corresponding concepts in the
ontologies SchoolA and SchoolB. In OWL abstract
syntax complete represents equivalentClass.
Namespace(schoolA =
 http://music.school/schoolA#
)Namespace(schoolB =
 http://music.school/schoolB#)
Ontology (IntegratedAB
 ...
 Class(schoolB:Student complete
 schoolA:Student)
 Class(schoolB:Instructor complete
 schoolA:Teacher
 Class(schoolB:Course complete
 schoolA:MusicClass)
 ...
)

OWL provides some expressions to construct a
concept that represents a class of individuals which
satisfy some common conditions. A complex class
can also be formed by classical set operations like
union, intersection and complement. The restrictions
and complex class constructions allow us to describe
complicated and precise classes. In OWL we can
specify a restriction on certain property according to
its associated value (owl:hasValue), its range of
values (owl:someValuesFrom and
owl:allValuesFrom for existential and universal
condition respectively) and its cardinality
(owl:min/max/Cardinality). Besides, OWL
provides built-in construct for the usual set
operations such as union and intersection to form a
more complex class.

For instance, we can describe that the music
classes of SchoolA that have the advanced level are
considered as members of AdvancedCourse class
of SchoolB. This mapping rule can be formulated in
OWL as follows.

Class(schoolB:AdvancedCourse complete
 restriction(schoolA:MusicClass
 hasValue (”advanced”))

In the case of violin class, the music courses of
SchoolB that use either violin or cello can be
considered as a member of ViolinClass of
SchoolA, we may map ViolinClass to the union of
two restricted music courses of SchoolB as follows.
Class(schoolA:ViolinClass complete
 unionOf(
 restriction(schoolB:useInstrument
 hasValue (schoolB:Violin))
 restriction(schoolB:useInstrument
 hasValue (schoolB:Cello))))

3.4.3 Property mapping

We determine a relation between two properties by
comparing their members. Three possible relations
of properties are inclusion, equivalence and inverse.
Property P1 is a subproperty of P2
(rdfs:subPropertyOf) means that if P1(x,y)
holds then P2(x,y) holds. P1 and P2 are equivalent
properties (owl:equivalentProperty) when
P1(x,y) if and only if P2(x,y). P1 is an inverse
(owl:inverseOf) of P2 when P1(x,y) if and only if
P2(y,x).

In our examples, some properties such as
schoolA:name and schoolB:name ,
schoolA:beginDate and schoolB:startDate
can be mapped as equivalent properties. On the other
hand, the property schoolA:teach is exactly the
reverse of property schoolB:taughtBy because a
teacher X who teaches a class Y implies that the class
Y is taught by the person X and the vice visa holds
too. Here are some examples of property mappings:

EquivalentProperties(
 schoolA:name schoolB:name)
EquivalentProperties(
 schoolA:hours schoolB:hours)
ObjectProperty(schoolA:attends
 inverseOf(schoolB:hasStudents))
ObjectProperty(schoolA:teaches
 inverseOf(schoolB:taughtBy)) . . .

4 EXPERIMENTAL
IMPLEMENTION

As in an early step of our work, we experiment our
approach with some database and ontology
examples. An automatic OWL ontology generator
that functions over relational databases is
implemented as the wrapper layer in our
architecture. The mediator is simulated by an OWL
inference engine that provides a means to query over
integrated ontologies.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

16

Figure 5: Ontology integration with CROSS

Our wrapper (called CROSS) is developed for
exposing relational databases (schema and content)
to OWL. This wrapper is written in Java and can
access any RDBMS providing a JDBC interface (We
only tested it with MySQL and PostgreSQL for the
moment). The originality of CROSS compared to
existing tools and approaches lies in the fact that it
offers a direct bridge from the relational model to
OWL (without an intermediate XML step), handles
both the schema and the data unlike D2R (Bizer,
2003), and do not rely on any new language to
express the mapping between the relational data and
the OWL description. CROSS provides a fully
automated translation of the relational schema into a
first OWL ontology based on the basic principles
briefly described in Section 3.3.3. This ontology can
then be enriched manually and also import other
ontologies.

For integrating generated OWL ontologies,
mappings rules need to be defined by the user. All
mappings are expressed in OWL that allows an
OWL reasoner to work with all concerned
ontologies. Figure 5 depicts an overview of the
functioning of the prototype.

In our experiment, we use Racer system
(Haarslev, 2001) as OWL reasoner which is one of
powerful description logic reasoners publicly
available. OWL compatibility is a new feature of
Racer that allows us to use it as an ontology

reasoning engine. We can load an OWL ontology
into Racer system using the particular interface
program called RICE and it can verify a consistency
of the ontology and display a general classification
of all concepts defined in the underlying ontology.

CROSS CROSS

Relational DatabaseRelational Database

Local OWL ontology

Schema data

Schema
description

Instance
description

Integrated Ontology

Mapping
description

JDBC JDBC JDBC JDBC

By loading an integrated ontology containing
ontology imports and description of ontology
mappings, RICE program shows a global hierarchy
of all classes from different ontologies. We can
select a particular class and see all instances of the
selected class. Besides, RICE provides an interactive
querying system that allows us to make queries over
loaded ontologies to the running Racer server.
However these queries are formed in the Racer
syntax.

We can formulate our query in OWL by a class
definition in the integrated ontology. A query can be
described by using any terms of imported ontologies
and the result of the query comes from all involved
local ontologies.

Here are some examples of query expressed in
OWL:

Class(Q_PianoTeacher complete
 restriction(schoolA:teaches
 someValuesFrom(schoolA:PianoClass)))

Class(Q_nonEmptyClass complete
 restriction(schoolB:hasStudents
 minCardinality(1)))

Class(Q_advancedViolinClass complete
intersectionOf(
 schoolA:ViolinClass
 schoolB:AdvancedCourse))

The first class contains all teachers who teach at
least one piano class. According to the well-defined
mappings between SchoolA and SchoolB, the result
are all piano teachers from the two ontologies.
Q_nonEmptyClass includes all music classes of
SchoolA and SchoolB that are not empty. This means
that they must contain at least 1 student.

The last example query describes a class of the
intersection of schoolA:PianoClass and
schoolB:AdvancedClass. Therefore this class
includes all violin classes of the advanced level from
the two ontologies.

5 CONCLUSION AND FUTURE
WORK

In this paper, we proposed an approach based on
OWL for semantic integration of heterogeneous
databases in the context of Semantic Web. We
described our mediator-wrapper architecture and the

WRAPPING AND INTEGRATING HETEROGENEOUS RELATIONAL DATA WITH OWL

17

ontology mediation with OWL. Then we showed
some experiments on OWL ontology integration.

Many open issues are not discussed in this paper
such as instances in ontology, query processing, to
mention a few. These are subjects for future work.

It is also interesting that we move toward an
open distributed system which is suitable for the
Web context, especially, the P2P architecture.
Several approaches have been proposed in the
literature for this particular decentralized system
(Löser, 2003), (Halevy, 2003). The use of a
distributed ontology is also an interesting problem
and constitutes an open issue (Goasdoué, 2003). At
last but not least, the wrapper CROSS proposed can
be improved by adding more options for a better and
flexible ontology generation from database schemas.

REFERENCES

Bizer, C. D2R map - a database to RDF mapping
language. In Proc of12th Intl World Wide Web Conf,
Budapest, May 2003.
URL:http://www.wiwiss.fuberlin.de/suhl/bizer/d2rmap/
D2Rmap.htm

Cruz I. F., Xiao H., and Hsu F. An ontology-based
framework for XML semantic integration. In Proc. of
IDEAS 2004. IEEE Computer Society, 2004.

Frasincar F., Houben G.J., Vdovjak R., Barna P., RAL: An
Algebra for Querying RDF, World Wide Web, Internet
and Web Information Systems (WWW), 7(1), p.83-109,
2004, Kluwer Academic Publishers.

Goasdoué F. and Rousset M-C. Querying distributed data
through distributed ontologies : a simple but scalable
approach. IEEE Intelligent Systems,18(5),2003,
pp. 60-65.

Haarslev V. and Moller R.. RACER system description. In
Proc. of Int. Joint Conference on Automated reasoning
(IJCAR'2001), June 18-23, 2001, Siena, Italy,
LNCS. Springer-Verlag, Berlin, 2001.
URL: http://www.sts.tu-harburg.de/~r.f.moeller/racer/

Halevy A, Ives Z.G., Mork P., Tatarinov I. Peer Data
 Management Systems: Infrastructure for the Semantic
 Web. In Proc of WWW Conference, 2003.

Horrocks I. and Patel-Schneider P.F. Three Theses of
Representation in the Semantic Web. WWW 2003.

Horrocks I. and Patel-Schneider P.F. Reducing OWL
entailment to description logic satisfiability. In Proc.of
the 2003 Description Logic Workshop (DL 2003),
volume 81 of CEUR (http://ceur-ws.org/), pages 1-8,
2003.

Karvounarakis G., Alexaki S., Christophides V.,
Plexousakis D. and Scholl M., RQL: A Declarative
Query Language for RDF, World Wide Web, Internet
and Web Information Systems (WWW), 2002, Kluwer
Academic Publishers.

Lehti P. and Frankhauser P., “XML Data Integration with
OWL: Experiences and Challanges”, 4th International

Symposium on Applications and the Internet
(SAINT'04), IEEE CS, 2004

Löser A., Siberski W., Wolpers M., Nejdl W. Information
Integration in Schema-Based Peer-To-Peer Networks.
In Proc. of CAiSE, 2003. 258-272

Mena E., Illarramendi A., Kashyap V., and Sheth A. P.
Observer: An approach for query processing in global
information systems based on interoperation across
pre-existing ontologies. Distributed and Parallel
Databases, 8(2):223–271, 2000.

Vdovjak R. and Houben G.J. Rdf-based architecture for
semantic integration of heterogeneous information
sources. In Proc. of International Workshop on
Information Integration on the Web, Apr 2001.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

18

