
A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-
MANAGING SENSOR OVERLAY FOR WEB SERVICES

Wail M. Omar 1,2, Bassam A. Ahmad 2, A. Taleb-Bendiab 1, Yasir Karm1
1 School of Computing and Mathematical Sciences

 Liverpool John Moores University
Byrom Street

Liverpool, L3 3AF, UK

2 Faculty of Applied Sciences
Sohar University
Sohar, P.C. 311

 Sultanate of Oman

Keywords: QoS, Sensors Framework, Sensors for web services.

Abstract: To improve the usability and reliability of grid-based applications, instrumentation middleware services are
now proposed and widely accepted as a means to monitor, control and manage grid users’ applications. A
plethora of research works now exist focusing on the design and implementation of a range of software
instrumentation techniques (Lee et al. 2003, Reilly and Taleb 2002) to enhance general systems’
management including; QoS, fault-tolerance, systems recovery and load-balancing. However, management,
assurance and fidelity concerns related to sensors and actuators (effectors) support for grid and web services
environment received little to no attention. This paper presents a lightweight framework for the generation,
deployment and discovery of different types of sensors and actuators together with two associated
description languages namely; monitor session description language and sensor and actuation description
langue. These are used respectively to describe the set of deployed sensors and actuators in a given self-
managing grid infrastructure, and to define monitoring properties and policies of a given target
service/application. Moreover, negotiation process is considered between different units of the grid
environment. In addition, the paper presents a developed sensor-based systems awareness fabric layer for
self-managing decentralised web services. The paper concludes with a case study illustrating the use of the
sensor framework for job monitoring.

1 INTRODUCTION

Recent advancements in networking, hardware, and
middleware technologies have been a major catalyst
for the recent popularity of grid-based applications
(Foster et al. 2001), which are characterized by their
very high computing and resource requirements.
Thus, it needs powerful and active instrumentation1
strategy. Originally, instrumentation was used to
debug and test applications that run on single
processor machines and for analyzing the

performance of real-time systems. The parallel
computing community later adopted instrumentation
to debug, evaluate and visualize parallel
applications. More recently distributed application
developers have recognized the requirements of
instrumentation, used in a dynamic regime, to
monitor and manage distributed applications (Reilly
and Taleb 2002).

It is now generally accepted that systems’
introspection and general runtime monitoring for
instance; for inconsistency and faults detection
requires software instrumentation (introspection and
sensing) services. However, the quality of service of
sensor/actuation service received little or no
attention. There is a lack of focus on management

1 Software Instrumentation is the process of putting
probes into software to record systems’ operation
state data (Foster and Kesselman 2003).

72
M. Omar W., A. Ahmad B., Taleb-Bendiab A. and Karm Y. (2005).
A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB SERVICES.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 72-81
DOI: 10.5220/0002514100720081
Copyright c© SciTePress

and control issues related to sensors and actuation
(effectors) for grid and web services environment.

This paper presents a lightweight framework for
the generation, deployment and discovery of
different types of sensors and actuators together with
two associated description languages namely; the
Sensors and Actuator Description Language (SADL)
and the Monitor Session Description Languages
(MSDL). These are used respectively to describe the
set of deployed sensors and actuators in a given self-
managing grid infrastructure, and to define
monitoring properties and policies of a given target
including application services and environment.

This framework leverages the quality of services
(QoS) for sensors to achieve an enhanced fidelity
(accuracy), performance and offer standard method
for exchange information based on mark-up
language (XML). Each sensor cluster works with
the others to form a sensor farm referred to here as
cloud. Each of which has a zoning construct and
cloud manager agent responsible for general
management, access of deployed sensors and
actuators and exchange of sensing information with
other agents (clouds).

 The remainder of this paper is structured as
follow: Section two outlines related works followed
by a software sensor and actuator overlay. Section 4
presents the main structure of the SADL followed by
an illustrative example of using it. Model for
Monitoring Sessions Description Language (MSDL)
is demonstrated in Section 5. Case study for using
on-fly instrumentation with the SADL framework is
presented in Section 6. Finally, the paper concludes
with general summary and statement of future work.

2 BACKGROUND

Over the coming years, many are anticipating grid
computing infrastructure, utilities and services to
grow dramatically in size and functions, over
heterogeneous system to become an integral part of
future socio-economical fabric (Omar et al. 2004).
This vision is predicated on that such grid-based
services, infrastructures and applications have to
provide a high-degree of assurance, dependability,
and agility to changes and cost effectiveness. This
warrant for new models and supports for web
services sensing and actuation infrastructures and
middleware resources.

Much work related to systems monitoring for
Grid computing is now widely published (Lee et al.
2003), describing numerous monitoring models
including; visPerf and NetSolve (Satoshi et al.
1999), Heart Beat Monitor (HBM) and Enterprise
Instrumentation Framework (EIF). Other approaches

for instance presented by Reilly and Taleb-Bendiab
(Reilly and Taleb-Bendiab 2002), describes a
dynamic instrumentation framework, which provides
support to monitor and manage Jini applications.
The framework adopts a service-oriented
programming model and the software factory pattern
to dynamically generate specific instrument types,
which are deployed and interfaced to client services
via Java’s dynamic proxy API and Jini’s remote
event. This enables on-demand insertion and
removal of instrumentation services.

Other models such as the Globus Heart Beat
Monitor (HBM) is provided at container level to
provide health-check monitoring service for instance
for faults detection of grid resource, that is, checking
the status of a target machine and reports it to a
higher-level collector machine (Globus 2003).
Others such as the GridMonitor provides access to
Grid information and server status for all sites
including Globus Meta-computing Directory Service
(MDS). This in combination with JAMM an agent-
based monitoring system for Grid environments it
automate the execution of monitoring sensors and
the collection of event data (Globus 2003).

Operating systems specific instrumentation
frameworks include Windows Management
Instrumentation (WMI) consists of three parts
described below (Travis B. 2003):

• Management Infrastructure: providing object
manager called Common Information Model
(CIM). Users use CIM Object Manager
(CIMOM) to handle communications between
management applications and providers.
• Managed Objects: provide management
services that access managed objects using the
CIM Object Manager.
• WMI Providers: provider components that
supply dynamic management data about
managed objects, handle object-specific requests,
or generate WMI events.
Enterprise Instrumentation Framework (EIF) is

another technology for monitoring and
troubleshooting high-volume, distributed
environments. EIF is a technology for Visual
Studio.NET applications. It works hand-in-hand
with Application Centre (AC) and Microsoft
Operations Manager (MOM), providing a uniform
data for event management, tracing and logs.

Other works focused on sensors discovery
mechanisms to support fault-tolerance of
heterogeneous distributed systems. For instance,
Karuppiah et al. (Karuppiah2001) discussed the
design of a distributed vision system that enables
several heterogeneous sensors with different
processing rates to exchange information in a timely
manner to support the tracking of multiple human

A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB
SERVICES

73

subjects and mobile robots in an indoor smart
environment.

Moreover, many more concerns related to
enterprise systems self-awareness and monitoring
remain to be addressed including; the control and
management of sensors, the accuracy of selecting
sensors, robustness, assurance and scalability of the
sensor system. In this paper, we will discuss some of
these problems.

3 SOFTWARE SENSOR AND

ACTUATOR OVERLAY

In this work, a sensor framework is developed to
support sensor and actuator generation1 (Reilly and
Taleb 2002), deployment, discovery and general
management providing high-availability, control and
management for the deploying sensors. As
illustrated in Figure 1, each deployed sensor cloud
(cluster) in the sensor overlay has at least an
associated sensor manager agent, which provide on-
demand sensor generation, deployment, lookup
and/or publish subscribe services for instance to
provide intelligent matching between the available
sensors and consumer requirements2. The consumers
can select different types of deploying sensors with a
framework and inject them to the targets (monitored
services). The consumers can select to access (or
subscribe) to more than one target instrumentation
data in accordance with a given the Service Level
Agreement (SLA) and/or a given contract between
the sensor consumers and providers. A third party
agent referred to here as “SLA administrator”, is
responsible for establish the SLA between the
consumer and services provider, which involves the
negotiation process.

In view of the scalability concerns of massively
decentralised systems of sensor networks and grid
computing a zoning/clouds abstraction is here
introduced, where each zone/cloud has a sensor
manager agent (Figure 1). Such an agent is also
responsible for the interaction with other agents in
other zones where it can act as a gateway sensor
node to its sensor node, as in sensor networks the
zone agent can be hosted by an edge sensor node.
For example as shown in Figure 1, an agent in zone
A is responsible for offering services for the sensor
provider and consumers register with zone A. In
addition, sensor manager agents implement various
zone-based policies for instance for; information
exchange, access control and self-healing

monitoring and actuation3. To this end, a Sensor and
Actuator Description Language (SADL) was
designed and developed to provide an open standard
description markup language for lightweight access
to deployed sensor and actuators (effectors)
metamodel in any given zone (Sec. 4). Thus, SADL
provides a ubiquitous interaction mechanism with a
given sensors overlay (Figure 1).

3.1 Fidelity of Sensors

Sensor fidelity, robustness and assurance are some
of the major concerns considered by the proposed
and developed sensor framework, which borrows
concepts developed by the intelligent systems
engineering community including; self-convergence,
self-optimization, self healing and self-adaptive.

Many critical concerns in the sensor and
actuations overlay are the on-demand selection and
access to the correct sensor type for a given
monitoring task. Thus, the sensor framework is
designed to assistant to the consumer in selecting the
most appropriate type of senor according to
consumer’s requirements.

1 This is based on the software factory pattern.
2 In addition the framework offers the monitoring,
management, control and advertisement for the
deployed sensors

3 The full description of the zoning and clouds
abstraction and sensor manager agent is out of the
scope of this paper and will be described in future
paper.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

74

Figure 1: Sensor Framework Scenario including Sensor zoning Framework

For this reason, Sensor and Actuator Description
Language is proposed to provide a ubiquitous access
to sensor meta-model, which assist in the discovery
and selection of required types of sensors. SADL
will feed the intelligent system (sensor manger
agent) with the data that is required to do the
intelligent matching between consumer request and
available sensors.

4 SENSING AND ACTUATION
DESCRIPTION LANGUAGE

Awareness and governance model exposes the
infrastructure states and associate conditional
triggers (actuations) to detected events and systems
events of interest. In particular, deployed sensors
(software instruments) publish monitoring data to
the infrastructure self-governance middleware
service (Kephart and Chess 2003), which provides
the actuation model triggering and enactment. For
example in the case of services/infrastructures
overload problem, different methods are used to

solve this problem; one of them is the replication.
The sensor is used here to get information from the
original node and from replication services after
creation. Many of researchers and developers
intended to generate different types of on-the-fly
sensors; the management system should have well
known information regarding each one of these
sensors. A prototype of the Sensing and Actuation
Description Language (SADL) is designed for the
purpose of deploying, discovering and managing the
sensors in an open-standard format.

SADL is used to deploy and discover different
types of sensors (processor, memory, web services,
etc.) in open standard format. This information
assists the consumer and the analysis system to
select the required sensor from the discover list.

The current prototype of a SADL has been
developed using a.Net-based sensor software factory
and environment to support remote monitoring,
logging and analysis of a range of web service
properties including; structural, functional and
operational aspects.

Table 1 describes the most important parameters
of SADL.

A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB
SERVICES

75

Table 1: SADL parameters.
Elements Name Comments
SensorID This ID should be unique for each Infrastructure. The ID is generated

automatically by the system.
SensorName This should be give by the deplorer.
SensorDescription The deplorer can describe anything for the infrastructure
SensotType This element is used to describe the parameter that this sensor is used to

read it. Like performance, security, etc….
SensotDataType This can be string, integer, object, etc….

SensotDataStorageType This element is used to describe the location of storage data, if it is stored

locally, centre, or in a host computer.
SensorHost The host that hold the sensor software.
SensorContainer This can hold different type of sensors.
SensorExecution This may be control flow, on demand or event driven
SensorStatus If the sensor is online or offline.
SensorMethod Method that used by the sensor
SensorCategory The category of the sensor. This may be research, free, commercial,

military, etc…
SensorContract This element describes the sensor to whom it belongs and what is lease time

for the sensor.
SensorInterface Sensor interface is used to connect to the sensor
InterfaceName Interface name
InterfaceLocation The path to the sensor interface
SensorEnvironment Sensor environment is used to describe all the information about the

required environment for sensor to work
EnvirPlatform The required platform
EnvirMiddleware The required middleware
EnvirMxmNoUsers This describes the maximum number of users those can use the sensor at the

same time
EnvirCurrentUsers This describes the current users those use the sensor at the request time.

This may be changed dynamically by the system according to the current users.
SensorsResources Describes the minimum required resources for the sensor to work.
ResourcesProcessor The minimum speed for the processor
ResourcesMemory The minimum size for the memory
ResourcesFramework The required framework.

Figure 2: A Simplified example of SADL

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

76

4.1 Illustrative Example Interfaces information of the sensor is exposed
via the SADL.

The software for the generation, deployment
and discovery of sensor services is implemented
using VS.Net. Figure 3 shows an example that
demonstrating the processes of sensor and actuator
generation, deployment and discovery. In this
example a sensor and actuator of type memory
usage monitor and analyser are selected. In
addition, the current prototype provides operational
information of discovered sensors and actuators
including; sensor properties, contract, interface,
environment, and resources.

Figure 2, provides an example of sensor and
actuators service deployment using the SADL
framework. This is for instance, to deploy and
activate a memory sensor in a given container
(node). Where the sensor in accordance with an
associated monitoring contract it reads at a
specified frequency memory measurement data,
which is made available to the monitoring layer
through either logging or streaming.

 Figure 3.a: Sensor registration screen (sensor information). Figure 3.b: Discover results screen.

Figure 3: SADL Interface.

Figure 4: Monitor Sessions Description Language (MSDL)

A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB
SERVICES

77

5 MONITOR SESSIONS
DESCRIPTION LANGUAGE

Monitor Sessions Description Language (MSDL)
is used to create a standard way for sending
monitor tasks by the consumers based on using
XML. The consumer sends a request to establish
sensor task to the SADL framework. The SADL
uses the passing information to find the suitable
sensor from its available sensor services. MSDL
categorized into three parts:

• the monitor session information,
• Service Level Agreement (SLA)

(contract),
• sensors information description.

The monitor session information is divided into
client information and job schedule information.
The client information includes host name, SLA
for the client and authentication information. The
job schedule tags describe the duration and
intervals of the task jobs, interval tags is used to
indicate the time between reading and next one,
this help to reduce the information that transfer
from the target to the control and analysis system.
The administrator (which uses the sensors to look
after his clients) can select more than one type of
sensors to get different types of reading such as;
memory, process, processor. Also he can use the
same sensors for more than one of its clients
according to his SLA. Figure 4 presents an
example of using MSDL.

6 CASE STUDY

A case study is used to show how the sensor
framework can be used to read in sensor
requirements from users and discover and select
suitable sensor from a sensor array. The
experiment is conducted using a set of PIV 2.7
GHz with RAM 256 nodes running .Net
framework 1.1 and a number of Web Services. The
case study is divided into three phases:

• the creation of the MSDL for a given
consumer and sending it to the SADL.

• the discovery of deployed sensors for a
given monitoring requirement,

• the interface with the sensor and exchange
measurement data.

As illustrated in Figure 5a, the scenario starts
by sending the monitor session request by the
consumer to the sensors framework as MSDL
(Figure 5.a). The consumer sends request for a
number of sensors to be injected in the target. In
this case study, the consumer demands processor,

memory, process, and web services sensors. In the
other hand, the sensor providers use the SADL to
pass information regarding their sensors to the
framework, which will be as an advertisement
location for the sensors. The SADL framework
reads this MSDL and tries to find the available
sensors those are deployed with it, as shown in the
Figures (5.b. and 5.c.). In many cases there is more
than one sensor for each type of sensors, the SADL
framework is responsible for selecting the most
appropriate sensor for each target. SADL
framework may depend on using one of the
intelligent services, such as prediction or
classification, to anticipate the most likely hood
sensors with the consumer’s requirements. The
SADL runs these sensors on the target and get the
information and send it to the consumer (Figure
5.d).

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

78

Figure 5.a: Monitor request information

Figure 5.b: Sensors required

Figure 5.c: Finding sensors with in SADL framework

A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB
SERVICES

79

Figure 5.d: Running sensors

7 CONCLUSIONS AND FUTURE
WORK

The paper presented a proposed and developed
sensor framework that supports the deployment,
discovery and management of sensors to support
better quality of sensors. Sensor Manger Agent is
argued to do the intelligent stuff of matching
between user needs and available sensors inside the
framework. Sensors framework zones are
recommended to be used for overcoming the
problem of scalability. Sensor manger agent is in
charge to exchange information regarding available
sensors between different zones. A prototype of the
Sensing and Actuation Description Language
(SADL) is designed for the purpose of deploying,
discovering, and exchange information concerning
sensors (Sec. 4). The SADL will be used to discover
and invoke different types of sensors, which can be
used with different types of platform (heterogeneous
system). A prototype for Monitor Session
Description Language (MSDL) (Sec. 5) has been
developed to present standard method for sending
monitor job schedule from the consumer to the
sensor framework, which controls the huge numbers
of requested sensors sessions that read the required
information periodically through the Grid. A case
study is developed to show the importance and
usage of the sensor framework in finding the best
sensor for the consumer.

So far the results are promising; it has been tested

under LAN-Grid environment with different types of
deployed sensors. The framework provides the
consumer with most appropriate sensors for their
request and injects them in the target.

Further work is under way to investigate the
framework under WAN-Grid environment with
larger number of deployed heterogeneous sensors. A
storage system is suggested to be added to the
system for providing complete framework for
gathering information and provide it to the
consumers. Moreover, sensor framework will be
adopted to be used with different types of sensors for
different applications, such as; e-health system, and
intelligent connected home networks and self-
management middleware.

REFERENCES

Omar, W., Taleb-Bendiab, A., and Yu, M. 2004. An Open
Standard Description Language for Semantic Grid
Services Assembly for Autonomic Computing
Overlay. In Proceedings of the Services Computing,
2004 IEEE International Conference on (SCC'04) -
Volume 00

Menkhaus, G., Pree, W., Baumeister, P., Deichsel, U.
2002. Interaction of Device-Independent User
Interfaces with Web services.

Mridula, P., Chandler, J., Hatfield, B., Lassan, R.,
Macintyre, P., Wanta, D., 2002. ASP.NET. Publisher:
Hungry Minds, ISBN: 0764548166.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

80

Kirtland, M. 2001. A Platform for Web services.
Foster, I, Kesselman, C, 2003. The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufman,
ISBN: 1-55860-933-4.

Foster, I., Kesselman, C. and Tuecke S. 2001, The
Anatomy of the Grid Supercomputer Applications:

Diakov, N., 2002. Concepts of Software Monitoring:
Activities, Instrumentation and Organization of
Monitored Data – Data Flows.

Lee D., Dongarra J., J., and Ramakrishna R., S. 2003.
visPerf: Monitoring Tool for Grid Computing.

Satoshi N., Mitsuhisa S. 1999. Design and
implementations of nimf: towards a global computing
infrastructure.

Globus 2003. Globus Heartbeat Monitor. URL:
http://www.globus.org/hbm/heartbeat spec.html .

Travis B. 2003. FoodMovers: Building Distributed
Applications using Visual Studio .NET.

Reilly D. and Taleb-Bendiab A. 2002. Dynamic
Instrumentation for Jini Applications.

Kephart J. and Chess D. 2003. The Vision of Autonomic
Computing.

Renesse, R., Birman, K., and Vogels, W. 2002. Astrolabe:
A Robust and Scalable Technology for Distributed
System Monitoring, Management, and Data Mining.

Karuppiah , D., Zhu , Z., Shenoy , P., and Riseman, E.,A
Fault-Tolerant Distributed Vision System Architecture
for Object Tracking in a Smart Room. Computer
Vision Systems: Second International Workshop,
ICVS 2001 Vancouver, Canada, July 7-8, 2001.

A SOFTWARE FRAMEWORK FOR OPEN STANDARD SELF-MANAGING SENSOR OVERLAY FOR WEB
SERVICES

81

