
HYBRID APPLICATION SUPPORT
FOR MOBILE INFORMATION SYSTEMS

Volker Gruhn, Malte Hülder
Chair of Applied Telematics / e-Business, Dept. of Computer Science, University of Leipzig

 Klostergasse 3, 04109 Leipzig, Germany

Keywords: Pervasive/ubiquitous computing, distributed systems, e-commerce/m-commerce, mobile code and systems,
service continuity.

Abstract: The wide-spread presence of wireless networks and the availability of mobile devices has enabled the de-
velopment of mobile applications that take us a step closer to accomplishing Weiser’s vision of ubiquitous
computing (Weiser, 1991). Unfortunately however, network connectivity is still not given anywhere and at
any time. To increase the benefit of mobile applications, the next logical step is to provide support for an
offline modethat allows to continuously work with an application, even when the device is not connected to a
network. In this paper typical problems of replicating data are explained, possible solutions are discussed and
two architectural patterns that could be used to implement hybrid support are illustrated.

1 INTRODUCTION

Recent years have brought a wide-spread presence of
wireless networks and a diverse range of mobile de-
vices, pushing forward the development of mobile ap-
plications significantly. For quite a number of appli-
cations it is feasible to install the application on the
mobile device. For example, a very popular appli-
cation used on personal digital assistants (PDAs) is
personal information management, usually contain-
ing calendar, address book, and notepad applications.
To manage the data, a number of users synchronize it
between PC and PDA. For certain purposes, one syn-
chronization architecture may be more suitable than
another, as pointed out in (Starobinski et al., 2003).

Mobile devices have very limited resources. For
some applications it is therefore more difficult to syn-
chronize data needed for mobile use. For example,
consider an information system that enables construc-
tion supervisors to carry electronic copies of project
documents while visiting a construction site: Due to
limited memory of the mobile device, the supervisors
have to carefully select which documents to down-
load, and for another construction site, the down-
loaded documents have to be deleted in order to free
up memory for other documents.

Thus, it appears to be very sensible to cope with
these limitations by placing functionality and appli-

cation logic on a server. On the mobile device resides
a thin client (Orfali et al., 1996), often a browser,
which exclusively renders data. Instead of selecting
and downloading data before he attends the place of
work and risking to make a wrong or incomplete se-
lection, the user can choose which data is needed just
in time, and only this data is transferred. The applica-
tion thus depends on a permanent network connection
to the server. Even for traditional web applications for
PCs with a wired connection, network problems like
congestion are problematic. For mobile devices that
can connect only by wireless means, there is also the
problem of complete disconnection. If a disconnec-
tion is due to the limited coverage of mobile telecom-
munication networks, the problem cannot be solved
quickly by dialing in again.

To keep working with the application in such a
case, the application should be be able to switch into
an offline mode. While in offline mode, the necessary
application data and application logic will have to be
available in order to continue working.

For this paper, we want to focus on mobile informa-
tion systems with distinct client-server characteristics
since a large base of such information systems, al-
beit without mobile capabilities, already exists today.
Consequently, the implications of enabling mobile ac-
cess to existing information systems are an important
issue in the industry.

232
Gruhn V. and Hülder M. (2005).
HYBRID APPLICATION SUPPORT FOR MOBILE INFORMATION SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 232-237
DOI: 10.5220/0002522802320237
Copyright c© SciTePress

2 RELATED WORK

The Rover Toolkit (Joseph et al., 1995) describes
the possibilities that become available by the use of
queued remote procedure calls(QRPCs) andrelocat-
able dynamic objects(RDOs). These mechanisms
work for simple applications like e-mail and web
browsers, where calls can be queued in offline mode
according to the store-and-forward principle and ex-
ecuted after switching to online mode. When the pa-
per was published in 1995, users typically requested
statical web pages which were delivered by the web
server. However, complex applications are available
today that can be entirely controlled in a web browser.
For every single interaction step, the web server gen-
erates a new page, which cannot be stored in cache
because entering different data will lead to different
pages and thus to cache misses. The main ideas of this
work are still relevant, but have to be accomplished by
other means.

(Weinberg and Ben-Shaul, 2002) show a number
of mechanisms which extend the FarGo-framework
(Holder, 1998) to FarGo-DA. Although some points
are discussed that will also be picked up in this pa-
per (especially in section 4.2), it is always assumed
that either application or framework know when a
change between online and offline mode and vice-
versa is about to happen, so that necessary synchro-
nizations can take place in time. These prerequisites
are not given in a mobile environment, because it
cannot be foreseen when a wireless connection goes
down. Therefore, a framework for mobile applica-
tions should support an offline mode even when dis-
connections are unforeseeable.

With µCODE, a Java framework based on the Java
Aglets API is proposed in (Picco, 1998). It includes a
"MuServer" and several interfaces that have to be im-
plemented in order produce mobile code. The author
assumes that it is sensible to move certain classes to
the client and execute them there in order to reduce
communication costs. This idea has to be extended
to the possibility of an offline mode, which allows for
working in a disconnected environment.

Jørstad et al. describe service continuity for generic
mobile services in (Jørstad et al., 2004a) and (Jørstad
et al., 2004b). However, due to their focus on generic
mobile services, it does not become clear whether
their ideas are particularly suitable for mobile infor-
mation systems. We will consider some of their ideas
in more detail in section 5.

3 TERMS AND DEFINITIONS

In this section, we want to introduce some terms and
definitions used in the rest of this paper.

3.1 Online, Offline, Hybrid

(Merriam-Webster, 2003) definesonline as "con-
nected to, served by, or available through a system
and especially a computer or telecommunications sys-
tem (as the Internet)". Accordinglyoffline is defined
as the opposite: "not connected to or served by a sys-
tem and especially a computer or telecommunications
system". Anonline applicationis therefore an appli-
cation that offers its services only when connected to
such a telecommunications system, whereas anoffline
applicationdoes not make any use of such a connec-
tion. A hybrid applicationis an application that com-
bines features of offline and online applications: it of-
fers some services only when it is connected, while
other services are available even when there is no such
connection. Let us consider an e-mail application as
an example: when the application is inonline mode
(i.e. connected to a telecommunications system), it
can send and receive new e-mails. When the appli-
cation is inoffline mode(i.e. disconnected), the user
may still read messages that were downloaded before
entering offline mode, and he may still write messages
that will be saved locally until entering online mode.
A hybrid application therefore needs to be aware of
its connection state. Switching from online mode to
offline mode can be done manually, i.e. initiated by
the user, or automatically by some connection detec-
tion algorithm. One advantage of manually switching
from online mode to offline mode is the possibility to
perform certain tasks before actually entering offline
mode, e.g. downloading the latest e-mails. Another
one is the possibility to disconnect deliberately in or-
der to save online costs and battery power. A disad-
vantage is the necessity of user interaction – if the user
does not switch to offline mode before the connec-
tion breaks down, the application might malfunction
as it may assume a working connection. Therefore,
developers of hybrid applications should aim to pro-
vide an automatic connection detection and also allow
for manual mode switching where possible.

3.2 Different Kinds of Mobility

When thinking of mobile applications, the following
definition (from (Merriam-Webster, 2003)) ofmobile
as "capable of moving or being moved" springs to
mind. But which entity exactly is capable of moving
or being moved in context of mobile applications? It
could be the user, it could be the device, and it could
also be the program code of the application. In this
context, (Pandya, 2000) discerns personal mobility,
terminal mobility, and service portability: According
to his definition, personal mobility means that the user
is not restricted to a single device, but can rather use
different devices in order to use a service. Thus it
does not mean the user’s capability of moving physi-

HYBRID APPLICATION SUPPORT FOR MOBILE INFORMATION SYSTEMS

233

cally, but the possibility to "move" between different
devices. Terminal mobility is given when the device
(the terminal) remains connected to a network while
it is moved physically. Finally, a user experiences ser-
vice portability when he may access the same service
from anywhere, independently of his location or the
device he is using. (Roth, 2002) gives the example
of e-mail access from any location in the world for
service portability.

The notion of service portability is a bit tricky, as
it depends on the service, in which way service porta-
bility can be achieved. Considering the example of e-
mail access, we can see the following: As long as the
user stays in an area where there are enough devices to
let him access his e-mails at any time, personal mobil-
ity could suffice to achieve service portability as well.
As soon as the user wants to access his e-mails be-
yond that area or in between the locations where suit-
able devices are installed, terminal mobility is needed.
The user then carries the device to any place where he
wants to access his e-mails. But true terminal mo-
bility is still not possible: On air, in forests, or even
underground, device connectivity is not available. In
many cases, true terminal mobility is not necessary as
long as the device behaves in a feasible way while it
is disconnected.

It should have become clear that true service porta-
bility cannot be achieved, since it is impossible to
provide connected devices in every location, and also
since true terminal mobility cannot be guaranteed.
Therefore, a way should be found to provide as many
services as possible, even when disconnected.

3.3 Mobile Code

A possible solution to overcome the problem of lim-
ited terminal mobility could bemobile code, which
is defined by (Adl-Tabatabai et al., 1996) as "any
program that can be shipped unchanged to a hetero-
geneous collection of processors and executed with
identical semantics on each processor." In times when
device connectivity is not available, mobile code
might be shipped to the device and executed there in
order to provide the service that would otherwise not
be available in offline mode. When talking about mo-
bile code, two other terms are used frequently:

A mobile agentis a unit of modularity, execu-
tion and mobility that can migrate from one mobile
host to another (Julien and Roman, 2002). Amobile
host is a container for mobile agents characterized,
among other things, by its location (Julien and Ro-
man, 2002). Put in other words: A mobile host is a
device that can be moved physically and which pro-
vides an environment where mobile agents can be ex-
ecuted.

This definition by (Julien and Roman, 2002)
does not include the need for mobile agents to au-

tonomously migrate from one mobile host to another.
In the context of mobile information systems, this
does not pose any problems. In fact, a user is in-
terested in using a service continuously with his de-
vice, even when there is no network connection avail-
able. Therefore, the necessary mobile code should
have been moved to the mobile host before the con-
nection was lost – which part of the application de-
cided to move this component is not of interest to
him. The notion of a mobile agent in this context is
thus interesting from the component’s point of view.
A mobile agent is a unit that combines all the classes
or components needed to provide a service, possibly
also in combination with the data needed. The prob-
lems that arise from copying mobile agents and their
data to mobile hosts will be explained in the following
section.

4 TYPICAL PROBLEMS WITH
REPLICATED DATA

When working with local copies of data (replicas),
there are some typical problems. One of them is the
possibility that data is not available when it is needed:
Especially due to limited storage space or network
bandwidth, not all data can be downloaded to the
client, and thus only a restricted set of data can be ac-
cessed during offline mode. Therefore, it is necessary
to reliably predict which data will be needed in offline
mode, and to cope with situations when needed data
is not available, e.g. by disabling a service. If offline
mode was activated manually and not caused by net-
work problems, the application could also suggest to
switch to online mode and access the needed data via
the network (if still available).

4.1 Deciding on Data Transfer

Predictions which data is needed during offline mode
can be made manually, e.g. the user chooses the pri-
ority for services and data he wishes to have available
in offline mode. The software will then try to trans-
fer data with highest priority first. Data with lower
priority will be transferred only when there is enough
time, bandwidth and storage space left. Alternatively,
it might be possible for the software to decide auto-
matically which data a user will use most likely by
monitoring user interaction over some period of time.
Using such monitoring, one could not only identify
the services used most frequently, but also the use in
certain situations and even the data volume needed to
transfer code and data. With this knowledge it should
be possible to calculate a weighed probability(p) for
each service to be used within a certain amount of
time. From the typical data volume known for each

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

234

Figure 1: Functionf = c− pc < t

service and from the current situation, one could cal-
culate the cost(c) it takes to transfer code and data
for a certain service. Only if the result of the func-
tion f = c − pc is lower than a certain threshold
value (t), code and data for this service are loaded
(fig. 1). Thus it is assured that for a service that will
probably be used(p ≈ 1), code and data are loaded
(f ≈ 0), whereas a service that is less likely to be
used(p → 0) will only be loaded, if the costs are low
as well(c → 0).

4.2 Inner States

Because different instances of software are character-
ized by the possibility to incorporate different inner
states, it has to be considered how to deal with these
inner states. Problems can arise, if data is changed on
the server while the client is in offline mode:

As long as this data is not the basis of other
processes, there should be no problem – as soon as
the application switches to online mode, it will use the
new data available on the server. Next time it switches
to offline mode, the current data will be downloaded.

If the changed data was used in other processes
(e.g. certain calculations), those processes might have
to be re-executed after switching to online mode in
order to get the up-to-date results depending on up-
to-date data. It will be an application-specific de-
cision for each process, whether this re-execution is
necessary or not. Sometimes the execution time of
the process will be decisive, as the results were valid
at the time they were processed, and the data was
changed later – an execution in online mode at the
same time would have given the same result.

Other problems may arise, if an inner state is
changed during offline mode, as a change of inner
state may be considered as a change of replicated
data. When switching back to online mode, local
changes have to be transmitted to the server. Accord-
ing to (Weinberg and Ben-Shaul, 2002), four ways to
handle this problem can be described:

Purge means that changes of state are discarded. The
client may call methods of the component and read

its state but should not change it, as these changes
are lost when switching to online mode.

Overwrite transfers the state of the client compo-
nent to the server component. If several clients had
copied the component locally, there might be in-
consistencies when switching to online mode.

Merge is supposed to try to solve conflicts emerging
from state changes. Unfortunately, there is no gen-
eral strategy for coping with those conflicts, but the
developer has to implement solutions when devel-
oping the component.

Last demands timestamps to be given at any change
of state, so that after switching to online mode, the
state with the youngest timestamp is copied to the
server. Concurrent access may lead to inconsisten-
cies as well, and the clocks on the server and all
clients need to be synchronized.

Variants of the last alternative are also possible, e.g.
the state with the oldest timestamp could be copied
to the server, and thus the first change "wins". To
show other possibilities, we want to distinguish two
different cases:

1. Data is changed onone client while it is in offline
mode: Assuming changing the data was an allowed
action for the client, the data has to be transferred to
the server after switching to online mode again. For
other clients that used this data, this case is similar
to the one where data was changed on the server.
Some processes on the other clients may have to be
re-executed. Another severe problem arises from
this: If the changes a client has produced in of-
fline mode can lead to the re-execution of processes
performed by other clients in offline mode, what
happens to processes performed by clients in on-
line mode? Consequently, these processes would
have to be re-executed as well, if the timestamp of
the changed data is older than the execution of the
process.

2. Data is changed onseveral clients while they are
in offline mode: Different strategies can be ap-
plied to decide which changes have to be accepted
by the server and the other clients. According to
the solution with only one client, it can be checked
when the change took place on the different clients.
All processes executed before the first change will
not be affected. Processes executed during the first
and second change will have to be re-executed us-
ing data after the first change. Processes between
the second and third change will have to be re-
executed using data after the second change and so
on. But the problem does not only lie in the num-
ber of changes, but also in the uncertainty of when
a client switches back to online mode and requires
synchronization. As long as a client that switched

HYBRID APPLICATION SUPPORT FOR MOBILE INFORMATION SYSTEMS

235

to offline mode before another client remains in of-
fline mode while the other client has switched back
to online mode, any processes depending on data
that the first client might have changed are still sub-
ject to possible re-execution later on. For a number
of applications, this is not acceptable.
Another possible strategy could be to only al-
low the first client which synchronizes to deliver
changes to the server. Other clients that also sub-
mit changed data to the server later on will be told
that their changes are invalid and processes depend-
ing on those changes will have to be re-executed.
The main advantage is that after switching to on-
line mode and connecting to the server, it is known
which processes have to be re-executed and that
processes are to be re-executed at most once.

It should have become clear that multiple changes
on data needed by several clients pose severe prob-
lems. If changes brought about by a client in offline
mode demand re-execution of processes, the results of
any process executed while another client is in offline
mode may not be valid. This appears to be feasible for
only very few applications, if any. It therefore seems
to be sensible to restrict the services available in of-
fline mode to those which cannot lead to the named
problems. Also some optimistic strategy may be ap-
plied, as for many applications the probability of con-
current changes to the same data is very low. If such
a conflict occurs, it has to be detected and changes
by the different clients have to be discarded (except
maybe for the first one).

5 ARCHITECTURAL PATTERNS

To support service availability during offline mode,
two main architectural patterns spring to mind: a con-
nection manager component or a service continuity
layer as introduced by (Jørstad et al., 2004a). The
connection manager component would be placed be-
sides other components, which may or may not make
use of the connection manager component. Thus,
components offering one or more services need to ac-
tively make use of the connection manager compo-
nent in order to provide their service in online mode
or offline mode. In a layered approach, the idea is
that any communication needs to go through the ad-
jacent layer, so it should not be possible to bypass a
layer. Therefore, components (or rather their devel-
opers) cannot decide whether to use the service con-
tinuity layer or not – as soon as a component needs
to use a network connection, it will have to commu-
nicate with the service continuity layer.

A connection manager component would be placed
besides other technical components. It can make use
of those components, e.g. an "always best connected"

Figure 2: Service Continuity Layer (Jørstad et al., 2004a)

component that detects available networks and deter-
mines which one is most suitable for a certain purpose
in the actual situation. Other components, technical
ones as well as those implementing application logic,
may use the connection manager component to pro-
vide services in offline mode. This could be helpful
when migrating an existing application because com-
ponents could be migrated one after another, intro-
ducing offline mode capability where suitable, while
other components will not (yet) be changed and thus
will not (yet) be available during offline mode.

The service continuity layer (fig. 2) proposed in
(Jørstad et al., 2004a) and (Jørstad et al., 2004b) con-
tains a monitor, a handover manager, a service com-
position module, an interoperability evaluator, and an
I/O redirector. The monitor is to describe the sur-
roundings of a host so that possible redistributions of
a service can be identified, in order to provide ser-
vice continuity. A handover manager can instruct the
service composition module to design and implement
a new service composition of an existing service as
soon as it (or the monitor) recognizes that a handover
will be necessary. The service composition module is
supposed to compose a new service out of the com-
ponents that are available. Available components are
checked by the interoperability evaluator for whether
they are compatible on both their interfaces and their
behavior, so that it is safe to compose a service out of
them. The I/O redirector redirects I/O between differ-
ent service components, so that a service can be used
continuously even when it is rearranged by the service
composition module.

As already mentioned in section 3.1, we see a need
for a monitor that observes network connectivity and
initiates offline mode automatically when the connec-
tion is going to break down, or switches back to on-
line modewhen a connection is available again. On
the other hand, a handover manager should already be
implemented in lower networking layers, e.g. when
roaming between GSM cells is performed. A service

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

236

composition module will only be necessary, when
new services become available during runtime and
have to be integrated with the services available al-
ready. This focuses on generic devices and generic
services that might compose an application out of
available services, like it is proposed for web ser-
vices. For business applications, where a company
equips their employees with devices and applications,
this is usually not a requirement. The interoperabil-
ity evaluator should check whether a new component
can interact with the existing ones, and if it is safe
to do so. We see a great overlap with the service
composition module here. Again, this may be of in-
terest in very heterogeneous environments – within a
company, interoperability should already be ensured
during development. The I/O redirector again seems
to be a very important component, as it manages ac-
cess to data sources and storage. It has to assure that
data needed during offline mode is fetched from a lo-
cal data storage, and that data changed during offline
mode is stored in a local storage and transmitted to
the server upon entering online mode.

6 CONCLUSIONS AND FUTURE
WORK

As mobile hardware and communication costs are
dropping constantly, many organizations may afford
to equip their employees with mobile solutions. Dif-
ferent from some views in the literature of the 1990s
(e.g. (Picco, 1998)), communication costs are not
the main reason for disconnected support and thus
not the main obstacle for mobile applications any-
more. A number of already existing information sys-
tems would gain from mobile support, but due to lacks
in network connectivity, mobile information systems
cannot be available anywhere at any time. To increase
the benefit of those applications, the next logical step
is to provide support for an offline modethat allows to
continuously work with an application, even when the
device is disconnected from a network.

We have shown that some problems emerging from
hybrid support and replicating data can be overcome
quite easily, while others pose more difficult ques-
tions. As (Jørstad et al., 2004a) and (Jørstad et al.,
2004b) propose service continuity for generic ser-
vices, some of their proposed components are specif-
ically designed to deal with problems arising from
general and often even unknown services. Focus-
ing on mobile information systems, those compo-
nents appear to be superfluous while other compo-
nents, namely monitor and I/O redirector are neces-
sary. Implementing a connection manager that tackles
the named problems and reduces the overhead for de-
veloping hybrid support for mobile information sys-

tems from the scratch is one of our current research
projects; finding the most suitable way of integrating
our connection manager into application architectures
is another.

REFERENCES

Adl-Tabatabai, A.-R., Langdale, G., Lucco, S., and Wahbe,
R. (1996). Efficient and language-independent mobile
programs. InProceedings of the ACM SIGPLAN ’96
Conference on Programming Language Design and
Implementation (PLDI), pages 127–136.

Holder, O. (1998). The Design of the FarGo System (A De-
sign Document). Technical Report EE Pub No. 1171,
Technion - Israel Institute of Technology.

Joseph, A. D., deLespinasse, A. F., Tauber, J. A., Gifford,
D. K., and Kasshoek, M. F. (1995). Rover: A Toolkit
for Mobile Information Access. InProceedings of
SIGOPS’95, pages 156–171. ACM, ACM Press.

Jørstad, I., van Thanh, D., and Dustdar, S. (2004a). An
analysis of service continuity in mobile services.2nd
International Workshop on Distributed and Mobile
collaboration (DMC), WETICE conference.

Jørstad, I., van Thanh, D., and Dustdar, S. (2004b). Towards
Service Continuity for Generic Mobile Services.The
2004 IFIP International Conference on Intelligence in
Communication Systems (INTELLCOMM 04).

Julien, C. and Roman, G.-C. (2002). Egocentric context-
aware programming in ad hoc mobile environments.
Proceedings of SIGSOFFT 2002/FSE-10.

Merriam-Webster (2003). Merriam-Webster’s Collegiate
Dictionary. Merriam-Webster.

Orfali, R., Harkey, D., and Edwards, J. (1996).The Essen-
tial Client/Server Survival Guide. Wiley Publ.

Pandya, R. (2000).Mobile and personal communication
systems and services. IEEE Press.

Picco, G. P. (1998).µCODE: A Lightweight and Flexible
Mobile Code Toolkit.Lecture Notes in Computer Sci-
ence, 1477:160–171.

Roth, J. (2002).Mobile Computing. dpunkt.verlag.

Starobinski, D., Trachtenberg, A., and Agarwal, S. (2003).
Efficient PDA Synchronization.IEEE Transactions
on Mobile Computing, 2(1):40–51.

Weinberg, Y. and Ben-Shaul, I. (2002). A Programming
Model and System Support for Disconnected-Aware
Applications on Resource-Constrained Devices. In
Proc. of the 24th Int. Conf. on Software Engineering
(ICSE’02), pages 374–384. ACM Press.

Weiser, M. (1991). The computer for the twenty-first cen-
tury. Scientific American, 265(3):94–104.

HYBRID APPLICATION SUPPORT FOR MOBILE INFORMATION SYSTEMS

237

