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Abstract: Software reliability is directly related to the number and time of occurrence of software failures. Thus, if we 
were able to reveal and characterize the behavior of the evolution of actual software failures over time then 
we could possibly build more accurate models for estimating and predicting software reliability. This paper 
focuses on the study of the nature of empirical software failure data via a nonparametric statistical 
framework. Six different time-series data expressing times between successive software failures were 
investigated and a random behavior was detected with evidences favoring a pink noise explanation. 

1 INTRODUCTION 

System reliability is one of the major components 
identified by the ISO9126 standard for assessing the 
overall quality of software. More specifically, 
software reliability can be evaluated on the 
following factors: 

• Maturity: Attributes of software that bear on 
the frequency of failure by faults in the 
software (ISO/IEC 9126-1:2001) 

• Fault tolerance: Attributes of software that 
bear on its ability to maintain a specified level 
of performance in cases of software faults or 
of infringement of its specified interface 
(ISO/IEC 9126-1:2001)   

• Crash frequency: The number of the system 
crashes per unit of time 

• Recoverability: Attributes of software that 
bear on the capability to re-establish its level 
of performance and recover the data directly 
affected in case of a failure and on the time 
and effort needed for it (ISO/IEC 9126-1:2001) 

The standard definition of reliability for software 
is the probability of normal execution without failure 
for a specified interval of time (Musa, 1999; Musa, 
Iannino and Okumoto, 1987). Going a step further 
we can state that reliability varies with execution 
time and grows as faults underlying the occurred 
failures are uncovered and corrected. Therefore, 
measuring and studying quantities related to 

software failure can lead to improved reliability and 
customer satisfaction. There are four general ways 
(quantities) to characterize (measure) failure 
occurrences (Musa, 1999): 

• Time of failure 
• Time interval between failures 
• Cumulative failures experienced up to a given 

time ti 
• Failures experienced in a time interval ti 

The majority of recent research studies focus on 
software reliability assessment or prediction using 
the failure-related metrics mentioned above (e.g. 
Patra, 2003; Tamura, Yamada and Kimura, 2003), 
with very few exceptions that experiment with other 
alternatives, like Fault Injection Theory (e.g. Voas 
and Schneidewind, 2003), Genericity (Schobel-
Theuer, 2003), etc. 

As Musa points out (Musa, 1999), the quantities 
of failure occurrences are random variables in the 
sense that we do not know their values in a certain 
time interval with certainty, or that we cannot 
predict their exact values. This randomness, though, 
does not imply any specific probability distribution 
(e.g. uniform) and it is sourced on one hand by the 
complex and unpredictable process of human errors 
introduced when designing and programming, and 
on the other by the unpredictable conditions of 
program execution. In addition, the behavior of 
software is affected by so many factors that a 
deterministic model is impractical to catch. 
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The aim of this paper is to study the nature and 
structure of software failure data using a set of 
empirical software failure dataseries and a robust 
nonparametric statistical method. The ReScaled 
range (R/S) analysis, originated by Hurst (Hurst, 
1956), looks deep in a time-series dataset and 
provides strong evidences of either an underlying 
deterministic structure, or a random behavior. In the 
former case it can define the time pattern of the 
deterministic behavior, while in the latter it reveals 
the nature of randomness (i.e. the colour of noise). 

The rest of the paper is organized as follows: 
Section 2 outlines the basic concepts of the 
nonparametric framework used to analyse the 
available datasets. Section 3 describes briefly the six 
software failure time-series data used and provides a 
short statistical profile for the data involved. Section 
4 concentrates on the empirical evidence that results 
from the application of R/S analysis on the different 
software projects failure data. In addition, this 
section presents our attempt to investigate through 
R/S Analysis the nature of software failure data 
produced by two well-known and widely used 
Software Reliability Growth Models, namely the 
Musa Basic model and the logarithmic Poisson 
Musa-Okumoto execution time model, and 
compares results with those derived using the 
empirically collected data. Finally, section 5 sums 
up the empirical findings, draws the concluding 
remarks and suggests future research steps. 

2 THE R/S ANALYSIS  

Technically, the origins of R/S analysis are related to 
the “T to the one-half rule”, that is, to the formula 
describing the Brownian motion (B.M.): 

   R = T 0.5               (1) 
where R is the distance covered by a random particle 
suspended in a fluid and T a time index. It is obvious 
that (1) shows how R is scaling with time T in the 
case of a random system, and this scaling is given by 
the slope of the log(R) vs. log(T) plot, which is equal 
to 0.5. Yet, when a system or a time series is not 
independent (i.e. not a random B.M.), (1) cannot be 
applied, so Hurst gave the following generalisation 
of (1) which can be used in this case: 

  (R/S)n = c nH         (2) 
where (R/S)n is the ReScaled range statistic 
measured over a time index n, c is a constant and H 
the Hurst Exponent, which shows how the R/S 
statistic is scaling with time. 

The objective of the R/S method is to estimate 
the Hurst exponent, which, as we shall see, can 

characterise a time series. This can be done by 
transforming (2) to: 

 log (R/S)n = log(c) + H log(n)        (3)  
and H can be estimated as the slope of the log/log 
plot of (R/S)n vs. n.  

Given a time series {Xt : t=1,...,N}, the R/S 
statistic can be defined as the range of cumulative 
deviations from the mean of the series, rescaled by 
the standard deviation. The analytical procedure to 
estimate the (R/S)n values, as well as the Hurst 
exponent by applying (3), is described in the 
following steps :  
Step 1: The time period spanned by the time series 
of length N, is divided into m contiguous sub-periods 
of length n such that mn = N. The elements in each 
sub-period Xi,j have two subscripts, the first (i=1,..,n) 
to denote the number of elements in each sub-period 
and the second (j=1,...,m) to denote the sub-period 
index. For each sub-period j the R/S statistic is 
calculated, as: 
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where sj is the standard deviation for each sub-
period.   
In (4), the k deviations from the mean of the sub-
period have zero mean; hence the last value of the 
cumulative deviations for each sub-period will 
always be zero. Due to this, the maximum value of 
the cumulative deviations will always be greater or 
equal to zero, while the minimum value will always 
be less or equal to zero. Hence, the range value (the 
bracketed term in (4)), will always be non-negative.  
Normalizing (rescaling) the range is important since 
it permits diverse phenomena and time periods to be 
compared, which means that R/S analysis can 
describe time series with no characteristic scale.   
Step 2: The (R/S)n, which is the R/S statistic for time 
length n, is given by the average of the (R/S)j values 
for all the m contiguous sub-periods with length n, 
as : 
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Step 3: Equation (5) gives the R/S value, which 
corresponds to a certain time interval of length n. In 
order to apply equation (3), steps 1 and 2 are 
repeated by increasing n to the next integer value, 
until n = N/2, since, at least two sub-periods are 
needed, to avoid bias.  
From the above procedure it becomes obvious that 
the time dimension is included in the R/S analysis by 
examining whether the range of the cumulative 
deviations depends on the length of time used for the 
measurement. Once (5) is evaluated for different n 
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periods, the Hurst exponent can be estimated 
through an ordinary least square regression from (3).  

The Hurst exponent takes values from 0 to 1 
(0≤H≤1). Gaussian random walks, or, more 
generally, independent processes, give H = 0.5. If 
0.5 ≤ H ≤1, positive dependence is indicated, and the 
series is called persistent or trend reinforcing, and in 
terms of equation (1), the system covers more 
distance than a random one. In this case the series is 
characterised by a long memory process with no 
characteristic time scale. The lack of characteristic 
time scale (scale invariance) and the existence of a 
power law (the log/log plot), are the key 
characteristics of a fractal series. If 0 ≤H ≤0.5, 
negative dependence is indicated, yielding anti-
persistent or mean-reverting behavior1. In terms of 
equation (1), the system covers less distance than a 
random series, which means that it reverses itself 
more frequently than a random process.  

A Hurst exponent different from 0.5 may 
characterise a series as fractal. However a fractal 
series might be the output of different kinds of 
systems. A “pure” Hurst process is a fractional 
Brownian motion (Mandelbrot and Wallis, 1969), 
also known as biased random walk or fractal noise 
or coloured noise, that is, a random series the bias of 
which can change abruptly but randomly in direction 
or magnitude.  

A problem, though, that must be dealt is the 
sensitivity of R/S analysis to short-term dependence, 
which can lead to unreliable results (Aydogan and 
Booth, 1988; Booth and Koveos, 1983; Lo, 1991). 
Peters (Peters, 1994) shows that Autoregressive 
(AR), Moving Average (MA) and mixed ARMA 
processes exhibit Hurst effects, but once short-term 
memory is filtered out by an AR(1) specification, 
these effects cease to exist. On the contrary, ARCH 
and GARCH models do not exhibit long term 
memory and persistence effects at all. Hence, a 
series should be pre-filtered for short-term linear 
dependence before applying the R/S analysis. In our 
analysis, we use partial autocorrelograms and 
Schwartz´s information criterion to indicate the best-
fit time series linear model to our data. 

3 SOFTWARE FAILURE DATA 

Before moving to applying R/S Analysis on the 
available software failure datasets, let us examine 
some basic features of the data: Six different 
                                                                 
1 Only if the system under study is assumed to have a 

stable mean 

datasets were used in this paper, which were 
collected throughout the mid 1970s by John Musa, 
representing projects from a variety of applications 
including real time command and control, word 
processing, commercial, and military applications 
(DFC, www.dacs.dtic.mil): Project 5 (831 total 
samples), SS1B (375 total samples), SS3 (278 total 
samples), SS1C (277 total samples), SS4 (196 total 
samples) and SS2 (192 total samples).  

R/S analysis can be applied only on a 
transformation of the original data samples which 
produces the so-called return series eliminating any 
trend present. This transformation is the following: 
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where St and St-1 are the failure samples (more 
specifically, the elapsed times form the previous 
failure measured in seconds) at times (t) and (t-1) 
respectively (discrete sample number) and rt is the 
estimated return sample. 

As mentioned in the previous section, in order to 
remove the short-term memory all return series were 
filtered with an AR(1) model. A short statistical 
profile is depicted in Table 1, where one can easily 
discern that the series under study present slight 
differences from the normal distribution: Left 
skewness is evident for all data series, while, as 
regards kurtosis, Project 5 samples present 
leptokurtosis with the rest series being less 
concentrated around the mean compared to the 
normal distribution. Figure 1 plots the data samples 
belonging to Project 5, with the left figure showing 
the evolution of failures according to the elapsed 
time and the right figure presenting the de-trended 
return series. The rest of the datasets present a 
similar graphical representation, thus their figures 
were omitted due to space limitations. 

The statistical profile of the dataseries given 
above suggests a general resemblance with the 
normal (Gaussian random) distribution, but slight 
differences were also observed. The main questions, 
though, remain: What is the actual nature of this 
data? Is there a random component in the behavior 
of these series? The answers will be provided by 
closely examining the results derived from the 
application of R/S Analysis described in the next 
section. 
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4 EMPIRICAL EVIDENCE  These Hurst exponent values indicate anti-
persistency, that is, all return series present negative 
dependence or antipersistence, yielding a mean-
reverting behavior since the data fluctuate around a 
reasonably stable mean (no trend or consistent 
pattern of growth). In terms of equation (1), each of 
the six systems covers less distance than a random 
series, which means that it reverses itself more 
frequently than a random process.  

4.1 R/S Analysis Results on Software 
Reliability Data Series 

The results of R/S analysis on the six failure return 
series are listed in Table 2. The Hurst exponent 
estimated has a low value ranging from 0.27 (Project 
5 dataset) to 0.37 (SS1C dataset).   

AR(1)-filtered returns for the "Project 5" software 
failure dataset
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Figure 1: Project 5 sample series: (a) Time intervals between successive failures (b) AR(1) 

 
 

Table 1: Statistical description of the six software failure returns series data (AR(1)-filtered samples) 

 Project 5 SS1B SS3 SS1C SS4 SS2 
Sample size 829 373 276 275 194 191 

Average 5.55E-18 2.97E-18 -1.20E-18 -5.85E-18 1.54E-17 3.95E-17 
Median 0.024 0.073 0.075 0.084 0.121 -0.027 

Variance 1.150 0.871 1.936 0.988 1.421 1.176 
Standard deviation 1.072 0.933 1.391 0.993 1.192 1.084 

Minimum -4.963 -3.120 -5.056 -3.094 -4.127 -2.634 
Maximum 5.165 2.879 3.470 4.786 2.832 3.268 

Range 10.129 6.000 8.526 7.881 6.960 5.902 
Lower quartile -0.479 -0.536 -0.761 -0.473 -0.699 -0.671 
Upper quartile 0.597 0.619 0.942 0.563 0.823 0.712 

Skewness -0.616 -0.263 -0.315 -0.034 -0.432 -0.131 
Kurtosis 4.082 0.457 0.180 2.327 0.713 -0.019 

 
Table 2: Hurst estimates and test of significance against two random alternatives for the AR(1)-filtered 

returns series of the six different Musa’s software failure datasets 

IID-null 
Hypothesis 

Gaussian-null 
Hypothesis Dataset Hurst 

Exponent 
Mean Hurst Significance Mean Hurst Significance 

Project5 0.27 0.56 0.1% 0.56 0.1% 
SS1B 0.31 0.58 0.1% 0.58 0.1% 
SS3 0.28 0.59 0.1% 0.60 0.1% 

SS1C 0.37 0.59 0.1% 0.59 0.1% 
SS4 0.33 0.60 0.1% 0.60 0.1% 
SS2 0.33 0.60 0.1% 0.60 0.1% 
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A significant problem of R/S analysis is the 
eva

lts obtained using the R/S 
ana

m null, the H 

est against the iid null, the same procedure is 

tion of the R/S analysis results was 
per

resembles the one observed for random, non-white 

laws, which essentially is a function of 
freq

b is the spectral component and H the 
Hur t. T e can relate pi
to a

can conclude 
tha

nalysis and Software 
ystem 

Havi ults thus far and the evidences 
suggesting a pink noise explanation for the behavior 

luation of the H exponent from a statistical point 
of view. Specifically, we should be able to assess 
whether an H value is statistically significant 
compared to a random null, i.e. to the H exponent 
exhibited by an independent random system. Peters 
(1994) shows that under the Gaussian null, a 
modification of a formula developed by Anis and 
Lloyd (1976) allows for hypothesis testing by 
computing E(R/S)n and E(H), the expected variance 
of which will depend only on the total sample size 
N, as Var(H)=1/N. However, if the null is still iid 
randomness but not Gaussianity, the formal 
hypothesis testing is not possible. To overcome this 
problem we used bootstrapping (Efron, 1979) to 
assess the statistical significance of the H exponents 
of our series, against both the Gaussian and the iid 
random null hypotheses.  

The validity of the resu
lysis may be assessed as follows:  

(A) To test against the Gaussian rando
exponent from 5000 random shuffles of a Gaussian 
random surrogate, having the same length, mean and 
variance with our return series is calculated and 
compared to the test statistic i.e. the actual H 
exponent of our series. Since the actual H statistic 
was found to be lower than 0.5 and anti-persistence 
is possible, the null can be formed as: H0 : H = HG 
and the alternative is H1 : H < HG. In this case, the 
significance level of the test is constructed as the 
frequency with which the pseudostatistic HG is 
smaller than or equal to the actual statistic and the 
null is rejected if the significance level is smaller 
than the conventional rejection levels of 1%, 2.5% 
or 5%. 
(B) To t
followed but this time we randomise the return 
series tested to produce 5000 iid random samples 
having the same length and distributional 
characteristics as the original series. In this case, 
rejection of the null means that the actual H 
exponent calculated from the original series is 
significantly smaller from the one calculated from an 
iid random series. Hence, this is also a test for non-
iid-ness.  

Valida
formed as described above, with both tests being 

applied to the available dataseries. As Table 2 
shows, both hypotheses are rejected since the 
significance level of the test in both cases was lower 
than 1%. This means that our Hurst estimates are 
statistically significant against both the Gaussian and 
the iid-null hypotheses suggesting an underlying 
structure that deviates from normal distribution and 

noise. 
Fractional noise scales according to inverse 

power 
uency f, and follows the form f-b. This is a 

typical characteristic of fractals, which have power 
spectra that follows the inverse power law as a result 
of the self-similar nature of the system (Peters, 
1994). For white noise (Gaussian, random process)  
b = 0, that is, the power spectra is not related to 
frequency. There is no scaling law for white noise. 
When white noise is integrated, then b = 2, the 
power spectra for brown noise. If 0 < b < 2 we have 
pink noise, while when b > 2 there is black noise. 
Mandelbrot and Van Ness (Mandelbrot and Van 
Ness, 1968) postulated, and recently Flandrin 
(Flandrin, 1989) rigorously defined, the following 
equation that relates fractional noises with the Hurst 
exponent: 

  b = 2H + 1          (7) 
where 
st exponen herefore, w nk noise 
ntipersistence: H < 0.50, 1 ≥ b > 2. 
According to the foregoing notions, and based 

on the results of the R/S analysis, we 
t the six software failure data series are random in 

nature, thus confirming the findings and supporting 
the arguments of various researchers (Musa, 1999; 
Musa and Iannino, 1990). Moving a step forward, 
we may state that the main conclusion drawn is that 
software failure empirical behavior resembles that of 
pink noise. 

4.2 R/S A
Reliability Growth Models S
Variables  

ng in mind the res

of the empirical software failure data, we will 
attempt to study the nature of the data produced by 
known Software Reliability Growth Models 
(SRGM) and compare results. Several studies (Dale, 
1982; Ramamoorthy and Bastani, 1982; Farr, 1996; 
Jones 1991) report the superiority of the Musa Basic 
(MB) and the logarithmic Poisson Musa-Okumoto 
(MO) execution time models (Musa, 1975; Musa 
and Okumoto, 1984) over a variety of SRGM widely 
applied to different actual projects and computer 
programs. Therefore, we decided to use those two 
models to produce new software failure time 
samples and apply R/S analysis to investigate the 
nature of the produced dataseries, and hence the type 
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of software failure behavior each model is capable to 
capture. Let M(t) represent the number of failures of 
the particular software package by time t, (t≥0). It is 
clear that M(0)=0. M(t) cannot be easily calculated 
because it corresponds to a physical quantity and can 
only be measured as the software is tested. Software 
Reliability Growth Models are trying to model the 
behavior of M(t) with the statistical function µ(t). 
The mean value function µ(t) of a SRGM represents 
the number of failures expected to occur up to time 
moment t, (t≥0): 

  Ntct )()( =µ           (8) 
where c(t) is the time variant test coverag

func N is the number 
hav

e 
tion and of faults expected to 

e been exposed at full coverage. This is 
distinguished from the expected number of faults to 
be detected after infinite testing time, perfect testing 
and fault detection coverage, which can be denoted 
as N̂ . Equations (9) and (10) describe the test 
coverage function for the MB and MO models 
respectively: 

 MB : fKBtetc −−=1)(          (9) 
 MO : )1ln()( ttc φ+=        (10) 

where φ is e s the so-the failure rate p r fault, K i
call sure ratio, B is a fault r
fac

ed fault expo eduction 
tor and f can be calculated as the average object 

instruction execution rate of the computer r, divided 
by the number of source code instructions of the 
application under testing IS, times the average 
number of object instructions per source code 
instruction, Qx (Musa, 1999): 

  
xS QI

rf =          (11) 

Both M(t) q nc he form  and µ(t) are se ue es of t
0,1,2, … with M(0)=0 and µ(0)=0. Assuming that as 
t 

ime t as t app

positive variable i, (i=0,1,2...). Thus, we 
hav

 
Su g c(ti) in (9) and (10) and solving for ti we 

e:  

approaches infinity µ(t) becomes a good 
approximation of M(t) (the number of failures that 
has been realized up to time t) we will have µ(t) 
taking by definition integer positive values (since 
µ(t) corresponds to the expected number of failures 
experienced by time t; hence [ ]K,2,1,0)( ∈tµ ). Both 
SRGMs (MB and MO) converge to the number of 
failures being realized up to t roaches 
infinity is generally acceptable. Therefore, our 
assumption that M(t) will be approached by  µ(t) as t 
approaches infinity. But µ(t), which characterizes a 
SRGM, is given as a model property, thus we should 
try to reverse engineer the process of failure 
occurrence and artificially reproduce the “ failure 
occurrences”. The failure reproduction process is as 
follows: 

First we replace µ(t) in equation (8) with an 
integer 

e: 
  i=c(ti)N         (12) 
bstitutin
hav

MB: ⎟
⎞

⎜
⎛ −−=⇔−= − itNei fKBti 1ln1)1(   (13) 

⎠⎝ NfKBi

MO: ⎟
⎠
⎞⎜

⎝
⎛ −=⇔+= 11)1ln( N

i

ii etNti
ϕ

φ      

me variable ti represents discrete fa
moments, i.e. the time elapsed from the start of this 
pro

  (14) 

Ti ilure time 

cess (t0 for i=0) until the occurrence of the ith 
failure (t1 for i=1, t2 for i=2 etc.).  

Consequently we can calculate times between 
successive failures as:  
  

escribed above, we 
duc artific es d ta via e

13 

failure dataseries were thus 
g

5 CONCLUSIONS – DISCUSSION 

The nature of empirical software reliability time 
series data was investigated in this paper using a 

 ∆ti = ti - ti-1.       (15) 
Following the analysis d

repro ed ial failure tim a quations 
to 15, for which we used the following parameter 

values suggested by Musa (1975, 1999) and the 
Defense Software Collaboration (DFC, 
www.dacs.dtic.mil):  

 φ = 7.8 E-8,   f = 7.4 E-8,   K = 4.2 E-7,  B= 0.955 
Two new software 

enerated, with their size being equal to that of 
Project 5 (829 samples). R/S analysis was then 
applied on the AR(1)-filtered returns of the 
artificially reproduced series. The Hurst exponent 
estimations indicate that the MB-based reproduced 
series exhibit long-memory or persistent effects 
(H=0.9), while the corresponding MO-based sample 
data is characterized as antipersistent (H=0.2). These 
findings are very interesting considering the fact that 
they suggest a strong diversification between two 
models that are both used as software reliability 
growth estimators, and hence as software failure 
predictors. The similar antipersistent 
characterization of the six software failure dataseries 
under study and the MO-based generated data is also 
consistent with the findings of other researchers who 
report the superiority of the MO model in actual 
software projects. It is therefore natural that this 
model proved to be more successful compared to the 
rest of the SRGMs simply because its underlying 
modeling nature is similar to the behavior observed 
with actual empirical data. 
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robust nonparametric statistical framework called
ReScaled range (R/S) analysis. This type of analysis 

 

ing process should play a central role in the 
pla

ast five years. We are trying to 
bui

is able to detect the presence (or absence) of long-
term dependence, thus characterizing the system 
under study as persistent / deterministic (or mean-
reverting / antipersistent).  

The results of the R/S analysis on six different 
software failure dataseries suggested a random 
explanation, revealing strong antipersistent behavior. 
The validity of these results was tested against the 
Gaussian and iid-null hypotheses and both 
alternatives were rejected with highly significant 
statistical values. Our findings are consistent with 
other reports in the international literature that 
comment on the random nature of software failures 
in terms of number and time of occurrence. Going a 
step further and relating the values of the Hurst 
exponent estimated via the R/S analysis with colored 
noise, we concluded that the six series examined are 
better described by a pink noise structure. 

Two well known and successful software 
reliability growth models, namely the Musa Basic 
(MB) and the Musa-Okumoto (MO) logarithmic 
model, were used to reproduce sample series of 
times between failures. The new series were also 
tested with R/S analysis and found to be long-term 
dependent in the case of the MB data and 
antipersistent in the case of the MO series. The latter 
finding justifies the superiority of the MO model 
over a variety of other SRGM tested on a number of 
actual projects: The MO model is ruled by the same 
structure as the empirical software failure data (i.e. 
mean reverting), thus it can capture the actual 
behavior of software failures better. 

The framework for statistical characterization of 
empirical software failure data proposed by the 
present work can assist towards the identification of 
possible weaknesses in the assumptions of SRGMs 
and suggest the most suitable and accurate model to 
be used for controlling the reliability level of the 
software product under development. 

One thing that remains to investigate, and this 
will be the focus of our future work, is the high 
value of the Hurst exponent for the MB series. 
Chaotic systems have also Hurst exponents H > 0.5, 
and in chaotic terms long memory effects 
correspond to sensitive dependence on initial 
conditions. Actually, the latter property combined 
with fractality characterises chaotic systems. Pure 
chaotic processes have Hurst exponents close to 1. 
Our future research will concentrate on employing 
R/S analysis to detect the existence of cycles (i.e. 
repeating patterns) in the MB series and will attempt 
to characterise it in terms of periodicity: Cycles 

detected can be periodic or non-periodic in the sense 
that the system has no absolute frequency. Non-
periodic cycles can be further divided to statistical 
cycles and chaotic cycles. Fractal noises exhibit 
statistical cycles, i.e. cycles with no average cycle 
length.  

Software Reliability is cited by the majority of 
users as the most important feature of software 
products.  Hence, the software reliability 
engineer

nning and control of software development 
activities (Musa, 1999) to ensure that product 
reliability meets user needs, to reduce product costs 
and to improve customer satisfaction. In this context, 
it is quite important to record and study the time of 
fault occurrences, their nature and the time spent on 
correction, throughout the design and 
implementation phases, as well as during testing 
activities. This data can prove very useful when 
trying to model the reliability behavior of the 
software product being developed and it can also 
play a central role to the empirical verification of 
Software Reliability Growth Models (SRGMs). 
With such data available it is easier to select suitable 
reliability models for estimating the time at which 
the software product will have reached a desirable 
level of reliability, and/or to devise methods to 
decrease that time. As we mentioned before, the 
datasets used in this study were gathered by John 
Musa around mid seventies.  Although the datasets 
are quite old, we believe that their analysis is a good 
starting point for studying the behavior of software 
failure occurrences.  

Currently we are making efforts towards 
gathering synchronous failure data, that is, data from 
systems that have been developed and are in 
operation during the l

ld a database with failure data from various 
modern application domains and operating systems. 
In our days, where most computer applications and 
operating systems are multitasking and/or 
distributed, it is very interesting to elaborate on how 
to gather accurate failure data. This problem, the 
definition of the right metrics to assess software 
reliability, has a particular interest due to the fact 
that software products nowadays include some new 
and unique characteristics, such as distribute 
computing, mobility and web accessibility / 
immediacy. Once this reliability data gathering is 
accomplished, we will be able to compare the 
characteristics of modern reliability data with those 
of the datasets developed by Musa in the 70ies, and 
investigate whether the random nature of software 
failure occurrences revealed by the R/S analysis 
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holds true for modern software systems as well. 
Furthermore, we will attempt to investigate whether 
there is a relationship between the datasets used and 
the results obtained, i.e. whether certain application 
domains are more error prone than others. 
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