
C# TEMPLATES FOR TIME-AWARE AGENTS

Merik Meriste, Tõnis Kelder, Jüri Helekivi
University of Tartu, 50090 Tartu, Estonia

Leo Motus
Tallinn Technical University, 19086 Tallinn, Estonia

Keywords: software agent, time-aware agent, multi-agent system, agent based programming, agent engineering
environment, construction of time-aware agents

Abstract: Autonomous behaviour of components characterises today computer applications. This has introduced a
new generic architecture – multi-agent systems – where the interactions of autonomous proactive
components (agents) – are decisive in determining the behaviour of the system. Increasingly, agent-based
applications need time-awareness of agents and/or their interactions. Therefore the application architecture
is to be enhanced with sophisticated time model that enables the study of time-aware behaviour and
interactions of agents. The focus of the paper is on the inner structure of a time-aware agent, the enabling
infrastructure for agent’s time-sensitive communication, and the class templates for the construction of
time-aware multi-agents. The prototype development is carried out in C# since this platform is suitable for
controlling multiple simultaneous threads, and flexible to handle sophisticated time models.

1 INTRODUCTION

Autonomous behaviour of components characterise
today computer applications. This has introduced a
new generic architecture – multi-agent systems –
where the interactions of autonomous components
i.e. agents – are decisive in determining the
behaviour of the system. A typical multi-agent
system has a distinctive property that is usually not
present in non-agent systems – the complete list of
interacting agents and the structure of their
interactions cannot be fixed at the design stage. Two
interesting research areas can be outlined here. First,
development of appropriate techniques and tools for
programming agents as well as for agent based
programming. Second, for many practical
applications multi-agent architecture should be
enhanced with time in order to study time-sensitive
behaviour and interactions of agents. For example, a
real-time system can be considered as a loosely
coupled collection of autonomous agents with time-
critical constraints on agents’ behaviour.

Multi-agent systems rely essentially on
behavioural features that cannot be specified in

conventional algorithmic computing, but are
inevitable in real-time, autonomous, and/or proactive
computing systems. Examples of such features are
persistency, interaction with an environment, time-
sensitivity, and emergent behaviour. Many aspects
of those features cannot be completely specified in
advance – their presence depends on the dynamic
operational situations where the components of a
multi-agent system and its environment interact.
Attempts to handle and analyse the above-mentioned
features within the paradigm of algorithmic
computing have led to theoretical difficulties (Blass,
2003; Wegner, 1998).

In principle, an autonomic object with full
control over its state forms a pragmatic basis for
agent’s implementation. An agent implementation
needs additional control threads to support its time-
sensitive proactive behaviour. The implementation
of multi-agents with complex interactions among its
members remains a serious problem in software
engineering practice. The more sophisticated a
community of agents and their time-sensitive
interactions are, the more research needs to be
involved for resolving the implementation problem.

247
Meriste M., Kelder T., Helekivi J. and Motus L. (2005).
C# TEMPLATES FOR TIME-AWARE AGENTS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 247-250
DOI: 10.5220/0002508402470250
Copyright c© SciTePress

A multi-agent system that operates in time-
sensitive environment has a major additional feature
as compared to conventional real-time systems – the
participating agents and their interaction patterns
may change dynamically during integration, testing,
and also during normal operation. This feature has
always been desirable in real-time systems, but has
deliberately been avoided to increase the
behavioural determinism. The component-based
design and steadily increasing pro-activeness of
components have raised the role of emergent
behaviour in real-time systems to the level that
assumes reconsidering the behavioural analysis and
finding new ways of achieving behavioural
determinism.

This paper describes the structure of an agent in
a prototype of agent engineering environment
KRATT that is being developed for engineering
time-aware agents (Motus, 2002). The focus of the
paper is on the inner structure of a time-aware agent,
the enabling infrastructure for agent’s time-sensitive
communication, and the class templates for the
construction of time-aware multi-agents.

The prototype development is carried out in C#
and .NET since this platform is the most suitable for
controlling multiple simultaneous threads, and is
flexible to handle sophisticated time models (Selic,
2003). C# classes for the composition of agents are
described in section 2.

2 C# CLASSES FOR AGENTS

Time-aware agents exist and interact in a computer
system that is distributed across a set of, not
necessarily homogeneous, networks. The agents can
exist completely in a virtual world – interacting only
with the other agents, or also interacting with non-
agent components of the system.

An application consists of administrative agents,
and application agents. All the agents are generated
from classes pre-specified in C# language. Classes
form as a namespace AgentComponents.

2.1 Namespace AgentComponents

An agent (see also figure 1) is an instance of a base
class Agent in the namespace AgentComponents.
The class determines functionalities and lists related
components that are to be applied to generate an
instance of a time-aware agent. As a rule, a multi-
agent system comprises several agents; each agent is
implemented as Windows application (WinA).

Basic components of class Agent are:

• Communicator, exchanging time-stamped
messages with the other agents;

• Manager, managing strategic and operative time-
sensitive control of agent’s functioning;

• Actor, performing the functional tasks;
• Monitor, monitoring specified aspects and time-

stamped events in the agent’s behaviour.
Each component is described by a class in the
namespace AgentComponents. In the most cases the
Communicator is standardised, whereas the other
components are different in different applications.

Definition of a class of agents starts from
defining, at least, four primitive classes.

1) Property. Property is a specification of an
agent or its component and is used for introduction
of an agent to its partners. Public class Property
belongs to the Namespace AgentComponents.

2) Service. Service defines public services that
an agent can offer to its partners, the list of services
is stored by the Agent Management System (AMS)
and is available to agents registered with this
particular AMS. Each service has a name, service
type, and a list of service properties. An agent may
provide several services, described as particular
instances of public class Service.

3) AgentMessage is an object that Communicator
sends to Manager (or to other components) for
further processing. A message usually has a form
that is imposed by communication protocols
combined with actions of encryption and/or
decryption systems. A public class AgentMessage
specifies the object AgentMessage. An
AgentMessage comprises two parts – header of the
message and body of the message. The header is

Agent Application (WinA)

Main Window

main()
Run()

AGENT

Manager

Actor

Monitor Report

Config_
file
.xml

Services

events

Network
traffic

C
o
m
m
u
n
i
c
a
t
o
r

Communication with
physical world

Figure 1: Generic description of an agent

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

248

processed by methods of the class AgentMessage,
within the class Communicator. The body of the
message is not processed by Communicator but is
forwarded to Manager (or to the other addressees
respectively).

4) AgentDescription contains the agent’s name,
lists of properties and services (meant for public use)
of the agent. AgentDescription is an instantiation of
a public class AgentDescription. AgentDescription is
applied to configure agents and to register agents
with an AMS.

2.2 Application Agents

Majority of agents, instantiated from the classes in
the namespace AgentComponents, carry out their
autonomous and proactive tasks. Application agents
belong to the public class Agent: AgentDescription.
Class Agent, the basic class of the namespace, is
derived from the class AgentDescription and may
contain all components of an agent, as variables:

Communicator communicator;
Manager manager;
Actor actor;
Monitor monitor.

When specialising a class Agent it is necessary, as a
rule, to specialise its components Communicator,
Manager, Actor, and Monitor. In the same WinA are
constructed all components of the Agent. One has
also to rewrite the respective constructor in order to
substitute the construction of components with the
construction of specialised (inherited) objects.
Instantiation of a representative of the base class
Agent is carried out by method init that has to be
rewritten if one wants to specialise the particular
class of agents.

2.3 Agent’s components

An application agent is a complex that comprises
several components described as follows.

1) Communicator implements the inter-agent
communication and interaction with the other agents
in the system. Communicator’s functionality is
standardised, e.g. it may implement the layers of
Agent Communication Language, FIPA. In principle
it could be an agent on its own. In its present
implementation it is an object instantiated from
public class Communicator.

Method Communicator.init invokes a thread that
waits for information from network, addressed to
port Port. This thread is simultaneous with the other
threads invoked within this agent. When a message

from the network is received, a method
Communicator.client is invoked – the thread waiting
for new network messages remains active. Thus, the
Communicator can process several network
messages concurrently. Specific synchronisation
services or appropriate time services support the
synchronisation of concurrent processing of
messages, whenever necessary. Those services and
primitives can be implemented as specific
application agents providing those services for other
agents of a particular multi-agent system.

Method Communicator.SendReply sends a
message to the partner agent and waits for response.
The response (possibly empty) is transformed to the
AgentMessage form and is the value of this method.

A method Communicator.shutdown terminates
the network message waiting thread of the
Communicator. Terminating of the Agent
automatically terminates the Communicator.

2) Manager is a public class whose instance
guides interaction between Communicator and
Actor, maintains the goal function(s) that define and
rule the proactive behaviour of the agent, and
controls learning and/or adaptability of the Actor.
The only method defined in the class is
Manager.Handle that is typically invoked by
Communicator. The method Manager.Handle
executes as an independent thread and must be re-
enterable. The other methods are to be defined
during the derivation from the class Manager.

3) The public class Actor implements direct
functional and non-functional requirements of an
agent. Hence its methods and attributes depend
heavily on a specific application, and very little can
be predefined. The modified constructor guarantees
communication with the other components of the
agent, and communication with the real world
objects (outside of the computer system) if
necessary.

4) Monitor is a component that monitors the
operation of the agent. Based on the monitoring
results it prepares periodic reports and forwards
those (upon request) to MonitorAgent that is
responsible for behaviour monitoring and self-
diagnosing of this particular multi-agent system.

Monitor records events and processes voluntarily
reported by the other components of an Agent. A
public class MonitoredEvent defines an abstract
event as an instantaneous phenomenon that has time
instant of occurrence, type of the phenomenon,
optional description of the phenomenon, and some
quantitative characteristics of the event. A public
class MonitoredProcess defines an abstract process
as an activity that has a starting time, termination
time, type of the activity, optional description of the
activity, and some quantitative characteristics of the
process.

C# TEMPLATES FOR TIME-AWARE AGENTS

249

Request for recording is done by a Monitor
method Record (MonitoredEvent event) or Record
(MonitoredProcess process). Monitor provides a
report in XML format; the report is based on
monitored events and processes, and includes self-
diagnosis results.

2.4 Administrative Agents

Administrative agents are specific in a sense that
they store and execute the rules, and provide
common services, required for expected normal
operation of application agents. Administrative
agents are also instances of classes of the namespace
AgentComponents.

1) Agent AMS for management of application agents
Instances of this class provide specific services, such
as authentication and registration of agents who plan
to operate within the domain of this particular AMS;
keeping a directory that lists the agents, their
location, their public resources and services, etc.
Agents of this class also keep track of the active
agents, agents who have temporarily suspended the
operation, and agents who have left the directory for
various reasons. Agents of this class also assign each
registered agent a port for messages from the other
agents provide search engine services for registered
agents who look for potential cooperating partners
can suspend, or terminate operation of any agent, if
necessary.

2) Agent ProxyAgent
Representative of this class may serve as a
switchboard for transferring messages to and from
the addressee whose address is not publicly available
– e.g. agents that reside behind a firewall. The
second area for using a ProxyAgent is debugging
and monitoring the traffic between application
agents. ProxyAgents of have to register themselves
with the corresponding agents from class AMS.

3) Agent MonitorAgent
Representatives of this class are agents that collect
and process activity reports from Monitor classes
within application agents. This information can be
used for analysing the properties of the application
system run-time, or during the post-mortem analysis.
Again, the designer may instantiate several agents of
this class with slightly different functions, if
necessary.

3 CONCLUSIONS

A clear rise of interest can be observed to applying
agents, and multi-agent systems in situations that
assume time-awareness, or even are essentially time-
critical. This could be caused by the successful
practice of building component-based systems,
combined with the fact that increasingly the
autonomous, and proactive components are being
used. The evolution of computer science is gradually
reaching the understanding that interactive systems
represent a new paradigm in computation (Wegner,
1998; Blass, 2003). The basis for this empirical
computer science research relies on two
contradictive concepts – inside-view to prescribe the
behaviour of an agent (i.e. programming), and
outside-view to design and analyse (i.e. modelling).

In this paper the agent specific structure
implemented for agent engineering environment
KRATT was considered. KRATT enables to develop
time-aware software agents. The focus of this paper
was on the inner structure of an agent that explicitly
enables to elaborate its time-awareness features, on
communication primitives of agents, and on the
classes of agents.KRATT is still under development.

ACKNOWLEDGMENTS

This research has been partially financed by
Estonian Science Foundation (ETF) grant no. 4860,
and by grants no. 014 2509s03 and no. 018 2565s03
from the Estonian Ministry of Education. This
support is gratefully acknowledged.

REFERENCES

Blass, A. and Gurevich, Y., 2003. Algorithms: A quest for
absolute definitions. Bulletin of European Association
for Theoretical Computer Science, no. 81, 30pp.

Motus, L., Meriste, M., Kelder, T., Helekivi, J., 2002. An
Architecture for a Multi-agent System Test-bed. Proc.
of the 15th IFAC World Congress, vol. L, Elsevier
Science Publ., 6p.

Selic, B. and Motus, L., 2003. Modeling of Real-time
Software with UML. IEEE Control Systems Magazine,
vol.23, no.3, 31-42.

Wegner, P., 1998. Interactive foundations of computing.
Theor.Computer Science, vol. 192, 315-351.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

250

