
COCO: COMPOSITION MODEL AND COMPOSITION MODEL
IMPLEMENTATION

Naiyana Tansalarak and Kajal T. Claypool
University of Massachusetts - Lowell
1 University Ave. Lowell, MA 01854

Keywords: Component model, Component Model Implementation, Composition Model, Composition Model Implemen-
tation, Composition Style, Composition Script, Composition Operator, Unifying Component Model.

Abstract: The success of component-based development has been impeded by interoperability concerns, includingcom-
ponent model,semantic,syntactic,designand platform incompatibilities, that often come into play when
composing two or more independently developed components. In this paper we propose aCoCo composition
modelthat elevates compositions to first class citizenship status. The model defines a standard for describ-
ing the composition of components transparent to any underlying incompatibilities between the collaborating
components. We also present aCoCo composition model implementationthat provides the required support
to describe and subsequently execute the composition to produce an executable application. We advocate the
use of XML Schemas as a mechanism to support this composition model. To support the composition model
implementation we provide (1) a taxonomy of primitive composition operators to describe theconnection
between components; (2) XML documents as a descriptionlanguagefor the compositions; and (3) the de-
velopment of a set of deployment plugins that address any incompatibilities and enable the generation of the
model-specific and platform-specific applications.

1 INTRODUCTION

Component-based software engineering attempts to
address the ever increasing demand for new software
applications by enabling a compositional approach to
software construction in which applications are built
from pre-fabricated components, rather than devel-
oped from scratch (Heineman and Councill, 2001).
A number of component models (with correspond-
ing implementations) have been defined to date and
many have been widely adopted in practice. Ex-
amples of component models are CORBA (Siegel,
1996), JavaBeans (Muller and Davidson, 1996), En-
terprise JavaBeans (Roth, 1998), COM (Box, 1998),
and .NET (Chappell, 2002). These different compo-
nent models have stimulated the rapid development
of components by different developers, with the hope
that eventually most components needed for applica-
tion building will be available as off-the-shelf compo-
nents.

However, the success of component-based devel-
opment has been impeded by interoperability con-
cerns that often come into play when composing
two or more independently developed components

(Gschwind et al., 2002; Vallecillo et al., 2000; Yaki-
movich et al.,). These concerns encompasscompo-
nent modelincompatibilities that occur when theto-
be composedcomponents are developed based on the
requirements of disparate component models;syntac-
tic incompatibilities that arise when there are signa-
ture or interface mismatches between theto-be com-
posedcomponents;semanticincompatibilities that
typically occur when the behavior expected by one
component (the client component) as specified by the
“design by contract” principle is incompatible with
the behavior provided by the other (server) compo-
nent; designincompatibilities that occur when there
is an architectural or a design level mismatch between
the to-be composedcomponents; and lastlyplatform
incompatibilities that come into play when a compo-
nent is constructed on one platform but the execu-
tion infrastructure supports a different platform. Inter-
operability and hence composability of two or more
components may be restricted by one or more of these
incompatibilities, requiring in some cases glue code
to enable the collaborative operation of two compo-
nents, while in other cases completely occluding the
inter-operation of the given components.

340
Tansalarak N. and T. Claypool K. (2005).
COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 340-345
DOI: 10.5220/0002525503400345
Copyright c© SciTePress

Prior research (Raje et al., 2001; Oberleitner et al.,
2003; America, 1990; Garlan et al., 2000; Shaw et al.,
1995; Allen and Garlan, 1997) focusing on interoper-
ability of components has investigated possible solu-
tions to these incompatibilities singularly, rather than
as a complete set of concerns that must be addressed
to provide comprehensive support for the composi-
tion of components. We propose aCoCo composi-
tion modelthat elevates compositions to first class cit-
izenship status and defines the standard for describ-
ing the composition of components transparent to any
underlying incompatibilities between the collaborat-
ing components. Figure 1 shows a high level view
of the composition model that classifies information
into three primary categories: (i) anobject model-
that defines the selection, instantiation, configuration
and initialization of a set of underlying components
in the system; (ii) aninterface model- that defines
the interface of a resultant composite component (or
application) to enable the resultant composite compo-
nent (or application) itself to interact with the other
components (or applications); and (iii) anassociation
model- that defines how components are composed
via both connection-oriented and aggregation-based
compositions. Details on the composition model can
be found in (Tansalarak and Claypool, 2004).

Composition Model

Interface Model
Object Model
 Association Model

Figure 1: The Composition Model

In this paper, we focus on theCoCo composition
model implementationthat provides the required sup-
port to describe and subsequently execute the compo-
sition to produce a composed application. To support
the CoCo composition model implementation we pro-
vide (1) a taxonomy of primitive composition opera-
tors to describe theconnectionbetween components;
(2) XML documents as a descriptionlanguagefor the
compositions; and (3) a set of deployment plugins that
address any incompatibilities and enable the genera-
tion of the composed application (or composite com-
ponent) in different languages and component models
as well as on different platforms. We exploit the in-
herent tight coupling between an XML Schema and
an XML document to provide the same coupling be-
tween the composition model (expressed as an XML
Schema) and the composition model implementation
enabling us to validate and check the conformance
of a composition against the composition model (or
a core subset of it).

Roadmap: The rest of paper is organized as fol-
lows. Based on the GUI composition style, Section 2

presents the set of primitive composition operators,
while Section 3 illustrates the description of compo-
sitions using an example. To complete the CoCo com-
position model implementation we show in Section 4
the generation of deployable applications based on the
described compositions. We conclude in Section 5.

2 PRIMITIVE COMPOSITION
OPERATORS

In literature (Garlan et al., 2000; Allen and Garlan,
1997; Shaw et al., 1995; Achermann, 2002; Acher-
mann et al., 2001)connectorshave played an essen-
tial role in mediating interactions between the under-
lying components of the system. Additionally we be-
lieve that to provide comprehensive support for com-
ponent compositions, anorder concept that provides
a sequencing of component interactions is essential.
Based on these, we now introduce a set ofcompo-
sition operatorsas the core construct of CoCo com-
position model implementation. Thesecomposition
operatorsrepresent the building blocks that can be
used in the instantiations of the composition model,
and on the basis of which arbitrarily complex compo-
nent compositions can be defined. In this section, we
describe the set of primitivemethodcomposition op-
erators as well as the set of primitiveeventandcon-
tainer composition operators that are at the heart of
the CoCo composition model implementation.

2.1 Method Composition Operators

Butler et al. (Butler and Duke, 1998) have defined a
set of operators for combining object interactions at
the granularity of a method. Given that most com-
ponent compositions are also accomplished at the
method level, we now define a set ofmethod com-
position operatorsto enable composition of methods
from one or more components. This set of method
composition operators consists of:

• The conjunctionoperator, represented asmi ∧ mj ,
denotes the execution of the two methodsmi andmj

simultaneously.

• Thesequenceoperator, represented asmi ; mj , de-
notes the execution of the two methodsmi andmj

in sequence.

• The choiceoperator, represented asmi ∨ mj , de-
notes the execution of either the methodmi or the
methodmj , but not both.

• The pipe operator, represented asmi | mj , denotes
the execution of the two methodsmi andmj in se-
quence wherein the output of the methodmi is the
input of the methodmj .

COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

341

• Theloopevent operator, represented asm∗
i , denotes

the repeated consecutive execution of the method
mi.

2.2 Event Composition Operators

In GUI composition style, the firing of an event from
an event component may trigger interaction(s) from
one or more listener component(s) at the granularity
of method. We thus define anevent composition oper-
ator, denoted ase m, to represent the relationship
between an evente and a set of method interaction(s)
m. m thus represents either a simply method invoca-
tion of a listener component,mi, or the composition of
method invocations from a set of listener components
as defined in Section 2.1,{ mi ∧ mj , mi ; mj , mi ∨ mj ,
mi | mj , andm∗

i }.

2.3 Container Composition
Operators

We now define a set ofcontainercomposition oper-
ators to facilitate the aggregation and display of the
underlying components. This set of container compo-
sition operators consist of:

• The positioncontainer operator, represented asci

≪ cj , specifies that the component instancecj be
positioned within the component instanceci at a
default location chosen by the layout manager of
the component instanceci. For example, the com-
ponentBorderLayout provides the default lo-
cations to position its underlying components from
left to right and then from top to bottom.

• The position-atcontainer operator, represented as
ci ≪ cj @ location, specifies that the compo-
nent instancecj be positioned within the compo-
nent instanceci at the specifiedlocation. The
location must conform to the layout manage-
ment defined in the component instanceci. For ex-
ample, the componentBorderLayout provides
five locations to position its underlying compo-
nents:North, South, West, East, andCenter.

3 A COMPOSITION SCRIPT
EXAMPLE

The eventual goal of a CoCo composition model
implementation is to enable component-based con-
struction of a composite component or an application
based on a specified composition model. While the
composition operators presented in Section 2 provide
the semantics for combining individual methods, they
cannot singularly express complete compositions. We

now introduce composition scripts, that provide the
necessary glue logic to tie these operators together
and to comprehensively describe a composition, us-
ing XML documents.

In this section, we illustrate how an XML-based
composition script can be used to describe the com-
position of an application. Figure 2 pictorially
represents theSpeedLogoapplication. TheSpeed-
Logo application is composed from two compo-
nentsLogo andSliderFieldPanel. The com-
ponentLogo is a primitive component while the
componentSliderFieldPanel is mainly con-
structed from two primitive componentsJSlider
and JTextField. When theJSlider value
changes, theJTextField value is automatically
updated with the new value. On the other hand,
when a new value is entered in theJTextField
and the user presses theEnter key, theJSlider
is automatically repositioned to the appropriate lo-
cation. Overall in theSpeedLogoapplication, when
the SliderFieldPanel value changes, the ani-
mation speed ofLogo is changed. The two compo-
nentsLogo andSliderFieldPanel are aggre-
gated into the componentJFrame at Center and
South locations, respectively.

Figure 2: TheSpeedLogoApplication

The partial composition script depicting the seman-
tics and the layout for the construction of theSpeed-
Logo is shown in Figure 3. This script, that conforms
to the GUI composition model (Tansalarak and Clay-
pool, 2004), incorporates the composition operators
defined in Section 2. For example, on line072 the
<op type = “ |”> is used to ensure that the output
returned from the methodgetCurrentValue of
the component instancesliderField is the input
of the methodsetAnimationRate of the compo-
nent instancelogo.

The overall architecture of theSpeedLogoapplica-
tion (Figure 4) can be efficiently and effectively ex-
tracted from the composition script shown in Figure 3.
Here, aboxdenotes a component instance as well as
the component library that instantiates the component
instance, anarrowed line the connection-oriented

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

342

composition, adouble-arrowed linethe aggregation-
based composition, adash linethe hierarchical struc-
ture, arectanglethe property, andoval the event.

000.<?xml version=”1.0”?>

001.<GUIscript>

002.<application>

003. <name>SpeedLogo</name>

004. <compInstances>

.....

033. <compInstance role=”Client”>

034. <comp>javax.composite.SliderFieldPanel

</comp>

035. <cid>sliderField</cid>

036. <configuration>

037. <configProperty>

038. <pName>currentValue</pName>

039. <pValue>

040. <const>10</const>

041. </pValue>

042. </configProperty>

.....

053. <compositions>

054. <eCompositions>

055. <eComposition>

.....

061. <eCompInstances>

062. <eCompInstance>

063. <rid>sliderField</rid>

064. <event>PropertyChange</event>

065. <eAction>propertyChange</eAction>

066. </eCompInstance>

067. </eCompInstances>

068. <lCompositions>

069. <lCompInstance>

070. <rid>sliderField</rid>

071. <callMethod>getCurrentValue

</callMethod>

072. <op type=”|” />

073. </lCompInstance>

074. <lCompInstance>

075. <rid>logo</rid>

076. <callMethod>setAnimationRate

</callMethod>

077. </lCompInstance>

078. </lCompositions>

.....

099.</application>

100.</GUIscript>

Figure 3: The PartialSpeedLogo Composition Script

4 DEPLOYMENT

The last step of the composition step process is the
conversion of the script to a deployable application
or component that conforms to the desired platform,
model, and language. We present a set of manipula-
tion operators that provide an intermediate unifying

frame << sliderField @ South
 frame << logo @ Center

sliderField.propertyChange ~>

(sliderField.getCurrentValue |

logo.setAnimationRate)

javax.swing.JFrame

frame

java.composite.SliderFieldPanel

sliderField

java.animation.Logo

logo

currentValue

propertyChange

javax.swing.Jslider

slider

javax.swing.JTextField

field

javax.awt.BoxContainer

box

javax.swing.JPanel

panel

maximumValue

minimumValue

preferredSize

fieldWidth

minimumSize

box << slider
 box << field

panel << box

slider.stateChange ~>

(slider.getValue |

(field.setText /\ this.setCurrentValue))

field.actionPerformed ~>

(field.getText I (slider.setValue /\

this.setCurrentValue))

Figure 4: The Overall Architecture of theSpeedLogoAp-
plication

format between the XML-based composition scripts
and the final application written in the programming
language of choice. These unifying manipulation op-
erators together with specific code generation plugins
provide the instrument for managing language, com-
ponent model and platform incompatibilities. Addi-
tional glue logic can be provided to support handling
of syntactic incompatibilities as part of the deploy-
ment process. We do not currently address semantic
and design incompatibilities at deployment time.

Internal

Transformation

Code

Generation

Deployment Process

Component

Models

Programming

Language

constructs

Manipulation

operators

Composition

Script

C++ /

Java

A sequence of

manipulation

operators

Figure 5: The Deployment Process

Figure 5 pictorially depicts the deployment
process, consisting of two essential modules:internal
transformationand language transformationmod-
ules. The internal transformation module provides
the mapping of the composition script to a sequence
of corresponding manipulation operators. We define
six primitive manipulation operators (Tansalarak and
Claypool, 2004), namelyAA - to add an attribute,AM
- to add a method,IM - to invoke a method,IN - to
instantiate an attribute,ET - to extend a composition,
andCC - to create an inner class. Figure 6 gives the
manipulation operator equivalent of theSpeedLogo
composition script given in Figure 3. Consider as an

COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

343

example the composition fragment from lines033
to 044. This fragment specifies the instantiation of
the SliderFieldPanel and the configuration
of its propertycurrentValue. This is translated
into the following operators:IN ("sliderField",
"java.composite.SliderFieldPanel") and
IM ("sliderField", "setCurrentValue",
"void", <"10">).

ET (”javax.swing.JFrame”);

IM (”this”, ”setTitle”, ”void”, <”SpeedLogo Animation”>);

AA (”container”, ”private”, ”java.awt.Container”, ”1”, ”null”, ”local”);

IM (”this”, ”getContentPane”, ”container”,<>);

AA (”border”, ”private”, ”java.awt.BorderLayout”, ”1”, ”null”, ”local”);

IN (”border”, ”java.awt.BorderLayout”);

IM (”container”, ”setLayout”, ”void”,<”border”>);

AA (”color”, ”private”, ”java.awt.Color”, ”1”, ”null”, ”local”);

IN (”color”. ”java.awt.Color”,<”0xeeeeee”>);

IM (”this”, ”setBackground”, ”void”,<”color”>);

AA (”sliderField”, ”private”, ”java.composite.SliderFieldPanel”, ”1”,

”null”, ”global”);

IN (”sliderField”, ”java.composite.SliderFieldPanel”);

IM (”sliderField”, ”setCurrentValue”, ”void”,<”10”>);

AA (”logo”, ”private”, ”java.animation.Logo”, ”1”, ”null”, ”global”);

IN (”logo”, ”java.animation.Logo”);

IM (”logo”, ”startAnimation”, ”void”, <>);

IM (”sliderField”, ”addPropertyChangeListener”, ”void”,

<”new sliderFieldPropertyChange()”>);

CC (”sliderFieldPropertyChange”, ”java.beans.PropertyChangeListener”,

<>,

< AM (”propertyChange”, ”public”, ”void”,

<”java.beans.PropertyChangeEvent e”>, ”null”, ”null”,

{ AA (”value”, ”private”, ”int”, ”1”, ”null”, ”local”);

IM (”sliderFieldPanel”, ”getCurrentValue”, ”value”,<>);

IM (”logo”, ”setAnimationRate”, ”void”,<”value”>) ; }

>);

IM (”container”, ”add”, ”void”, <”logo”, ”BorderLayout.CENTER”>);

IM (”container”, ”add”, ”void”, <”sliderField”, ”BorderLayout.SOUTH”>);

Figure 6: The Sequence of Manipulation Operators for the
SpeedLogoComposition Script

Furthermore, the syntactic incompatibilities be-
tween components are handled within the internal
transformation module. Consider, for example, the
connection-based composition between the compo-
nent instancessliderField andlogo described
in lines 056 to 080 of Figure 3 wherein the syn-
tactic incompatibility1 between these two component
is transparent. This handler can be accomplished by
creaing an inner class that implements the required
interface (Stearns, 2001; Akerley et al., 1999).

As a next step, the manipulation operators are
translated into the desired programming language via
code generation plugins. Figure 7 gives the Java

1The component instancesliderField allows
any component instance implemening the interface
PropertyChangeListener to register for the event
PropertyChange while the component instancelogo
does not implement such interface.

equivalent of the sequence of manipulation operators
given in Figure 6 and the composition script given in
Figure 3.

public class SpeedLogo extends javax.swing.JFrame{

private java.animation.Logo logo;

private java.composite.SliderFieldPanel sliderField;

public SpeedLogo (){

java.awt.BorderLayout border;

java.awt.Container container;

java.awt.Color color;

border = new java.awt.BorderLayout();

container = getContentPane();

color = new java.awt.Color (0xeeeeee);

setTitle (”SpeedLogo Animation”);

setBackground (color);

container.setLayout (border);

sliderField = new java.composite.SliderFieldPanel();

sliderField.setCurrentValue (10);

logo = new java.animation.Logo();

logo.startAnimation();

container.add (logo, BorderLayout.CENTER);

container.add (sliderField, BorderLayout.SOUTH);

sliderField.addPropertyChangeListener

(new sliderFieldPropertyChange());

}

class sliderFieldPropertyChange

implements java.beans.PropertyChangeListener{

public void propertyChange

(java.beans.PropertyChangeEvent e){

int value;

value = sliderField.getCurrentValue();

logo.setAnimationRate(value);

}

}

}

Figure 7: The Corresponding Java Code for the Manipula-
tion Operators in Figure 6

5 CONCLUSIONS

Our work makes the following contributions. It pro-
vides, to the best of our knowledge, the first at-
tempt at the standardization of component compo-
sitions elevating compositions to first class citizen-
ship status. We provide a CoCo composition model
that is both flexible and extensible, allowing develop-
ers to extend the standard to include at a later time
other composition styles of component-based devel-
opment. The composition model is described us-
ing XML schema. At the lowest level, composition
scripts can be described using the composition model
implementation to describe an actual composition of
two or more components. A composition script writ-
ten in XML documents conforms to a specified com-

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

344

position model specified by an XML Schema, which
in turn conforms to the general guidelines of the com-
position model.

The composition model is analogous to defining the
grammar of a composition language, while the com-
position script2 provides the program that describes
the actual composition of two or more components.
The composition model thus provides anextensible
composition grammar.

REFERENCES

Achermann, F. (2002). Forms, Agents and Channels -
Defining Composition Abstraction with Style. PhD
thesis, University of Bern, Institute of Computer Sci-
ence and Applied Mathematics.

Achermann, F., Lumpe, M., Schneider, J.-G., and Nier-
strasz, O. (2001). Piccola – a Small Composition
Language. In Bowman, H. and Derrick, J., editors,
Formal Methods for Distributed Processing – A Sur-
vey of Object-Oriented Approaches, pages 403–426.
Cambridge University Press.

Akerley, J., Li, N., and Parlavecchia, A. (1999).Program-
ming with VisualAge for Java 2 (2nd Edition). Prentice
Hall PTR.

Allen, R. and Garlan, D. (1997). A formal basis for architec-
tural connection.ACM Transactions on Software En-
gineering and Methodology (TOSEM), 6(3):213–249.

America, P. (1990). Designing an Object-Oriented Pro-
gramming Language with Behavioural Subtyping. In
The REX School/Workshop on Foundations of Object-
Oriented Languages, pages 60–90, London, UK.
Springer-Verlag.

Box, D. (1998).Essential COM. Addison-Wesley Publish-
ing Company.

Butler, S. and Duke, R. (1998). Defining Composition Op-
erators for Object Interaction.Object Oriented Sys-
tems, 5(1):1–16.

Chappell, D. (2002).Understanding .NET: A Tutorial and
Analysis. Addison-Wesley Professional.

Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme:
Architectural Description of Component-Based Sys-
tems. In Leavens, G. T. and Sitaraman, M., editors,
Foundations of Component-Based Systems, pages 47–
67. Cambridge University Press.

Gschwind, T., Oberleitner, J., and Jazayeri, M. (2002).
Dynamic Component Extension to Support Cross-
Platform Development. Technical Report TUV-1841-
2002-19, Technische Universitt Wien.

Heineman, G. T. and Councill, W. T. (2001).Component-
based Software Engineering. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts.

2We use composition script to denote the description of
the composition that results in a composite component or
application.

Muller, H. and Davidson, M. (1996). JavaBeans
Specification: Getting Listeners from JavaBeans.
http://java.sun.com/products/javabeans.

Oberleitner, J., Gschwind, T., and Jazayeri, M. (2003). The
Vienna Component Framework Enabling Composi-
tion Across Component Models. InThe 25th Inter-
national Conference on Software Engineering.

Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,
and Burt, C. (2001). A Unified Approach for the Inte-
gration of Distributed Heterogeneous Software Com-
ponents. InThe Monterey Workshop on Engineering
Automation for Software Intensive System Integration,
pages 109–119.

Roth, B. (1998). An Introduction to Enterprise JavaBeans
Technology. http://java.sun.com/products/ejb.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young,
D. M., and Zelesnik, G. (1995). Abstractions for Soft-
ware Architecture and Tools to Support Them.Soft-
ware Engineering, 21(4):314–335.

Siegel, J. (1996).CORBA: Fundamentals and Program-
ming for the 21st century. John Wiley, New York.

Stearns, B. (2001). Using Forte for Java to
Develop and Deploy Enterprise Beans.
http://java.sun.com/developer/technicalArticles/
WebServices/ffjweb/.

Tansalarak, N. and Claypool, K. T. (2004). CoCo:
Composition Model and Composition Model
Implementation. Technical Report 2004-006,
Department of Computer Science, Univer-
sity of Massachusetts - Lowell. Available at
http://www.cs.uml.edu/techrpts/reports.jsp.

Vallecillo, A., Hernandez, J., and Troya, J. (2000). Com-
ponent Interoperability. Technical Report ITI-2000-
37, Departmento de Lenguajes y Ciencias de la
Computacion, University of Malaga. Available at
http://www.lcc.uma.es/∼av/Publicaciones/
00/Interoperability.pdf.

Yakimovich, D., Travassos, G. H., and Basili,
V. R. A Classification of Software Compo-
nents Incompatibilities for COTS Integration.
http://sel.gsfc.nasa.gov/website/research/tech-
study.htm.

COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

345

