
A PRACTICAL IMPLEMENTATION OF TRANSPARENT
ENCRYPTION AND SEPARATION OF
DUTIES IN ENTERPRISE DATABASES

Protection against External and Internal Attacks on Databases

Ulf T. Mattsson
Protegrity Corp.

Keywords: Internet services, Dial-up networking

Abstract: Security is becoming one of the most urgent challenges in database research and industry, and there has also
been increasing interest in the problem of building accurate data mining models over aggregate data, while
protecting privacy at the level of individual records. Instead of building walls around servers or hard drives,
a protective layer of encryption is provided around specific sensitive data-items or objects. This prevents
outside attacks as well as infiltration from within the server itself. This also allows the security administrator
to define which data stored in databases are sensitive and thereby focusing the protection only on the
sensitive data, which in turn minimizes the delays or burdens on the system that may occur from other bulk
encryption methods. This paper presents a practical implementation of field level encryption in enterprise
database systems, based on research and practical experience from many years of commercial use of
cryptography in database security. We use the key concepts of security dictionary, type transparent
cryptography and propose solutions on how to transparently store and search encrypted database fields. In
this paper we will outline the different strategies for encrypting stored data so you can make the decision
that is best to use in each different situation, for each individual field in your database to be able to
practically handle different security and operating requirements. The papers presents a policy driven
solution that allows transparent data level encryption that does not change the data field type or length. We
focus on how to integrate modern cryptography technology into a relational database management system to
solve some major security problems.

1 INTRODUCTION

Critical business data in databases is an obvious
target for attackers. Although access control has
been deployed as a security mechanism almost since
the birth of large database systems, for a long time
security of a DB was considered an additional
problem to be addressed when the need arose, and
after threats to the secrecy and integrity of data had
occurred (Agrawal, 2002). Now many major
database companies are adopting the loose coupling
approach and adding optional security support to
their products. You can use the encryption features
of your Database Management System (DBMS), or
perform encryption and decryption outside the
database. Each of these approaches has its
advantages and disadvantages. The approach of
adding security support as an optional feature is only
satisfactory if designed and implemented well. An

optional feature may penalize the system
performance if it’s not designed to perform
encryption and decryption also inside the database,
supporting accelerated search and advanced
indexing of encrypted data. Advanced indexing of
encrypted data can be implemented on extensible
indexing functions similar to the Oracle domain
index. An optional feature may open new security
holes if it’s not based on fundamental security
concepts including secure encryption key
management, separation of duties, and
accountability. Database security is a wide research
area (Denning, 1997), (Agrawal, 2002) and includes
topics such as statistical database security (Adam,
1989), intrusion detection (Lunt, 1993), and most
recently privacy preserving data mining (Agrawal,
2003), and related papers in designing information
systems that protect the privacy and ownership of
individual information while not impeding the flow

146 T. Mattsson U. (2005).
A PRACTICAL IMPLEMENTATION OF TRANSPARENT ENCRYPTION AND SEPARATION OF DUTIES IN ENTERPRISE DATABASES - Protection
against External and Internal Attacks on Databases.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 146-153
DOI: 10.5220/0002518001460153
Copyright c© SciTePress

of information, include (Agrawal, 2003), (Agrawal,
2004).

2 CHOOSING THE POINT OF
ENCRYPTION

Implementing a data privacy solution can be done at
multiple places within the enterprise. There are
implementation decisions to be made as well. Where
will you perform the data encryption — inside or
outside of the database? Your answer can affect the
data’s security. How do you create a system that
minimizes the number of people who have access to
the keys? Storing the encryption keys separately
from the data they encrypt renders information
useless if an attacker found a way into the database
through a backdoor in an application. In addition,
separating the ability of administers to access or
manage encryption keys builds higher layers of trust
and control over your confidential information
infrastructure. There should be limited access to the
means to decrypt sensitive information – and this
access should be locked down and monitored with
suspicious activity logged. Choosing the point of
implementation not only dictates the work that needs
to be done from an integration perspective but also
significantly affects the overall security model. The
sooner the encryption of data occurs, the more
secure the environment—however, due to
distributed business logic in application and
database environments, it is not always practical to
encrypt data as soon as it enters the network.
Encryption performed by the DBMS can protect data
at rest, but you must decide if you also require
protection for data while it’s moving between the
applications and the database. How about while
being processed in the application itself, particularly
if the application may cache the data for some
period? Sending sensitive information over the
Internet or within your corporate network clear text,
defeats the point of encrypting the text in the
database to provide data privacy. Good security
practice is to protect sensitive data in both cases – as
it is transferred over the network (including internal
networks) and at rest. Once the secure
communication points are terminated, typically at
the network perimeter, secure transports are seldom
used within the enterprise. Consequently,
information that has been transmitted is in the clear
and critical data is left unprotected. One option to
solve this problem and deliver a secure data privacy
solution is to selectively parse data after the secure
communication is terminated and encrypt sensitive
data elements at the SSL/Web layer. Doing so

allows enterprises to choose at a very granular level
(usernames, passwords, etc.) sensitive data and
secure it throughout the enterprise.

2.1 Application-layer Encryption

Application-level encryption allows enterprises to
selectively encrypt granular data within application
logic. This solution also provides a strong security
framework and, if designed correctly, will leverage
standard application cryptographic APIs such as JCE
(Java-based applications), MS-CAPI (Microsoft-
based applications), and other interfaces. Because
this solution interfaces with the application, it
provides a flexible framework that allows an
enterprise to decide where in the business logic the
encryption/decryption should occur. Some of these
applications include CRM, ERP, and Internet-based
applications. This type of solution is well suited for
data elements (e.g. credit cards, email addresses,
critical health records, etc.) that are processed,
authorized, and manipulated at the application tier.

Local Policy
Enforcement and

Protection Point (PEPP)
Application

Database

File System

Central Policy
and Audit Management
(CPAM):

- Policy Definition
- Encryption Rules Definition
- Key Management
- Audit and Reporting

User

Optional Hardware
Security Module (HSM)

Figure: Application-level encryption.

If deployed correctly, application-level
encryption protects data against storage attacks, theft
of storage media, and application-level
compromises, and database attacks, for example
from malicious DBAs. Although it is secure,
application encryption also poses some challenges.
If data is encrypted at the application, then all
applications that access the encrypted data must be
changed to support the encryption/decryption model.
Clearly, during the planning phase, an enterprise
must determine which applications will need to
access the data that is being encrypted. Additionally,
if an enterprise leverages business logic in the
database in the form of stored procedures and
triggers, then the encrypted data can break a stored
procedure. As a result application-level encryption
may need to be deployed in conjunction with
database encryption so that the DBMS can decrypt

A PRACTICAL IMPLEMENTATION OF TRANSPARENT ENCRYPTION AND SEPARATION OF DUTIES IN
ENTERPRISE DATABASES - Protection against External and Internal Attacks on Databases

147

the data to run a specific function. Finally, while
leveraging cryptographic APIs is useful, the
implementation does require application code
changes as well as some database migration tasks to
address field width and type changes as a result of
encryption, if not type-preserving encryption is used.
And while homegrown applications can be
retrofitted, off the shelf applications do not ship with
the source and often do not provide a mechanism to
explicitly make a cryptographic function call in the
logic.

2.2 Database-layer Encryption

Database-level encryption allows enterprises to
secure data as it is written to and read from a
database. This type of deployment is typically done
at the column level within a database table and, if
coupled with database security and access controls,
can prevent theft of critical data. Database-level
encryption protects the data within the DBMS and
also protects against a wide range of threats,
including storage media theft, well known storage
attacks, database-level attacks, and malicious DBAs.

Figure: Database-level encryption.

Database-level encryption eliminates all
application changes required in the application-level
model, and also addresses a growing trend towards
embedding business logic within a DBMS through
the use of stored procedures and triggers. Since the
encryption/decryption only occurs within the
database, this solution does not require an enterprise
to understand or discover the access characteristics
of applications to the data that is encrypted. While
this type of solution can certainly secure data, it does
require some integration work at the database level,
including modifications of existing database
schemas and the use of triggers and stored
procedures to undertake encrypt and decrypt

functions. Additionally, careful consideration has to
be given to the performance impact of implementing
a database encryption solution, particularly if
support for accelerated index-search on encrypted
data is not used. First, enterprises must adopt an
approach to encrypting only sensitive fields. The
performance overhead in accessing a HSM
(hardware security module) from database queries is
usually significant compared to a software only
based cryptographic process. The performance
overhead can also be minimized by selectively
accessing a HSM only for certain type of
cryptographic operations. This optimisation will be
discussed in detail in a future paper. The primary
vulnerability of this type of encryption is that it does
not protect against application-level attacks as the
encryption function is strictly implemented within
the DBMS.

2.3 Storage-layer Encryption

Storage-level encryption enables enterprises to
ecrypt data at the storage subsystem, either at the file
level (NAS/DAS) or at the block level SAN. This
type of encryption is well suited for encrypting files,
directories, storage blocks, and tape media. In
today’s large storage environments, storage-level
encryption addresses a requirement to secure data
without using LUN masking or zoning.

Application

Database

File System

Local Policy
Enforcement and

Protection Point (PEPP)

Central Policy
and Audit Management
(CPAM):

- Policy Definition
- Encryption Rules Definition
- Key Management
- Audit and Reporting

User

Optional Hardware
Security Module (HSM)

Application

Database

File/Storage System

Central Policy
and Audit Management
(CPAM):

- Policy Definition
- Encryption Rules Definition
- Key Management
- Audit and Reporting

User

Network Attached
Hardware Security
Module (HSM)

Figure: Storage-level encryption.

While this solution does provide the ability to
segment workgroups and provides some security, it
presents a couple limitations. First, it only protects
against a narrow range of threats, namely media
theft and storage system attacks. However, storage-
level encryption does not protect against most
application- or database-level attacks, which tend to
be the most prominent type of threats to sensitive
data. Second, current storage security mechanisms
only provide block-level encryption; they do not

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

148

give the enterprise the ability to encrypt data within
an application or database at the field level.
Consequently, one can encrypt an entire database,
but not specific information housed within the
database.

3 USER MANAGEMENT ISSUES

To access database resources, a user must have an
account with the database. User account
management is the basis for the overall database
system security. A DBA has the responsibility to
create and maintain all DB user accounts, which Is a
large portion of her/his system administration effort.
At the account creation time, the DBA species how
the newly created user will be authenticated, and
what system resources the user can use. When a user
wants to connect to a database, she/he must identify
her-self/himself to the server and the server will
verify her/his identity using the pre-specied
authentication method. Current commercial
RDBMSs support many dierent kinds of identication
and authentication methods, among them are
password-based authentication (Koch, 1997), host-
based authentication (Agrawal, 2004), (Koch, 1997),
(Informix, 1994), PKI (Public Key Infrastructure)
based authentication (Oracle, 1999), and other third
party-based authentications such as Kerberos
(Neuman, 1994), DCE (Distributed Computing
Environment (Rosenberry, 1992)) and smart card
(Rankl, 1997). Essentially, all methods rely on a
secret known only to the connecting user. It is vital
that a user should have total control over her/his own
secret. For example, only she/he should be able to
change her/his password. Other people can change a
user's password only if they are authorized to do so.
In a DB system, a DBA can reset a user's password
upon the user's request, probably because the user
might have forgotten her/his password. However,
the DBA can temporarily change a user's password
without being detected and caught by the user,
because the DBA has the capability to update
(directly or indirectly) the system catalogs.

3.1 A separated Security Directory

A traditional data directory stores all of the
information that is used to manage the objects in a
database. A data directory consists of many catalog
tables and views. It is generally recommended that
users (including DBAs) do not change the contents
of a catalog table manually. Instead, those catalogs
will be maintained by the DB server and updated
only through the execution of system commands.

However, a DBA can still make changes in a catalog
table if she/he wants to do so. To prevent
unauthorized access to important security-related
information, we introduce the concept of security
catalog. A security catalog is like a traditional
system catalog but with two security properties: It
can never be updated manually by anyone, and its
access is controlled by a strict authentication and
authorization policy.

4 COMPLETE ACCOUNTABILITY

From an administration point of view, a DBA
(Database Administrator) is playing an important
and positive role. However, when security and
privacy become a big issue, we cannot simply trust
particular individuals to have total control over other
people's secrecy. This is not just a problem of
trustiness, it is a principle. Technically, if we allow a
DBA to control security without any restriction, the
whole system becomes vulnerable because if the
DBA is compromised, the security of the whole
system is compromised, which would be a disaster.
On the other hand, if we have a mechanism in which
each user could have control over his/her own
secrecy, the security of the system is maintained
even if some individuals do not manage their
security properly. Access control is the major
security mechanism deployed in all RDBMSs. It is
based upon the concept of privilege. A subject (i.e.,
a user, an application, etc.) can access a database
object if the subject has been assigned the
corresponding privilege. Access control is the basis
for many security features. Special views and stored
procedures can be created to limit users' access to
table contents. However, a DBA has all the system
privileges. Because of her/his ultimate power, a
DBA can manage the whole system and make it
work in the most efficient way. In the mean time,
she/he also has the capability to do the most damage
to the system. With a separated security directory the
security administrator is responsible for setting the
user permissions. Thus, for a commercial database,
the security administrator (SA) operates through a
separate middle-ware, the access control system
(ACS), which serve for authentication verification,
authorization, audit, encryption and decryption. The
ACS is tightly coupled to the database management
system (DBMS) of the database. The ACS controls
access in real-time to the protected fields of the
database. Such a security solution provides
separation of the duties of a security administrator
from a database administrator (DBA). The DBA’s
role could for example be to perform usual DBA
tasks, such as extending tablespaces etc, without

A PRACTICAL IMPLEMENTATION OF TRANSPARENT ENCRYPTION AND SEPARATION OF DUTIES IN
ENTERPRISE DATABASES - Protection against External and Internal Attacks on Databases

149

being able to see (decrypt) sensitive data. The SA
could then administer privileges and permissions, for
instance add or delete users. For most commercial
databases, the database administrator has privileges
to access the database and perform most functions,
such as changing password of the database users,
independent of the settings by the system
administrator. An administrator with root privileges
could also have full access to the database. This is an
opening for an attack where the DBA can steal all
the protected data without any knowledge of the
protection system above. The attack is in this case
based on that the DBA impersonates another user by
manipulating that users password, even though the
user’s password is enciphered by a hash algorithm.
An attack could proceed as follows. First the DBA
logs in as himself, then the DBA reads the hash
value of the users password and stores this
separately. Preferably the DBA also copies all other
relevant user data. By these actions the DBA has
created a snapshot of the user before any altering.
Then the DBA executes the command “ALTER
USER username IDENTIFIED BY newpassword”.
The next step is to log in under the user name
"username” with the password “newpassword” in a
new session. The DBA then resets the user’s
password and other relevant user data with the
previously stored hash value. Thus, it is important to
further separate the DBA’s and the SA’s privileges.
For instance, if services are outsourced, the owner of
the database contents may trust a vendor to
administer the database. Then the role of the DBA
belongs to an external person, while the important
SA role is kept within the company, often at a high
management level. Thus, there is a need for
preventing a DBA to impersonate a user in a attempt
to gain access to the contents of the database. The
method comprises the steps of: adding a trigger to
the table, the trigger at least triggering an action
when an administrator alters the table through the
database management system (DBMS) of the
database; calculating a new password hash value
differing from the stored password hash value when
the trigger is triggered; replacing the stored
password hash value with the new password hash
value. A similar authentication verification may also
be implemented if VPN based connection and
authentication is used.

The first security-related component in an RDBMS
(and actually in most systems) is user management.
A user account needs to be created for anyone who
wants to access database resources. However, how
to maintain and manage user accounts is not a trivial
task. User management includes user account
creation, maintenance, and user authentication. A
DBA (DataBase Administrator) is responsible for

creating and managing user accounts. When a DBA
creates an account for user Alice, she/he also species
how Alice is going to be authenticated, for example,
by using a database password. The accounts and the
related authentication information are stored and
maintained in system catalog tables. When a user
logs in, she/he must be authenticated in the exact
way as specified in her/his account record. However,
there is a security hole in this process. A DBA can
impersonate any other user by changing (implicitly
or explicitly) the system catalogs and she/he can do
things on a user's behalf without being
authorized/detected by the user, which is a security
hole. A DBA's capability to impersonate other users
would allow her/him to access other users'
confidential data even if the data are encrypted.

5 CHOSING THE STORAGE
FORMAT OF ENCRYPTED
INFORMATION

Application code and database schemas are sensitive
to changes in the data type and data length. If data is
to be managed in binary format, varbinary can be
used as the data type to store encrypted information.
On the other hand, if a binary format is not
desirable, the encrypted data can be encoded and
stored in a varchar field. There are size and
performance penalties when using an encoded
format, but this may be necessary in environments
that do not interface well with binary formats, if
support for transparent data level encryption is not
used. In environments where it is unnecessary to
encrypt all data within a database, a solution with
granular capabilities is ideal. Even if only a small
subset of sensitive information needs to be
encrypted, additional space will still be required if
transparent data level encryption is not used. The
secure data level encryption for data at rest can be
based on block ciphers. The proposed solution is
based on transparent data level encryption with Data
Type Preservation that Does Not Change ASCII
Data Field Type or length. The solution provides a
cost effective implementation, avoiding changes of
Millions of Lines of Business Code in larger
enterprise information systems. The solution also
provides an effective last line of defence: selective
column-level data item encryption,
cryptographically enforced authorization; key
management based on HSM or software, secure
audit and reporting facility, and enforced separation
of duties. The method is Cryptographically Strong,
Work With Any DBMS and OS, Work With
Different Character Sets, No Application or

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

150

Database Changes, No Programming Language
Dependence, Fail Safe, Requires no DBA
intervention. Loader Functions Normally and
Queries Function Normally. Accelerated search
capabilities based on partial encryption of data and
accelerated search index can also be utilized.

5.1 Searching on encrypted data

Searching for an exact match of an encrypted value
within a column is possible, provided that the same
initialization vector is used for the entire column. On
the other hand, searching for partial matches on
encrypted data within a database can be challenging
and can result in full table scans if support for
accelerated index-search on encrypted data is not
used. One approach to performing partial searches,
without prohibitive performance constraints and
without revealing too much sensitive information, is
to apply an INDEX HINT to part of the sensitive
data and store it in another column in the same row,
if support for accelerated index-search on encrypted
data is not used. For example, a table that stores
encrypted customer email addresses could also store
the INDEX HINT of the first four characters of each
email address. This approach can be used to find
exact matches on the beginning or end of a field.
One drawback to this approach is that a new column
needs to be added for each unique type of search
criteria. So if the database needs to allow for
searching based on the first four characters as well
as the last five characters, two new columns would
need to be added to the table. However, in order to
save space, the INDEX HINT hash values can be
truncated to ten bytes without compromising
security in order to save space. This approach can
prove to be a reasonable compromise especially
when combined with non-sensitive search criteria
such as zip code, city, etc. and can significantly
improve search performance if support for
accelerated index-search on encrypted data is not
used. The INDEX HINT can also be implemented
on extensible indexing functions similar to the
Oracle domain index.

5.2 Encryption of Primary and
Foreign Keys

Encrypted columns can be a primary key or part of a
primary key, since the encryption of a piece of data
is stable (i.e., it always produces the same result),
and no two distinct pieces of data will produce the
same cipher text, provided that the key and
initialization vector used are consistent. However,
when encrypting entire columns of an existing

database, depending on the data migration method,
database administrators might have to drop existing
primary keys, as well as any other associated
reference keys, and re-create them after the data is
encrypted. For this reason, encrypting a column that
is part of a primary key constraint is not
recommended if support for accelerated index-
search on encrypted data is not used. Since primary
keys are automatically indexed there are also
performance considerations, particularly if support
for accelerated index-search on encrypted data is not
used. A foreign key constraint can be created on an
encrypted column. However, special care must be
given during migration. In order to convert an
existing table to one that holds encrypted data, all
the tables with which it has constraints must first be
identified. All referenced tables have to be converted
accordingly. In certain cases, the referential
constraints have to be temporarily disabled or
dropped to allow proper migration of existing data.
They can be re-enabled or recreated once the data
for all the associated tables is encrypted. Due to this
complexity, encrypting a column that is part of a
foreign key constraint is not recommended, if
automated deployment tools are not used. Unlike
indexes and primary keys, though, encrypting
foreign keys generally does not present a
performance impact.

5.3 Indexing of encrypted columns

Indexes are created to facilitate the search of a
particular record or a set of records from a database
table. Carefully plan before encrypting information
in indexed fields. Look-ups and searches in large
databases may be seriously degraded by the
computational overhead of decrypting the field
contents each time searches are conducted if
accelerated database indexes are not used. This can
prove frustrating at first because most often
administrators index the fields that must be
encrypted – social security numbers or credit card
numbers. New planning considerations will need to
be made when determining what fields to index if
accelerated database indexes are not used. Indexes
are created on a specific column or a set of columns.
When the database table is selected, and WHERE
conditions are provided, the database will typically
use the indexes to locate the records, avoiding the
need to do a full table scan. In many cases searching
on an encrypted column will require the database to
perform a full table scan regardless of whether an
index exists. For this reason, encrypting a column
that is part of an index is not recommended, if
support for accelerated index-search on encrypted
data is not used.

A PRACTICAL IMPLEMENTATION OF TRANSPARENT ENCRYPTION AND SEPARATION OF DUTIES IN
ENTERPRISE DATABASES - Protection against External and Internal Attacks on Databases

151

5.4 Use of Initialization Vectors

When using CBC mode of a block encryption
algorithm, a randomly generated initialization vector
is used and must be stored for future use when the
data is decrypted. Since the IV does not need to be
kept secret it can be stored in the database. If the
application requires having an IV per column, which
can be necessary to allow for searching within that
column, the value can be stored in a separate table.
For a more secure deployment, but with limited
searching capabilities if support for accelerated
index-search on encrypted data is not used, an IV
can be generated per row and stored with the data. In
the case where multiple columns are encrypted, but
the table has space limitations, the same IV can be
reused for each encrypted value in the row, even if
the encryption keys for each column are different,
provided the encryption algorithm and key size are
the same.

6 IMPLEMENTING ENCRYPTION
KEY MANAGEMENT

One of the essential components of encryption that
is often overlooked is key management, which refers
to the way cryptographic keys are generated and
managed throughout their life. Because
cryptography is based on keys that encrypt and
decrypt data, your database protection solution is
only as good as the protection of your keys. Security
depends on two factors: where the keys are stored
and who has access to them. When evaluating a data
privacy solution, it is essential to include the ability
to securely generate and manage keys. This can
often be achieved by centralizing all of the tasks of
key management on a single platform and
effectively automating administrative key
management tasks, which will lead to both
operational efficiency and reduced cost of
management. Data privacy solutions should also
include an automated and secure mechanism for key
rotation, replication, and backup.
The most important problem in using
encryption/decryption is key management
implementation across all database platforms in an
enterprise. Today’s complex and performance
sensitive environments require the use of a
combination of software cryptography and
specialized cryptographic chipsets, HSM, to balance
security, cost, and performance needs. One easy
solution is to store the keys in a restricted database
table or file. But, all administrators with privileged
access could also access these keys, decrypt any data

within your system and then cover their tracks. Your
database security in such a situation is based not on
industry best practice, but based on an honour code
with your employees. If your human resources
department locks employee records in file cabinets
where one person is ultimately responsible for the
keys, shouldn’t similar precautions be taken to
protect this same information in its electronic
format? All fields in a database do not need the same
level of security. With tamper-proof HSM and
software implemented, the encryption being
provided by different encryption processes utilizing
at least one process key in each of the categories
master keys, key encryption keys, and data
encryption keys, the process keys of different
categories being held in the encryption devices;
 wherein the encryption processes are of at least
two different security levels, where a process of a
higher security level utilizes the tamper-proof HSM
device to a higher degree than a process of a lower
security level; wherein each data element which is
to be protected is assigned an attribute indicating the
level of encryption needed, the encryption level
corresponding to an encryption process of a certain
security level. With such a system it becomes
possible to combine the benefits from HSM and
software based encryption. The software-
implemented device could be any data processing
and storage device, such as a personal computer.
The tamper-proof HSM device provides strong
encryption without exposing any of the keys outside
the device, but lacks the performance needed in
some applications. On the other hand the software-
implemented device provides higher performance in
executing the encryption for short blocks, in most
implementations (Lindemann, 2001), but exposes
the keys resulting in a lower level of security.

7 CONCLUSION

This paper presents experience from many years of
research and practical use of cryptography in
database security. We use the key concepts of
security dictionary, type transparent cryptography
and propose solutions on how to transparently store
and search encrypted database fields. Database
attacks are on the rise even as the risks of data
disclosure are increasing. Several industries must
deal with legislation and regulation on data privacy.
In this environment, your security planning must
include a strategy for protecting sensitive databases
against attack or misuse by encrypting key data
elements. Whether you decide to implement
encryption inside or outside the database we
recommend that encrypted information should be
stored separately from encryption keys, strong

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

152

authentication should be used to identify users
before they decrypt sensitive information, access to
keys should be monitored, audited and logged,
Sensitive data should be encrypted end-to-end, while
in transit in the application and while in storage in
enterprise databases. A forthcoming paper will
discuss performance aspects, use of HSM,
transparent storage and search of encrypted database
fields in more detail.

REFERENCES

Adam, 1989. Security-control methods for statistical
databases. ACMComputing Surveys, 21(4):515– 556,
Dec. 1989.

Agrawal, 2001. Watermarking relational
databases. In 28th Int’l Conference on Very Large

Databases, Hong Kong, China.
Agrawal, 2002. Hippocratic databases. In Proc. of the 28th

Int’l Conference on Very Large Databases, Hong
Kong, China, August 2002.

Agrawal, 2004. Implementing P3P using database
technology. In Proc. of the 19th Int’l Con-ference on
Data Engineering, Bangalore, India.

Agrawal, 2003. Path-based preference language for P3P.
In Proc. of the 12th Int’l World Wide Web
Conference, Budapest, Hungary, May 2003.

Denning, 1997. Cryptography and Data Security.
Addison-Wesley Publishing Company, Inc., 1982.

Dierks, 1996. The TLS Protocol - Version 1.0, Internet-
Draft. November 1997.

Freier, 1997. The SSL Protocol Version 3.0, Internet-
Draft. November 1996.

Garnkel, 1997. Web Security & Commerce. O'Reilly &
Associates, Inc., 1997.

Guthery, 1998. Smart Card Developer's Kit. Macmillan
Technical Publishing, 1998.

Informix, 1994. Informix-Online Dynamic Server
Administrator's Guide, Version 7.1. INFORMIX
Software, Inc., 1994.

Koch, 1997. The Complete Reference. Osborne/McGraw-
Hill, 1997.

Lagarias, 1990. Pseudo-random number generators in
cryptography and number theory. InCryptology and
Computational Number Theory, pages 115{143.
American Mathematical Society, 1990.

Lindemann, 2001. Improving DES Hardware Throughput
for Short Operations, IBM Research Report, 2001.

Lunt, 1993. A survey of intrusion detection techniques.
Computer & Security, 12(4), 1993.

NIST, 1993. National Bureau of Standards FIPS
Publication 180. Secure Hash Standard, 1993.

NIST, 1977. National Bureau of Standards FIPS
Publication 46. Data Encryption Standard (DES),
1977.

Neuman, 1994. Kerberos: An authentication service for
computer networks. IEEE Communications,
32(9):33{38, 1994.

San Jose Mercury News, 2000. Web site hacked; cards
being canceled, Jan. 20, 2000.

Oracle, 1999. Technical White Paper. Database Security in
Oracle8i, November 1999.

Rankl, 1997.Smart Card Handbook. John Wiley & Sons
Ltd, 1997.

Rivest, 1992. The MD5 Message-Digest Algorithm,
RFC1321 (I). April 1992.

Rivest, 1978. A method for obtaining digital signature and
public key cryptosystems. Communications of the
ACM, 21:120{126, February 1978.

Rosenberry, 1992. Understanding DCE. O'Reilly &
Associates, Inc.,1992.

Shamir, 1979. How to share a secret. Communication of
the ACM, 22(11):612-613, 1979.

Stinson, 1995. Cryptography; Theory and Practice. CRC
Press, Inc., 1995.

A PRACTICAL IMPLEMENTATION OF TRANSPARENT ENCRYPTION AND SEPARATION OF DUTIES IN
ENTERPRISE DATABASES - Protection against External and Internal Attacks on Databases

153

