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Abstract: In this paper, we present a current cooperative work involving different institutes around the world. Our aim 
is to provide an online Inductive Logic Programming tool. This is the first step in a more complete structure 
for enabling e-technology for machine learning and bio-informatics. We describe the main architecture of 
the project and how the data will be formatted for being sent to the ILP machinery. We focus on a biological 
application (yeast fermentation process) due to its importance for high added value end products. 

1 INTRODUCTION 

Our main aim is to provide a web-based machine 
learning application. On one hand, we have at our 
disposal a powerful inductive machinery 
(inoue2004), enjoying interesting theoretical 
properties (soundness, completeness) and whose 
current version is implemented in JAVA. On the 
other hand, there is a considerable effort made by 
the biologists to understand and then to control a 
well known bioprocess, namely yeast fermentation. 
None of the available mathematical models (mainly 
based on dynamic differential equations) allows  a 
precise understanding. But the possibility to 
understand the biological processes leading to high 
added value end-products like vitamins, 
antibiotics,… is highly challenging. For instance, it 
has recently been shown that the human yeast  carry 
out synthetically the different tasks of producing the 
human biosynthesis protein. The recent results show 
that a "humanised yeast" could simplify drug 
manufacture by  introducing a human gene inside 
yeast chromosome. Since yeast grow faster and need 
less tending than mammalian cells, it could be a 
solution to produce proteins cheaper and easier. 

More than that, there is today a huge effort to 
imagine alternative to classical petrol-based fuel. 
Ethanol is one of the possible solution. Several 
governments encourage biologists to focus on bio-
processes leading to ethanol as side product of a 
whole process. The more the final percentage of 
ethanol, the more the fermentation process is 
successful. It makes no doubt that, in a sustainable 
development perspective, this research topics has to 
be more deeply investigated. But, as previously 
explained, it is difficult to produce these proteins to 
a commercial scale due to the incapacity of the 
biologist to keep the cell on a specific pathway. Due 
to the lack of relevant models, micro-biologists are 
not able to dynamically tune the relevant parameters 
insuring a high percentage of  ethanol output. 

In this project, our aim is to apply techniques 
issued from the field of Inductive Logic 
Programming to complement the standard 
mathematical tools. We hope that our inductive 
machinery will be able to highlight the relevant 
parameters, and more than that, to provide simple 
explanations in a logical form. Not only, we want to 
send the output of the yeast fermentation observation 
to an inductive machine, but we also focus on the 
possibility to send online the data to the ILP 
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machine. In this paper, we investigate the structure 
of our web-based application. 
 
The next section is devoted to a general presentation 
of the advantages e-technology can bring in the 
context of machine learning and especially in bio-
informatics. Section 3 briefly recall the main 
philosophy of inductive logic programming, as a 
sub-topic of machine learning. In section 4, we 
describe how we process the data, using XML as a 
backbone format, and we present the general 
architecture of our system. We conclude in section5. 

2 E-TECHNOLOGY 

E- Technology has made it possible to carry out lot 
of activities, previously locally achieved and are 
remotely performed. All these activities constitute 
what is usually called E-business. Government and 
organisation have come to realise the value of e-
technology hence such projects i.e. e-learning, e-
government, e-commerce, e-health are being 
implemented globally. In some sense, bio-
informatics aims to solve biological problems using 
computing methods. That is why we think it is 
essential to make bio-informatics benefit of these 
techniques because the bio-informatics definitions 
are changing in accordance with the development of 
new areas in science. BITE (UK), IRIT (France), 
LAAS (France) and NII (Japan) focus together on 
maturing technology to globalise development and 
research of bio-informatics.   

A global platform [farmer and al.2004], 
integrating grid computing, programming tools and 
data visualization technologies would enable 
scientists to gain greater insight into their research 
through direct comparisons of simulations, 
experiments and observations. Knowledge 
repositories maintaining relationships, concepts, and 
inference rules would  be accessible through such a 
global platform. Starting from these ideas, we 
develop a web-based architecture around a machine 
learning application : the target machinery is an 
Inductive Logic Programming (ILP) system and the 
target application is a bio-process leading to ethanol. 
The next sections are devoted to a more precise 
investigation of these two fields. 

But it should be clear that our scheme is open 
and that there is no conceptual obstacle to integrate 
other inductive engines as well as there is no 
obstacle to focus on other fields than bio-informatics 

Starting from these ideas, we develop a web-
based architecture around a machine learning 
application : the target machinery is an Inductive 
Logic Programming (ILP) system and the target 

application is a bio-process leading to ethanol. The 
next sections are devoted to a more precise 
investigation of these two fields. 
But it should be clear that our scheme is open and 
that there is no conceptual obstacle to integrate other 
inductive engines as well as there is no obstacle to 
focus on other fields than bio-informatics. 

3 INDUCTIVE LOGIC 
PROGRAMMING: A BRIEF 
REVIEW 

Inductive Logic Programming (ILP) is the part of 
machine learning where the underlying model is 
described in term of first-order logic. We briefly 
outline here the standard definitions and notations. 
Given a first-order language L with a set of variables 
Var, we build the set of terms Term, atoms Atom and 
formulas as usual. The set of ground terms is the 
Herbrand universe H and the set of ground atoms or 
facts is the Herbrand base B. A literal l is just an 
atom a (positive literal) or its negation ~a (negative 
literal).  A substitution s is an application from Var 
to Term with inductive extension to Atom. We 
denote Subst the set of ground substitutions. 

A clause is a finite disjunction of literals and a 
Horn clause is a clause with at most one positive 
literal. A Herbrand interpretation I is just a subset of 
B : I is the set of true ground atomic formulas and its 
complementary denotes the set of false ground 
atomic formulas. 

We can now proceed with the notion of logical 
consequence. Given A an atomic formula, I, s |- A 
means that s(A)  belongs to I. As usual, the 
extension to general formulas F uses 
compositionality. 
 

•  I  |- F  means  : forall s,  I, s  |- F  (we say I is 
a model of F). 

 
•   |-  F  means :  forall I,  I |-  F. 
 
•  F   |-  G  means that all models of F are 

models of G. 
 

Stated in the general context of first-order logic, 
the task of induction is to find a set of formulas H 
such that: 
 

B  U  H   |-  E 
Given a background theory B and a set of 
observations E (training set), where E, B and H here 
denote sets of clauses.  In this paper, E is always 
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given as positive examples, but negative examples 
can also be introduced as well.   
A set of formulas is here, as usual, considered as the 
conjunction of its elements. Of course, one may add 
two natural restrictions~: 

•  ~ (B  |-  E) since, in such a case, H  would not 
be necessary to explain E. 

•  ~ (B U H  |- ┴ ) : this means B U H is a 
consistent theory. 

In the setting of relational databases, inductive 
logic programming (ILP) is often restricted to Horn 
clauses and function-free formulas, E is just a set of 
ground facts. The main reason of this restriction is 
due to easiness for handling such formulas.  An 
extension to non-Horn clauses in B, E, and H is, 
however, useful in many applications. For example, 
indefinite statements can be represented by 
disjunctions with more than one positive literals, and 
integrity constraints are usually represented as 
clauses with only negative literals.  A clause-form 
example is also useful to represent causality.  The 
inductive machinery developed by (inoue, 2004) can 
handle all such extended classes.    

There are two other remarks on the logic for 
induction.   

• The distinction between B and E is a matter 
of taste.  In fact, some induction problems 
which often be seen in data mining do not 
distinguish between B and E, and extracts 
rules merely from the whole knowledge 
base.   However, the distinction is 
important from practical viewpoints [inoue 
and al2004].  When we already have our 
current knowledge B and then a new 
observation E is obtained to update B, this 
E should be assimilated into our knowledge 
in a way that E should change the current 
theory B into the augmented theory B U H 
such that B U H  |- E holds.  In this case, 
background knowledge is intrinsic to 
knowledge evolution.  We cannot realize 
continuous and incremental learning if we 
merely treat examples without any prior 
knowledge.   

• When we investigate induction deeper, 
some subtleties appear according to the 
properties of induction (e.g., whether the 
closed-world assumption is applied or not). 
These issues are out of the scope of this 
paper.  See [inoue and al. 2004].   

 
We give an example for an induction problem 

for the inductive machinery by (inoue, 2004).  
Suppose B contains only two rules B1 and B2 such 
that every cat is a pet (B1) and that if a pet is small 
and fluffy then it is cuddly (B2):  

input(b1,bg,[-cat(X), +pet(X)]). 
input(b2,bg,[-small(X), -fluffy(X), -

pet(X), +cuddly(X)]). 
 
Suppose we observe E that any fluffy cat is 

cuddly: 
input(e1,obs,[-fluffy(X),-cat(X),+cuddly(X)]). 
 
We also put some control information for the 

inductive machinery such that the maximum allowed 
length of clauses and the maximal term depth: 

 
production_field([length <= 3, term_depth 

< 3]). 
strategy(depth_first_iterative_deepning([dep
th <= 4,iterative_depth_step = 1])). 

inductive_bias([include_carc = 0, lgg = 0 
, dropping = 1]).  

 
Then we get the following result as H, namely, a 

fluffy cat is small: 
  
% java CF problem/example2.ax 
 
Observations E: [-fluffy(_X), -cat(_X), 

cuddly(_X)] 
Background B:  
  [-cat(_X), pet(_X)] 
  [-small(_X), -fluffy(_X), -pet(_X), 

cuddly(_X)] 
Hypotheses: 
[[-pet(_X), -fluffy(_X), -cat(_X), 

small(_X), cuddly(_X)]] 
selecting dropping literals in the 

clause:  
1,5.  
Hypotheses: 
[[-fluffy(_X), -cat(_X), small(_X)]] 

 
That is the simple implication :  

cat(X) and fluffy(X) -> small(X) 
This is easily readable as a natural language 

sentence : A fluffy cat is small. 
This is one of the great feature of first order 

logic : the translation of the output into a human-
readable format is rather straightforward. 

4 THE GENERAL 
ARCHITECTURE 

The expected architecture is rather simple and in 
accordance with the n-tier e-application model.  We 
begin with the data i.e. the set E we have to provide 
to the machine.  
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4.1 The data  

We distinguish 2 kinds of parameters which are 
meaningful in the whole process and for which we 
have data : 

a)Macroscopic parameters : temperature, 
pressure, increasing rates for these parameters 
(kinetics of the process), etc.. These parameters 
are evaluated online with the relevant sensors. 
Each measure has a very low cost, so we can 
potentially dispose of a huge database. These 
parameters have numerical values. 
b)Microscopic parameters : we need to 
distinguish here two kinds : 

- Cellular level : by image analysis, we can 
get the form of a cell (spheric, elliptic, etc…). 
These parameters are symbolic in nature and 
belong to a finite set of values. 

- Molecular level : these parameters 
describe the DNA structure of the target 
molecule. This kind of analysis is not only very 
long to be achieved but very expensive. That is 
why we cannot get a lot of data from this side. 
These parameters have symbolic values. 

Some other parameters are available but it is not 
clear today if they make sense for the whole process. 
The inductive machinery supplied by ILP usually 
takes inputs with symbolic representation. For this 
reason, numerical values are often discretized into 
Boolean values like +1 (positive/increasing), 0 
(neutral/no change), -1 (negative/decreasing), by 
using theresholds and the multinominal distribution.  
These Boolean values are suited for modeling 
qualitative behaviors between parameters. Of course, 
some intermediate values can be associated as 
representation of fuzziness. For more complex 
domains, we need a regression method to detect 
linear and nonlinear relationships. A more practical 
method would employ a profile data for an 
important parameter.  

We understand that we have a lot of parameters 
to deal with. The data are abstractly described in an 
XML format. Typical DTD definition of our data is : 

<!ELEMENT dataset  (data*)> 
<!ELEMENT data (name, type, value> 

And a set of data looks like : 
<dataset> 

<data> 
<name>pH</name> 
<type>discrete</type> 
<value>6.5</value> 

</data> 
<data>…</data>  

  </dataset> 
Since the real data  are mainly provided as a xls 

format, there is no difficulty to compile into the 

XML format. This XML file is sent to the server. A 
simple compiler converts the XML files into 
convenient data input format for the target ILP 
machine. The output of the ILP machinery is just a 
finite set of logical rules which are translated into a 
human readable format, as previously explained. 
There is few things to do since the rules are put in an 
implicative form and this is generally 
understandable as soon as the predicate names 
support intuition. 

4.2 The background knowledge 

There is a very huge amount of litterature about the 
subject and we have to extract, with the help of 
biologists, the rules which could be useful as a way 
to guide the research (see (Doncescu and al.2005)). 
The experimental evolution for state variable of the 
system : biomass, substrate and product could be 
figure up by the curves below : 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 

We understand that the consumption of substrat 
increases the number of interesting cells (parameters 
X and P (ethanol partial pressure)). This is translated 
into a very simple logical rule :  

not increase(S,t) OR [(increase(P,t) AND 
increase(X,t))] 

which is equivalent into  
[not increase(S,t) OR increase(P,t)]   

AND [not increase(t) 
OR increase(,t)] 

We get a set of 2 clauses (conjonctive normal 
forms). The parameter t, representing the time, 
appears  in every predicate in order to capture the 
dynamic of the process. The time is considered as a 
discrete attribute corresponding to the discrete 
sample steps. Such rules are translated in an XML 
format, in order to be easily adaptable to the input 
format of the remote ILP machine. It is remarkable 
to see that XML format is very close to a logical 
format. For instance, some  DTD rules for a logic 
program (not reduced to Horn clauses) are : 

<!ELEMENT cnf (disjunction*)> 
<!ELEMENT disjunction (literal*)> 
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<!ELEMENT literal (predicate, 
argument*)> 

In this case, the translation is straightforward and 
there is no need to spend a lot of time for that. This 
is mainly a recursive walk inside a text file.  

4.3 A functional view of the whole 
system 

We have below two functional diagrams explaining 
the flow of data and the expected output. 

 
Figure 2 

 
 
 
 
 

Figure 3 
 
The output of the ILP machinery is a finite set of 

logical rules that are translated into a human 
readable format. The rules are output in an 
implicative form and this is understandable as soon 
as the predicate names support intuition. 

5 CONCLUSION 

Today, it is a common technique to enable a lot of 
applications with e-technology. We investigate here 
the field of Inductive Logic Programming targeting 
to a biological application.  Due to the similarity 
between the first-order logic syntax and XML, there 
is no difficulty to use XML as a standard format for 
our files exchange. One of the main interest of our 
approach is that we only manipulate data and files 
which are almost human readable and the output 
product  (a set of rules) is easily understandable for 
non-expert people. We expect to have a continuous 
flow of data, and so to continuously improve the 
target ILP machinery. As a mid-term objective, we 
want to provide a public access to the machinery and 
to make several ILP engines (see (Richard and 
al.2004) for instance) to compete for extracting 
rules. Since the underlying language is the same 
(first order logic), it is very easy to compare and 
why not, to mix different extracted rules to get a 
better understanding of the process on hands. As a 
long term objective, our platform could create a 

vacuum of  knowledge under one roof and open the 
doors to a worldwide consortium of Bio Informatics 
experts to access data, research, forums, resources 
and application through the Internet.  
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