
A FORMAL DEFINITION FOR OBJECT-RELATIONAL
DATABASE METRICS

Aline Lúcia Baroni1, Coral Calero2, Mario Piattini2, Fernando Brito e Abreu1,
1QUASAR Research Group. Faculty of Sciences and Technology. Universidade Nova de Lisboa. Portugal

2ALARCOS Research Group. Department of Compuer Science. Universirt of Castilla-La Mancha. Spain

Keywords: Databases, metrics, SQL:2003.

Abstract: Relational databases are the most important in the database world and are evolving to object-relational databases
in order to allow the possibility of working with new and complex data and applications. One widely accepted
mechanism for assuring the quality of an object-relational database is the use of metrics formally and empirically
validated. Also it is important to formalize the metrics for having a better understanding of their definitions.
Metrics formalization assures the reliable repetition of their computation and facilitates the automation of metrics
collection. In this paper we present the formalization of a set of metrics defined for object-relational databases
described using SQL:2003. For doing the formalization we have produced the ontology of the SQL:2003 as a
framework for representing the SQL schema definitions. The ontology has been represented using UML and the
definition of the metrics has been done using OCL (Object-Constraint Language) which is part of the UML 2.0
standard.

1 INTRODUCTION

The history of databases last since mid-sixties and it
has been characterised by its extraordinary
productivity and its impressive economic impact.
This is because databases have become a strategic
product, being the basis of all information systems
and supporting organizational decisions.

Relational databases are the most important ones
in the database world. This success can be explained
because they are not too difficult to understand and
also because there is a widespread standard (SQL)
for them. Another key success factor is that the
relational industry has reacted and has evolved to
object-relational databases in order to allow the
possibility of working with new and complex data
and applications without a revolutionary change in
the market. So, these databases have all the elements
of the relational model (relations connected by
referential integrity relationships) but with the
particularity that the columns of a relation can be
defined over a UDT (User Defined Type).

Some studies predict that object-relational
databases will substitute the relational ones
(Stonebraker and Brown, 1999, Leavitt, 2000) and,
very recently, the new SQL:2003 standard (ISO/IEC

9075, 2003) that integrates additional OR features, has
been published.

Taking into account the brilliant predicted
diffusion of object-relational databases it is essential
to assure their quality. One widely accepted
mechanism for assuring the quality of a software
product in general and of object-relational database
designs in particular, is the use of metrics.

However, it is also important to formalize the
metrics. Formality allows clear understanding of
metrics definitions, which in turn assures that their
computation can be repeated in a reliable fashion.
Furthermore, the formalization itself may facilitate
the automation of metrics collection.

In this paper we present the formalization we
have performed upon a set of metrics defined for
assessing the complexity of OR database schemata.
For performing this formalization we have produced
an ontology of the SQL:2003 (the last version of the
object-relational database standard), as a framework
for representing the SQL schema definitions. The
ontology was represented using UML and the
metrics have been defined with OCL -Object-
Constraint Language (OMG, 2003). OCL allows
express invariants, pre and post conditions, as well
as operations semantics and is part of the UML 2.0
standard.

334
Lúcia Baroni A., Calero C., Piattini M. and Brito e Abreu F. (2005).
A FORMAL DEFINITION FOR OBJECT-RELATIONAL DATABASE METRICS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 334-339
DOI: 10.5220/0002510503340339
Copyright c© SciTePress

Section two presents the ontology we have
defined for the new SQL:2003. Section three
presents an example of a database definition using
the new SQL:2003 which is represented using the
ontology. In section four the metrics definition and
formalization using OCL is shown. Finally, the last
section presents the conclusions and future work.

2 SQL:2003 ONTOLOGY

Among the different languages present in the earliest
DBMS, SQL has imposed itself as a “de iure” and
“de facto” database standard.

Recently, the last version of the standard has been
published, SQL:2003 (ISO/IEC 9075, 2003) which
makes revisions to all parts of SQL:1999 and
includes some new issues (Eisenberg et al., 2004).

The fact of having a standard is fundamental.
However, sometimes standards are hard to
understand and it is difficult to extract all the
information contained. It usually happens that
standards are not free of inconsistencies due to the
big amount of information that they try to cover. In
that case, most of the advantages derived of the
disposal of a standard disappear.

For avoiding most of these problems, the
standard can be complemented by its ontology. In
such a manner the ontology helps in finding the
information and detecting inconsistencies which is
essential in order to define the metrics based on the
concepts of the standard.

An ontology is a specification of a
conceptualization. This means that, through the
definition of an ontology, we try to formalize and
recover the knowledge of a given domain.

So, we developed an ontology for the SQL:2003.
For doing it, we have used several parts of the
standard. We have worked mainly with the
information of the part 1 (Framework) but basically
with the one of part 2 (Foundation) of the standard.
In the other hand, we also reengineered the Part 11
(Information and Definition Schema) considering
those schemata as metamodels of the SQL:2003
which represent in their tables all the concepts of the
language.

The ontology was thought for the object-
relational aspects of a database schema, discarding
elements such as triggers and stored procedures, as
they are not needed for the metrics we consider in
this work. The inclusion of these elements can be
easily done because the main components are
included in this version and the discarded ones are
related to them.

The ontology has been divided into two. One
contains all the aspects related to data types (figure

1) and the other all the information about the SQL
schema objects (figure 2).

Figure 1 shows three different kinds of Data
Types: Predefined, Constructed and User Defined
Types. Constructed Types can be Composite or
Reference Types. Composite Types can be
Collections (Arrays or Multiset – a new type of the
SQL:2003 standard) composed by Elements, or Row
Types, which in turn are composed by Fields. Each
Element or Field has one Data Type.

The User Defined Types can be either Distinct
Types (which are defined over one Predefined Data
Type) or Structured Types1. Structured Types are
composed by Attributes and by one or more Method
Specifications. Inheritance is allowed among
Structured Types, Row Types and Reference Types.

Figure 2 illustrates four different SQL schema
objects: Constraints, Domains, User Defined Types
and Tables.

Constraints can be Assertions, Domain
Constraints or Table Constraints (Unique
Constraints including Primary Keys, Table Check
Constraints and Referential Constraints – the latter
for representing the foreign keys).

Domains are used by Columns and can include a
Domain Constraint.

Tables can be Derived Tables – and particularly
Views, Transient Tables or Base Tables. They are
composed by Columns that can be defined as
Identity Columns or Generated Columns. Columns
can be defined over a Domain and they can have
Referential Constraints or Unique Constraints (or
Primary Keys) defined.

Base Tables can also be part of an inheritance
hierarchy. They are defined over a Data Type
(through a Reference Type) and they can have
Candidate Keys.

1 Structured types are entities corresponding to classes in
object-oriented notations. Thus, when we use the word
“class” in this document, we refer to the ontology
entity StructuredType.

A FORMAL DEFINITION FOR OBJECT-RELATIONAL DATABASE METRICS

335

Figure 1: SQL:2003 Data types sub-ontology

Figure 2: SQL:2003 Schema objects sub-ontology

3 METRICS FOR OBJECT-
RELATIONAL DATABASES

One widely accepted mechanism for evaluating the
quality of a software product in general and of
object-relational database designs in particular, is the
use of metrics (Briand et al. 1996; Pfleeger, 1997;
Fenton y Pfleeger, 1997; Chidamber y Kemerer,
1994; Zuse, 1998; Sneed and Foshag, 1998; Basili et
al, 1996)

Metrics must be defined for capturing a specific
characteristic of a product (in our case object-

relational databases). One of the most important
characteristic to be captured is complexity. With a
set of metrics for measuring the complexity, we will
be able to estimate understandability and
maintainability (Li and Henry, 1993; Briand et al.
1995; Briand et al. 1999), two important dimensions
in software product quality (ISO9126, 2001).

In the work of Piattini (Piattini et al., 2001) a set
of metrics for object-relational database complexity
are defined. These metrics have been formalized
using the approach presented in (Baroni, 2002;
Baroni and Brito e Abreu, 2002). In the next sub-
sections, each informal definition is presented

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

336

together with its formal one (some auxiliary
functions, were used in the formalization process but
are not presented due to space restrictions)

3.1 Metrics concerning table
properties

3.1.1 Table Size Metric

The size of a table (TS) is defined as the sum of the
size of the simple columns (TSSC) and the size of
the complex columns (TSCC). The TSCC is
calculated as the sum of the size of each complex
column (CCS).

BaseTable:: TS(): Real
= if self.is_typed then
 self.references.referenced_type.
 hierarchySize()
 else
 self.TSCC() + self.TSSC()
 endif

BaseTable:: TSSC(): Integer
= self.allSimpleColumns() -> size()

BaseTable:: TSCC(): Real
= self.allComplexColumns()
 -> collect(elem: Column |
 elem.CCS())
 -> sum

The size of a complex column (CCS) is defined
as the size of the class hierarchy above which the
column is defined (SHC) divided by the number of
complex columns that are defined over this
hierarchy (NHC). This expression is due to the fact
that the size of the hierarchy must be considered
only once independently of the number of columns
defined above it.

Column:: CCS(): Real
= self.SHC() / self.NCU()

Column:: SHC(): Real
= self.dataType.oclAsType
 (StructuredType).SC() +
 self.dataType.oclAsType

(StructuredType).ascendants()
 -> collect (elem: DataType |
 elem.oclAsType(StructuredType).
 SC())
 -> sum

Column:: NCU(): Integer
=self.dataType.oclAsType
 (StructuredType).
 columnsNumberUsingThis()

The size of a class (SC) is calculated as the sum
of its attributes size (SAC) and its methods size
(SMC). It is necessary to take into account that a
class can have simple attributes (SAS), that we
consider with a size equal to one, and complex
attributes (CAS), which are attributes related to
other classes by an aggregation relationship. In that
case the size of a complex attribute is calculated as
the size of the aggregation hierarchy. Again in that
case, as a class can belong to more than one
hierarchy, it is necessary to divide its size into the
number of hierarchies that use the class (NHC).

StructuredType:: SC() : Real
= (self.SAC() + self.SMC()) /

self.NHC()

StructuredType:: SAC(): Real
= self.SAS() + self.CAS()

StructuredType:: SAS(): Integer
= self.allSimpleAttributes() ->

size()

StructuredType:: CAS(): Real
= self.allComplexAttributes()
 -> collect(elem: Attribute |
 elem.dataType.oclAsType

(StructuredType).SC())
 -> sum

StructuredType:: SMC(): Integer
= self.NMC()

StructuredType:: NMC(): Integer
= self.allMethods() -> size()

StructuredType:: NHC(): Integer
= if self.hasChildren() then
 self.childrenNumber()
 else
 1
 endif

3.1.2 Coupling Metrics

NIC (Number of Involved Classes): Number of
classes needed for defining all the columns of a
table.

BaseTable:: NIC(): Integer
= self.involvedClasses() -> size

NSC (Number of Shared Classes): Number of

classes used by a table, for defining its complex
columns, which are also used by other tables of the
schema.

BaseTable:: NSC(): Integer
= self.involvedClasses()
 -> select(elem: StructuredType |

A FORMAL DEFINITION FOR OBJECT-RELATIONAL DATABASE METRICS

337

 elem.isShared())
 -> size

3.1.3 Complexity Metrics

PCC (Percentage of Complex Columns): Number of
the complex columns of a table (NCC) divided by
the total number of columns of the same table.

BaseTable:: PCC(): Percentage
= self.NCC() /
 (self.allColumns() -> size())

BaseTable:: NCC(): Integer
= self.allComplexColumns() -> size()

3.1.4 Referential Integrity Metrics

NFK (Number of Foreign Keys): Number of
foreign keys defined in a table.

BaseTable:: NFK(): Integer
= self.foreignKeyNumber()

RD (Referential Degree): Number of foreign

keys in a table divided by the number of attributes of
the same table.

BaseTable:: RD(): Real
= self.NFK() /
 (self.allColumns() -> size())

DRT (Depth of Referential Tree): The longest

path between a table and the remaining tables in the
schema database, considering the schema as a graph
where nodes are tables and arcs are referential
integrity relations between tables (Foreign key to
Primary key links).

BaseTable:: DRT(): Integer
= self.longestPath() -> size

3.2 Metrics concerning schema
properties

All the metrics applied over tables can also be
applied at the schema level, iterating over the
BaseTables in the SQLSchema. These are the
coupling, complexity and referential integrity
metrics.

Additionaly, a new size metric for the schema
(SS) can also be defined as the sum of the sizes of
each table in the schema.

SQLSchema:: SS(): Real
= self.allBaseTables()
 -> collect (elem: BaseTable |

 elem.TS()) -> sum

4 CONCLUSIONS AND FUTURE
WORK

Our current work direction addresses the solution of
two main problems: the lack of metrics for
evaluating the quality of databases and the lack of
formalization of the existing metrics definitions.

The first problem was treated with the proposal
of some metrics for object-relational databases
(Piattini, 2001), in some of our previous work.
However, metrics for other aspects, not covered by
our work, are still necessary.

This paper presented an approach to solve the
second problem, using UML and OCL (OMG,
2003). The original approach was proposed in
(Baroni, 2002; Baroni and Brito e Abreu, 2002), and
it was successfully applied here.

Besides formalizing some metrics definitions, we
created an ontology for the new SQL:2003 standard
(ISO/IEC 9075, 2003), which tries not only to
reduce the inconsistencies in the textual version of
the standard, but also to make the standard easier to
grasp.

The ontology definition is an on-going work, and
it can be seen more as a proposal than as a complete
version. It requires some extensions for treating of
other aspects in the standard, such as triggers, stored
procedures, parameters in methods, etc.
Notwithstanding, the ontology as shown in this
paper has enough features for the formalization we
addressed.

The formalized metrics definitions and a
database representation mapped to ontology meta-
objects served as input to an OCL evaluator tool
(there are several tools able to work with OCL, and
more are emerging to work with its newer version,
i.e., OCL 2). With these two inputs, and also with
the ontology as background, we could extract real
metric values from database representations. One
simple example was illustrated here.

As future work, there are many possible
directions to explore varying from the proposition of
new metrics and their validation, including their
formal definitions, until the use of these metrics to
perform refactorings on database schemata.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

338

REFERENCES

Baroni A. L., 2002. Formal Definition of Object-Oriented
Design Metrics. Master Thesis. Vrije Universiteit
Brussel - Belgium, in collaboration with Ecole des
Mines de Nantes - France and New University of
Lisbon - Portugal. August.

Baroni A. L., Brito e Abreu F., 2002. Formalizing Object-
Oriented Design Metrics upon the UML Meta-Model.
In Proceedings of the 16th Brazilian Symposium on
Software Engineering, Gramado - RS, Brazil. October.

Basili V., Briand L., Melo W. L., 1996. A Validation of
Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering, vol. 22,
pp. 751-760.

Briand L., Arisholm S., Counsell F., Houdek F.,
Thévenod-Fosse P., 1999. Empirical Studies of
Object-Oriented Artifacts, Methods, and Processes:
State of the Art and Future Directions. Empirical
Software Engineering, 4 (4), 387-404.

Briand L., El Emam K., Morasca, S., 1995. Theoretical
and Empirical Validation of Software Product
Measures. International Software Engineering
Research Network, Technical Report ISERN-95-03.

Briand L., Morasca S., Basili, V., 1996. Property-Based
Software Engineering Measurement. IEEE Transactions
on Software Engineering. 22 (1). pp.68-85.

Chidamber S., Kemerer C., 1994. A Metrics Suite for
Object-Oriented Design. IEEE Transactions on
Software Engineering. 20 (6). pp.476-493. June.

Fenton N., Pfleeger S. L., 1997. Software Metrics: A
Rigorous Approach 2nd. edition. London. Chapman &
Hall.

ISO/IEC 9075 Standard, 2003. Information Technology -
Database Languages - SQL, International
Organization for Standardization.

ISO/IEC 9126 Standard, 2001. Software Product
Evaluation-Quality Characteristics and Guidelines for
Their Use, International Organization for
Standardization.

Leavitt N., 2000. Whatever Happened to Object-Oriented
Databases?. IEEE Computer Society. pp. 16-19.

Li W., Henry S., 1993. Object-Oriented Metrics that
Predicts Maintainability, Journal of Systems and
Software, 23, 111-122.

Melton, J., 2003. Advanced SQL:2003. Understanding
object-relational and other features. Morgan Kauffman
Publishers. Elsevier Science. USA

OMG, 2003. UML 2 Object Constraint Language
Specification (version 2.0)”, Object Management
Group, October.

OMG, 2003. Unified Modeling Language Specification
(version 1.5), Object Management Group, March.

Pfleeger, S. L., 1997. Assessing Software Measurement.
IEEE Software. March/April. pp. 25-26.

Piattini M., Calero C., Sahraoui H., Lounis H., 2001.
Object-Relational Database Metrics. L'Object, vol.
March.

Sneed H. M., Foshag O., 1998. Measuring Legacy Database
Structures. Proceedings of the European Software
Measurement Conference (FESMA 98). Antwerp. May
6-8. Coombes. Van Huysduynen and Peeters (eds.).
pp.199-211.

Stonebraker M., Brown P., 1999. Object-Relational
DBMSs Tracking the Next Great Wave, California,
Morgan Kauffman Publishers.

Zuse H., 1998. A Framework of Software Measurement.
Berlin. Walter de Gruyter.

A FORMAL DEFINITION FOR OBJECT-RELATIONAL DATABASE METRICS

339

