COCO: COMPOSITION MODEL AND COMPOSITION MODEL
IMPLEMENTATION

Naiyana Tansalarak and Kajal T. Claypool
University of Massachusetts - Lowell
1 University Ave. Lowell, MA 01854

Keywords: Component model, Component Model Implementation, Composition Model, Composition Model Implemen-
tation, Composition Style, Composition Script, Composition Operator, Unifying Component Model.

Abstract: The success of component-based development has been impeded by interoperability concerns,dnohiding
ponent modelsemantic,syntactic,designand platform incompatibilities, that often come into play when
composing two or more independently developed components. In this paper we prépmSe aomposition
modelthat elevates compositions to first class citizenship status. The model defines a standard for describ-
ing the composition of components transparent to any underlying incompatibilities between the collaborating
components. We also presen€aCo composition model implementatitrat provides the required support

to describe and subsequently execute the composition to produce an executable application. We advocate the

use of XML Schemas as a mechanism to support this composition model. To support the composition model
implementation we provide (1) a taxonomy of primitive composition operators to descritminection
between components; (2) XML documents as a descripinguagefor the compositions; and (3) the de-
velopment of a set of deployment plugins that address any incompatibilities and enable the generation of the
model-specific and platform-specific applications.

1 INTRODUCTION (Gschwind et al., 2002; Vallecillo et al., 2000; Yaki-
movich et al., ). These concerns encompasspo-
Component-based software engineering attempts tonent modelincompatibilities that occur when the-
address the ever increasing demand for new softwarebe composedomponents are developed based on the
applications by enabling a compositional approach to requirements of disparate component modgfstac-
software construction in which applications are built tic incompatibilities that arise when there are signa-
from pre-fabricated components, rather than devel- ture or interface mismatches between thée com-
oped from scratch (Heineman and Councill, 2001). posed components;semanticincompatibilities that
A number of component models (with correspond- typically occur when the behavior expected by one
ing implementations) have been defined to date andcomponent (the client component) as specified by the
many have been widely adopted in practice. Ex- “design by contract” principle is incompatible with
amples of component models are CORBA (Siegel, the behavior provided by the other (server) compo-
1996), JavaBeans (Muller and Davidson, 1996), En- nent; designincompatibilities that occur when there
terprise JavaBeans (Roth, 1998), COM (Box, 1998), is an architectural or a design level mismatch between
and .NET (Chappell, 2002). These different compo- theto-be composedomponents; and lastiylatform
nent models have stimulated the rapid developmentincompatibilities that come into play when a compo-
of components by different developers, with the hope nent is constructed on one platform but the execu-
that eventually most components needed for applica- tion infrastructure supports a different platform. Inter-
tion building will be available as off-the-shelf compo- operability and hence composability of two or more
nents. components may be restricted by one or more of these
However, the success of component-based devel-incompatibilities, requiring in some cases glue code
opment has been impeded by interoperability con- to enable the collaborative operation of two compo-
cerns that often come into play when composing nents, while in other cases completely occluding the
two or more independently developed components inter-operation of the given components.

340

Tansalarak N. and T. Claypool K. (2005).

COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION.

In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 340-345
DOI: 10.5220/0002525503400345

Copyright © SciTePress



COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

Prior research (Raje et al., 2001; Oberleitner et al., presents the set of primitive composition operators,
2003; America, 1990; Garlan et al., 2000; Shaw et al., while Section 3 illustrates the description of compo-
1995; Allen and Garlan, 1997) focusing on interoper- sitions using an example. To complete the CoCo com-
ability of components has investigated possible solu- position model implementation we show in Section 4
tions to these incompatibilities singularly, rather than the generation of deployable applications based on the
as a complete set of concerns that must be addressedescribed compositions. We conclude in Section 5.
to provide comprehensive support for the composi-
tion of components. We proposeGoCo composi-
tion modelthat elevates compositions to first class cit-
izenship status and defines the standard for describ-2 PRIMITIVE COMPOSITION
ing the composition of components transparent to any OPERATORS
underlying incompatibilities between the collaborat-
ing components. Figure 1 shows a high level view |n literature (Garlan et al., 2000; Allen and Garlan,
of the composition model that classifies information 1997: Shaw et al., 1995: Achermann, 2002; Acher-
into three primary categories: (i) abject modet mann et al., 2001gonnectorshave played an essen-
that defines the selection, instantiation, configuration tial role in mediating interactions between the under-
and initialization of a set of underlying components lying components of the system. Additionally we be-
in the system; (i) arinterface model that defines lieve that to provide comprehensive support for com-
the interface of a resultant composite component (or ponent compositions, asrder concept that provides
application) to enable the resultant composite compo- a sequencing of component interactions is essential.
nent (or application) itself to interact with the other Based on these, we now introduce a setofpo-
components (or applications); and (jii) association  sition operatorsas the core construct of CoCo com-
model- that defines how components are composed position model implementation. Thesemposition
via both connection-oriented and aggregation-basedoperatorsrepresent the building blocks that can be
compositions. Details on the composition model can used in the instantiations of the composition model,

be found in (Tansalarak and Claypool, 2004). and on the basis of which arbitrarily complex compo-
nent compositions can be defined. In this section, we
(compositon voser ) describe the set of primitivenethodcomposition op-

erators as well as the set of primitiesentand con-

[ ] tainer composition operators that are at the heart of
( Object ode ) ( Inerface Model ) ( Model ) the CoCo composition model implementation.
Figure 1: The Composition Model 2.1 Method Composition Operators

. r Butler et al. (Butler and Duke, 1998) have defined a
In this paper, we focus on theoCo composition et of operators for combining object interactions at
model implementatiothat provides the required sup-  the granularity of a method. Given that most com-
port to describe and subsequently execute the COMPOponent compositions are also accomplished at the
sition to produce a composed application. To support ethod level, we now define a set wfethod com-
the CoCo composition model implementation we pro- sition operatorgo enable composition of methods

vide (1) a taxonomy of primitive composition opera- from one or more components. This set of method
tors to describe theonnectiorbetween components; composition operators consists of:

(2) XML documents as a descriptitenguagefor the ] .

compositions; and (3) a set of deployment plugins that ® The conjunctionoperator, represented &p A ny,
address any incompatibilities and enable the genera- denotes the execution of the two methagisindmy
tion of the composed application (or composite com-  Simultaneously.

ponent) in different languages and component models ¢ The sequenceperator, represented as; my, de-

as well as on different p|atf0rmS. We eXplOit the in- notes the execution of the two methdmandn}.
herent tight coupling between an XML Schema and  jn sequence.

an XML document to provide the same coupling be-
tween the composition model (expressed as an XML ® ) . -
Schema) and the composition model implementation ~ NOtes the execution of either the metfrador the
enabling us to validate and check the conformance Methodmy;, but not both.
of a composition against the composition model (or e The pipe operator, represented &g | m;, denotes
a core subset of it). the execution of the two methods andm; in se-
Roadmap: The rest of paper is organized as fol- guence wherein the output of the methmdis the
lows. Based on the GUI composition style, Section 2 input of the methoan.

The choice operator, represented as Vv my;, de-

341



ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS

e Theloopevent operator, representedds denotes

INTEGRATION

now introduce composition scripts, that provide the

the repeated consecutive execution of the methodnecessary glue logic to tie these operators together

m.
2.2 Event Composition Operators

In GUI composition style, the firing of an event from
an event component may trigger interaction(s) from
one or more listener component(s) at the granularity
of method. We thus define @vent composition oper-
ator, denoted ag ~~ m to represent the relationship
between an evert and a set of method interaction(s)
m mthus represents either a simply method invoca-
tion of a listener componenty, or the composition of
method invocations from a set of listener components
as defined in Section 2.{,m A m;, m ; m;, m v m;,

m | m;, andny }.

2.3 Container Composition
Operators

We now define a set afontainercomposition oper-
ators to facilitate the aggregation and display of the
underlying components. This set of container compo-
sition operators consist of:

e The positioncontainer operator, representedcas
< c;, specifies that the component instawgebe
positioned within the component instance at a
default location chosen by the layout manager of
the component instanag. For example, the com-
ponentBor der Layout provides the default lo-
cations to position its underlying components from
left to right and then from top to bottom.

The position-atcontainer operator, represented as
c;, < c; @l ocati on, specifies that the compo-
nent instance ; be positioned within the compo-
nent instance; at the specified ocat i on. The

| ocat i on must conform to the layout manage-
ment defined in the component instarnge For ex-
ample, the componeror der Layout provides
five locations to position its underlying compo-
nents:North, South West East andCenter

3 A COMPOSITION SCRIPT
EXAMPLE

The eventual goal of a CoCo composition model
implementation is to enable component-based con-
struction of a composite component or an application

and to comprehensively describe a composition, us-
ing XML documents.

In this section, we illustrate how an XML-based
composition script can be used to describe the com-
position of an application. Figure 2 pictorially
represents th&peedLogmpplication. TheSpeed-
Logo application is composed from two compo-
nentsLogo andSl i der Fi el dPanel . The com-
ponentLogo is a primitive component while the
componentSl i der Fi el dPanel is mainly con-
structed from two primitive componentsS| i der
and JText Fi el d. When theJSl i der value
changes, thelText Fi el d value is automatically
updated with the new value. On the other hand,
when a new value is entered in td@ext Fi el d
and the user presses timter key, theJSl i der
is automatically repositioned to the appropriate lo-
cation. Overall in theSpeedLog@pplication, when
the Sl i der Fi el dPanel value changes, the ani-
mation speed okogo is changed. The two compo-
nentsLogo and Sl i der Fi el dPanel are aggre-
gated into the componedtFr ane at Cent er and
Sout h locations, respectively.

EﬁsueedLngo Animation

oty

assosiates, ne.

Bl -0l ]

[m ‘

Figure 2: TheSpeedLogdpplication

The partial composition script depicting the seman-
tics and the layout for the construction of tBpeed-
Logois shown in Figure 3. This script, that conforms
to the GUI composition model (Tansalarak and Clay-
pool, 2004), incorporates the composition operators
defined in Section 2. For example, on li6&2 the
<op type ="“|"> is used to ensure that the output
returned from the methodet Curr ent Val ue of
the component instancd i der Fi el d is the input
of the methodset Ani mat i onRat e of the compo-
nent instancé ogo.

The overall architecture of thepeedLogapplica-
tion (Figure 4) can be efficiently and effectively ex-

based on a specified composition model. While the tracted from the composition script shown in Figure 3.
composition operators presented in Section 2 provide Here, abox denotes a component instance as well as
the semantics for combining individual methods, they the component library that instantiates the component
cannot singularly express complete compositions. We instance, anarrowed line the connection-oriented

342



COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

composition, adouble-arrowed linghe aggregation-
based composition, @ash linethe hierarchical struc-

ture, arectanglethe property, andvalthe event.

000. <?xml version="1.0"2>

001. <GUlIscript>

002. <applicatiorn>

003. <name>SpeedLogo</name>
004.  <complnstances

033. <complnstance role€! i ent ">

034. <comp>j avax. conposi te. Sl i der Fi el dPanel
</comp>

035. <cid>sl i der Fi el d</cid>

036. < configuration>

037. < configProperty-

038. <pName>cur r ent Val ue </pName>

039. <pValue>

040. <const>10</const>

041. </pValue>

042. </configProperty-

053.  <compositions>

054. <eCompositions-

055. <eComposition>

061. <eComplnstances

062. <eComplnstance

063. <rid>sl i der Fi el d</rid>

064. <event>Pr oper t yChange </event>

065. <eAction>pr oper t yChange </eAction>

066. </eComplnstance

067. </eComplnstances

068. <ICompositions>

069. <IComplnstance

070. <rid>sl i der Fi el d</rid>

071. <callMethod>get Cur r ent Val ue
</callMethod>

072. <op type="1"/>

073. </IComplnstance

074. <IComplnstance

075. <rid>| ogo</rid>

076. <callMethod>set Ani nati onRat e
</callMethod>

077. </IComplnstance-

078. </ICompositions>

099. </application>
100. </GUlscript>

Figure 3: The PartiabpeedLogo Composition Script

4 DEPLOYMENT

Javax swing JFrame
frame
~— N

frame << sliderField @ South frame << logo @ Center

sliderField propertyChange ~>

(sliderField.getCurrentValue |
Java.composite SiiderFieldPanel Java.animation Logo
sliderField logo
S\ )
-

logo.setAnimationRate )

ropertyChange

_mlmmumSvE

preferredSize

Javax swing.JPanel .
)

panel << box
javax.awt.BoxContainer
box
~ N\

slider.stateChange ~>
(slider.getvalue |
(field setText A this.setCy )
javax swing Jslider Javax:swing. JTextrield
slider field
|

box << slider box << field

field.actionPerformed ~>
(field getText I (slider.setValue A
this.setCurrentValue) )

Figure 4: The Overall Architecture of tigpeedLogd\p-
plication

format between the XML-based composition scripts
and the final application written in the programming
language of choice. These unifying manipulation op-
erators together with specific code generation plugins
provide the instrument for managing language, com-
ponent model and platform incompatibilities. Addi-
tional glue logic can be provided to support handling
of syntactic incompatibilities as part of the deploy-
ment process. We do not currently address semantic
and design incompatibilities at deployment time.

Deployment Process
A sequence of

Composition Internal operators Code C++/
Script ::> Transformation Generation -‘ Java
Manipulation Component Programming
operators Models Language
constructs

Figure 5: The Deployment Process

Figure 5 pictorially depicts the deployment
process, consisting of two essential moduleternal
transformationand language transformatiormod-
ules. The internal transformation module provides
the mapping of the composition script to a sequence
of corresponding manipulation operators. We define
six primitive manipulation operators (Tansalarak and
Claypool, 2004), namelgA - to add an attributeAM

The last step of the composition step process is the- to add a methodM - to invoke a methodIN - to
conversion of the script to a deployable application instantiate an attribut& T - to extend a composition,
or component that conforms to the desired platform, andCC - to create an inner class. Figure 6 gives the
model, and language. We present a set of manipula-manipulation operator equivalent of tt&peedlLogo
tion operators that provide an intermediate unifying composition script given in Figure 3. Consider as an

343



ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

example the composition fragment from [in@83 equivalent of the sequence of manipulation operators
to 044. This fragment specifies the instantiation of given in Figure 6 and the composition script given in
the Sl i der Fi el dPanel and the configuration Figure 3.

of its propertycur r ent Val ue. This is translated

into the following operators:N (" sl i der Fi el d*, public class SpeedLogo extends javax.swing.JFrame
"j ava. conposite. SliderFi el dPanel ") and private java.animation.Logo logo;
IM ("sliderField", "setCurrentVal ue" private java.composite.SliderFieldPanel sliderField;

void, <"10">). public SpeedLogo (]

ET (‘javax.swing.JFrame’); java.awt.BorderLayout border;

IM ("this”, "setTitle”, "void”, <”SpeedLogo Animation?); Java.awt.Container container;

AA ("container”, "private”, "java.awt.Container”, "1”, "null’, "local’); java.awt.Color color;

IM ("this”, "getContentPane”, "container"< >); border = new java.awt.BorderLayout();

AA ("border”, "private”, "java.awt.BorderLayout”, "1”, "null”, "local”); container = getContentPane();

IN ("border”, "java.awt.BorderLayout’); color = new java.awt.Color (Oxeeeeee);

IM ("container”, "setLayout”, "void”, <"border”>); setTitle ("SpeedLogo Animation”),

AA ("color”, "private”, "java.awt.Color”, "1", "null”, "local”); setBackground (color);

IN ("color”. "java.awt.Color”, <"Oxeeeeee); container.setLayout (bofen);

IM ("this”, "setBackground”, "void”, <"color" >); sliderField = new java.composite.SliderFieldPanel();

AA (’sliderField”, "private”, "java.composite.SliderFieldPanel”, "1”, sliderField.setCurrentvalue (10);

"null”, "global’); logo = new java.animation.Logo();
IN ("sliderField”, "java.composite.SliderFieldPanel); o startgfimariga0;
IM ("sliderField”, "setCurrentValue”, "void”,<"10" >); container.add (logo, BorderLayout. CENTER);
container.add (sliderField, BorderLayout. SOUTH);
sliderField.addPropertyChangeListener

(new sliderFieldPropertyChange());

" on,

AA ("logo”, "private”, "java.animation.Logo”, "1”, "null”, "global”);
IN ("logo”, "java.animation.Logo”);
IM ("logo”, "startAnimation”, "void”, <>);
IM ("sliderField”, "addPropertyChangeListener”, "void”, ¥
<"new sliderFieldPropertyChange(}®);
CC ("sliderFieldPropertyChange”, "java.beans.PropertyChangeListener”, class sliderFielPropertyChange
<>, implements java.beans.PropertyChangeListgner
< AM ("propertyChange”, "public”, "void”, public void propertyChange
<"java.beans.PropertyChangeEvente™null”, "null”, (java.beans.PropertyChangeEven{ e)
{ AA ("value”, "private”, "int", "1, "null”, "local”); int value;
value = sliderField.getCurrentValue();

logo.setAnimationRate(value);

IM ("sliderFieldPanel”, "getCurrentValue”, "value's >);
IM ("logo”, "setAnimationRate”, "void”, <"value”>) ; }
>); }
IM ("container”, "add”, "void”, <”"logo”, "BorderLayout. CENTER>); ¥
IM ("container”, "add”, "void”, <"sliderField”, "BorderLayout. SOUTH); }

Figure 6: The Sequence of Manipulation Operators for the Figure 7: The Corresponding Java Code for the Manipula-
SpeedLog&omposition Script tion Operators in Figure 6

Furthermore, the syntactic incompatibilities be-
tween components are handled within the internal
transformation module. Consider, for example, the 5§ CONCLUSIONS
connection-based composition between the compo-

nent instances| i der Fi el d andl ogo described  oyr work makes the following contributions. It pro-
in lines 056 to 080 of Figure 3 wherein the syn-  yjdes, to the best of our knowledge, the first at-
tactic mcompatlblllj[y1 between these two component tempt at the standardization of component compo-
is transparent. This handler can be accomplished bysitions elevating compositions to first class citizen-
creaing an inner class that implements the required ship status. We provide a CoCo composition model
interface (Stearns, 2001; Akerley et al., 1999). that is both flexible and extensible, allowing develop-
As a next step, the manipulation operators are grs to extend the standard to include at a later time
translated into the desired programming language via gther composition styles of component-based devel-
code generation plugins. Figure 7 gives the Java gpment. The composition model is described us-
The component instances| i der Fi el d allows ing_XML schema. A_‘t the quESt level, com_position
any component instance implemening the interface SCTipts can be described using the composition model
Prooper t yChangelLi st ener to register for the event implementation to describe an actual composition of
Pr oper t yChange while the component instandengo two or more components. A composition script writ-
does not implement such interface. ten in XML documents conforms to a specified com-

344



COCO: COMPOSITION MODEL AND COMPOSITION MODEL IMPLEMENTATION

position model specified by an XML Schema, which
in turn conforms to the general guidelines of the com-
position model.

The composition model is analogous to defining the
grammar of a composition language, while the com-
position script? provides the program that describes
the actual composition of two or more components.
The composition model thus provides artensible
composition grammar.

REFERENCES

Achermann, F. (2002). Forms, Agents and Channels -
Defining Composition Abstraction with StylePhD
thesis, University of Bern, Institute of Computer Sci-
ence and Applied Mathematics.

Achermann, F., Lumpe, M., Schneider, J.-G., and Nier-
strasz, O. (2001). Piccola — a Small Composition
Language. In Bowman, H. and Derrick, J., editors,
Formal Methods for Distributed Processing — A Sur-
vey of Object-Oriented Approachegsages 403-426.
Cambridge University Press.

Akerley, J., Li, N., and Parlavecchia, A. (1999 rogram-
ming with VisualAge for Java 2 (2nd EditiorBrentice
Hall PTR.

Allen, R. and Garlan, D. (1997). A formal basis for architec-
tural connection ACM Transactions on Software En-
gineering and Methodology (TOSEM)3):213-249.

America, P. (1990). Designing an Object-Oriented Pro-
gramming Language with Behavioural Subtyping. In
The REX School/Workshop on Foundations of Object-
Oriented Languagespages 60-90, London, UK.
Springer-Verlag.

Box, D. (1998).Essential COM Addison-Wesley Publish-
ing Company.

Butler, S. and Duke, R. (1998). Defining Composition Op-
erators for Object InteractionObject Oriented Sys-
tems 5(1):1-16.

Chappell, D. (2002) Understanding .NET: A Tutorial and
Analysis Addison-Wesley Professional.

Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme:
Architectural Description of Component-Based Sys-
tems. In Leavens, G. T. and Sitaraman, M., editors,
Foundations of Component-Based Systgrages 47—
67. Cambridge University Press.

Gschwind, T., Oberleitner, J., and Jazayeri, M. (2002).
Dynamic Component Extension to Support Cross-
Platform Development. Technical Report TUV-1841-
2002-19, Technische Universitt Wien.

Heineman, G. T. and Councill, W. T. (2001Component-
based Software EngineeringAddison-Wesley Pub-
lishing Company, Reading, Massachusetts.

2\We use composition script to denote the description of
the composition that results in a composite component or
application.

Muller, H. and Davidson, M. (1996). JavaBeans
Specification: Getting Listeners from JavaBeans.
http://java.sun.com/products/javabeans.

Oberleitner, J., Gschwind, T., and Jazayeri, M. (2003). The
Vienna Component Framework Enabling Composi-
tion Across Component Models. [fhe 25th Inter-
national Conference on Software Engineering

Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,
and Burt, C. (2001). A Unified Approach for the Inte-
gration of Distributed Heterogeneous Software Com-
ponents. InThe Monterey Workshop on Engineering
Automation for Software Intensive System Integration
pages 109-119.

Roth, B. (1998). An Introduction to Enterprise JavaBeans
Technology. http://java.sun.com/products/ejb.

Shaw, M., DelLine, R., Klein, D. V., Ross, T. L., Young,
D. M., and Zelesnik, G. (1995). Abstractions for Soft-
ware Architecture and Tools to Support The®Boft-
ware Engineering21(4):314-335.

Siegel, J. (1996). CORBA: Fundamentals and Program-
ming for the 21st centurydohn Wiley, New York.

Stearns, B. (2001). Using Forte for Java to
Develop and Deploy Enterprise  Beans.
http://java.sun.com/developer/technicalArticles/
WebServices/ffijweb/.

Tansalarak, N. and Claypool, K. T. (2004). CoCo:
Composition Model and Composition Model
Implementation. Technical Report 2004-006,
Department of Computer Science, Univer-
sity of Massachusetts - Lowell. Available at

http://www.cs.uml.edu/techrpts/reports.jsp.

Vallecillo, A., Hernandez, J., and Troya, J. (2000). Com-
ponent Interoperability. Technical Report ITI-2000-
37, Departmento de Lenguajes y Ciencias de la
Computacion, University of Malaga. Available at
http://www.Icc.uma.estav/Publicaciones/
00/Interoperability.pdf.

Yakimovich, D., Travassos, G. H., and Basili,
V. R. A Classification of Software Compo-
nents Incompatibilites for COTS Integration.

http://sel.gsfc.nasa.gov/website/research/tech-
study.htm.

345



