
EARLY DETECTION OF COTS FUNCTIONAL SUITABILITY
FOR AN E-PAYMENT CASE STUDY

Alejandra Cechich
Departamento de Ciencias de la Computación, Universidad del Comahue, Neuquén, Argentina

Mario Piattini
Escuela Superior de Informática, Universidad de Castilla-La Mancha, Ciudad Real, España

Keywords: Component-Based System Assessment, COTS components, Software Quality.

Abstract: The adoption of COTS-based development brings with it many challenges about the identification and
finding of candidate components for reuse. Particularly, the first stage in the identification of COTS
candidates is currently carried out dealing with unstructured information on the Web, which makes the
evaluation process highly costing when applying complex evaluation criteria. To facilitate the process, in
this paper we introduce an early measurement procedure for functional suitability of COTS candidates, and
we illustrate the proposal by evaluating components for an e-payment case study.

1 INTRODUCTION

COTS-Based System Development is now
recognised as the way forward in building software
architectures that can operate in advanced
distributed, intranet, and Internet environments. In
essence, using components to build systems reduces
complexity because composers do not need to know
how a component works internally. They only need
to know what the component is and the services it
provides. Ideally, most of the application
developer’s time is spent integrating components.
Components become unwieldy when combined and
re-combined in large-scale commercial applications.
What are needed are ensembles of components that
provide major chunks of application functionality
that can be snapped together to create complete
applications.

COTS component filtering is to decide which
components should be selected for more detailed
evaluation. Decisions are driven by a variety of
factors – foremost are several design constraints that
help define the range of components. So a balance is
struck, depending upon the level of abstraction,
complexity of the component, goals and criteria, and
so forth. Some methods include qualifying
thresholds for filtering. For example, during the
activity "Collect Measures" of the COTS

Acquisition Process (Ochs et al., 2000), data
according to a measurement plan are collected on a
set of COTS software alternatives. Data are used in
the filtering activity to eliminate those COTS
alternatives that are unacceptable for use.

Identification of COTS candidates is a complex
activity itself. It implies not only dealing with an
impressive number of possible candidates but also
with unstructured information that requires a careful
analysis. In this context, some proposals use
description logics to develop an ontology for
matching requested and provided components
(Braga et al., 1999; Pahl, 2003); others suggest
extending the identification stage with a learning
phase, which provides support to the COTS
component discovery process (Jaccheri and
Torchiano, 2002). Some other approaches try to
measure the semantic distance between required and
offered functionality (Alexander and Blackburn,
1999; Jilani and Desharnais, 2001) but these
measures usually need detailed information as input
to the calculations.

In addition to learning and classification issues, a
filtering process is concerned with the pre-selection
of candidates. It actually takes place by matching
several properties of COTS components, including
some inexact matching. Moreover, there are some
cases where goals cannot be entirely satisfied
without considerable product adaptation and other

11
Cechich A. and Piattini M. (2005).
EARLY DETECTION OF COTS FUNCTIONAL SUITABILITY FOR AN E-PAYMENT CASE STUDY.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 11-18
DOI: 10.5220/0002507700110018
Copyright c© SciTePress

cases where these goals must be resigned to match
product features (Alves and Filnkestain, 2002);
(Cooper and Chung, 2002).

As a possible improvement, the Six Sigma
approach has been suggested selecting packaged
software (Tayntor, 2002); however the evaluation
mainly relies on the information provided by demos
and additional documentation of the software. Then,
the lack of measures makes this process perfectible.

Along these lines, our approach based on Six-
Sigma precepts, focuses on fact-based decisions,
teamwork, and measurement as a way of driving the
identification and filtering process (Cechich and
Piattini, 2004a; Cechich and Piattini 2004b).

We refer to a component-based system as a
system that uses at least one component in
conjunction with other components, legacy systems,
and other pieces of software – including COTS
components – to satisfy user’s requirements. This
concept is introduced to emphasize the fact that the
output from the system satisfies the user’s
requirements by using the functionality supplied by
at least one COTS component. Particularly, we
consider functional suitability as the main aspect to
be measured; however, measures should be
expressed in such a way that calculation is possible
at early stages.

Our proposal aims at improving the filtering
process by performing three steps: (1) a
“commitment” step, which produces a committed
required specification of a component; (2) a “pre-
filtering” step, in which COTS candidates are pre-
selected according to their functional suitability; and
(3) a “filtering” step, in which architectural
semantics adaptability produces an indicator of
stability that serves as a basis for the final candidate
filtering. In this paper, we particularly address the
second step (“pre-filtering”), in which functional
suitability measures are calculated and analysed.

Metrics for COTS based systems are emerging
from the academic and industrial field (Martín-Albo
et al., 2003). However, many of these definitions do
not provide any guideline or context of use, which
makes metric’s usability dependable on subjective
applications. Measures are not isolated calculations
with different meanings; on the contrary, capability
of measures is strongly related to the process of
calculating and providing indicators based on the
measures. Our approach intends to define a filtering
process in which measures are included as a way of
providing more specific values for comparison. At
the same time, the process guides the calculation, so
ambiguity is decreased.

Among other relationships, resulting measures
are related to the artefact to be measured. In our
approach, the artefact is expressed as functionality
required by a particular application, and

functionality offered by COTS candidates. Generally
speaking, both cases are subject to analysing
information that is modelled and weighted by people
– composers or integrators on one side, and
component’s suppliers on the other. Different
interpretations, perceptions, and judgements are then
affected by the expressiveness of information.
Nevertheless, our comparisons are abstract-level
definitions, which allow us to customize the filtering
process by instantiating the calculation procedure
according to different contexts of use.

Since information needed to compute the
measures depends on how COTS suppliers
document COTS component’s functionality (Bertoa
et al., 2003), and how requirements are specified, in
this paper we illustrate how metrics might be
calculated by measuring functional suitability on
COTS candidates for an E-payment case study.

In section 2 we briefly introduce our compact
suite of measures (Cechich and Piattini, 2004c) that
should be used during the pre-filtering process.
Then, section 3 shows how measures might be
applied to our case and provides some discussion. A
final section addresses conclusions and topics for
further research.

2 MEASURING FUNCTIONAL
SUITABILITY

In the previous section, we have emphasized the fact
that a system should satisfy the user’s requirements
by using the functionality supplied by at least one
COTS component. Then, given a specification SC for
an abstract component type C, a candidate
component K to be a concrete instance of C must
conform to the interface and behaviour specified by
SC. Mappings in SC, which represent the different
required functionalities, are established between
input and output domains. We focus on
incompatibilities derived from functional differences
between the specification in terms of mappings of a
component Ki (SKi) and the specification in terms of
mappings of SC.

Our measures have been defined to detect
domain compatibility as well as functional
suitability. Let us briefly clarify this point: domain
compatibility measures show that there are some
candidate components able to provide some
functionality. However, we cannot be certain of the
amount of functionality that is actually provided –
matching input data does not certify that output data
match too. Therefore, even a component might be
full domain compatible, there is still another set of
measures to be applied in order to determine the
functional suitability.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

12

Let us illustrate the measurement procedure by
using an credit card payment system as an example.
We suppose the existence of some scenarios
describing the two main stages of the system –
authorization and capture. Authorization is the
process of checking the customer’s credit card. If the
request is accepted, the customer’s card limit is
reduced temporarily by the amount of the
transaction. Capture is when the card is actually
debited. Scenarios will provide an abstract
specification of the mappings of SC that might be
composed of:

- Input domain:
(AID) Auth_IData{#Card, Cardholder_Name, Exp-
Date};
(CID) Capture_Idata{Bank_Account, Amount}.
- Output domain:
(AOD) Auth_Odata{ok-Auth};
(COD)
 Capture_Odata{ok_Capture, DB_Update}.
- Mapping: {AID → AOD};{CID → COD}

Suppose we pre-select two components to be

evaluated, namely K1 and K2 respectively. A typical
situation for inconsistency in the functional
mappings between SK1, SK2 and SC is illustrated in
Figure 1, where dashed lines indicate (required)
mappings with respect to SC, and the solid lines are
(offered) mappings with respect to SK1 (grey) and SK2
(black). Note that the input domain of the
component K1 does not include all the values that the
specification SC requires, i.e. the capture
functionality is not provided. Besides, the input
domain of the component K2 includes more values
than the required by SC, although the mapping
satisfies the required functionality. We should also
note that there is another functionality provided by
K2, i.e. {Taxes → Statistics}, which might inject
harmful effects to the final composition.

Figure 1: Functional mappings of SC and SK1/SK2

Table 1: Description of Functional Suitability measures
Measure Id. Description

Component-Level
CFC
Compatible
Functionality

The number of functional
mappings provided by SK and
required by SC in the scenario S

MFC
Missed Functionality

The number of functional
mappings required by SC and
NOT provided by SK in the
scenario S.

AFC
Added Functionality

The number of functional
mappings NOT required by SC
and provided by SK in the
scenario S.

CCF
Component
Contribution

Percentage in which a component
contributes to get the functionality
required by SC in the scenario S.

Solution-Level
SNCF
Candidate Solution

The number of components that
contribute with compatible
functionality to get the
requirements of SC in the scenario
S.

CFS
Compatible
Functionality

The number of functional
mappings provided by SN and
required by SC in the scenario S.

MFS
Missed Functionality

The number of functional
mappings required by SC in the
scenario S and NOT provided by
SN.

AFS
Added Functionality

The number of functional
mappings NOT required by SC in
the scenario S and provided by
SN.

SCF
Solution Contribution

Percentage in which a solution
contributes to get the functionality
required by SC in the scenario S.

Our measures on functional suitability have

been classified into two different groups:
component-level measures and solution-level
measures. The first group of measures aims at
detecting incompatibilities on a particular
component K, which is a candidate to be analysed.
However, it could be the case that we need to
incorporate more than one component to satisfy the
functionality required by the abstract specification
SC. In this case, the second group of measures
evaluates the functional suitability of all components
that constitute the candidate solution.

• AID

• CID
dom SC

• Taxes dom SK1

dom SK2

• AOD

• COD

ran SC

• Statistics

ran SK1

ran SK2

SKi(i)SC(i)
SK2(i)

Table 1 lists our suite of functional suitability
measures. We refer the reader to (Cechich and
Piattini, 2004c) for their formal definition. Solution-
level metrics are listed here for completeness
reasons, since our case study only needs to apply
component-level measures; i.e. combination of

EARLY DETECTION OF COTS FUNCTIONAL SUITABILITY FOR AN E-PAYMENT CASE STUDY

13

components from the marketplace is not necessary to
get the required functionality, therefore a solution-
level analysis is not required.

3 MEASURING COTS
CANDIDATES: A CASE STUDY

Scenarios describing the two main stages of a credit
card payment, as we introduced in the previous
section, represent here a credit card (CCard)
payment system, which provide an abstract
specification of the input (AID, CID) and output
domains (AOD, COD) of a component C, and their
corresponding mappings.

After a quick browse on the Web as a COTS
repository, we chose COTS components catalogued
by the ComponentSource organization
(www.componentsource.org) as members of the
“Credit Card Authorization” group. Following, we
introduce some examples of our analysis.

Firstly, we chose one component –
AcceptOnline by Bahs Software – as a candidate to
provide the required functionality. Properties of
AcceptOnline are grouped into the following
classes: merchant fields, transaction fields, and
response fields. From those classes, we identify:

• transaction_type: This field identifies the type

of transaction being submitted. Valid
transaction types are: “CK” (System check),
“AD” (Address Verification) “AS”
(Authorization), “ES” (Authorization and
Deposit), “EV” (Authorization and Deposit with
Address Verification), “AV” (Authorization
with Address Verification), “DS” (Deposit), and
“CR” (Credit).

• cc_number: The credit card number to which
this transaction will be charged.

• cc_exp_month and cc_exp_year: The numeric
month (01-12) and the year (formatted as either
YY or CCYY) in which this credit card expires.

• billing phone: The shopper’s telephone number.
• grand total: The total amount of the transaction.
• merchant email: This is the Email address of the

merchant.
• order type: This field determines which fields

are used to validate the merchant and/or hosting
merchant.

• transactionStatus: Transaction Status. Valid
values are: G - Approved, D -Declined, C -
Cancelled, T - Timeout waiting for host
response, R – Received.

Table 2: Required Fields by Transaction Type
Field CK AD AS ES EV AV DS CR

authorization Y
billing_address1;
billing address2

Y Y Y

billing_zip Y Y Y
billing_pone Y Y Y Y Y
cc_number;
cc_exp_month;
cc_exp_year

Y

Y

Y

Y

Y

Y

Y

counter Y Y Y Y Y Y
debug Y Y Y Y Y Y Y
grand_total Y Y Y Y Y Y
merchant_email Y Y Y Y Y Y Y
order_numer Y Y
…. …

Methods of AcceptOnline are specified in terms

of their main focus and required input. Particularly,
the SendPacket method is used to send the
transaction info to the ECHOOnline server, and
required properties should be filled as shown in
Table 2 (requirements for CR are partially listed).

From the AcceptOnline (AOnline) description
above, we might derive the following mappings
related to our authorization (AS) and capture (DS)
required functionality:

– Input domain:
 (AOnline.ASI) {billing_phone, cc_number,

cc_exp_month, cc_exp_year, counter, debug, grand
total, merchant_email};

(AOnline.DSI) {authorization, cc_number,
cc_exp_month, cc_exp_year, counter, debug,
grand_total, merchant email}.

– Output domain:
 (AOnline.ASO) {TransactionStatus};
 (AOnline-DSO) {TransactionStatus}.

– Mapping:
{AOnline.ASI → AOnline.ASO;
AOnline.DSI → AOnline.DSO} .

There are also other possible functional

mappings as follows:

{AOnline.ADI → AOnline.ADO;
AOnline.EVI → AOnline.EVO;
AOnline.AVI → AOnline.AVO;
AOnline.CRI → AOnline.CRO},

which represent address verification,

authorization and deposit with address verification,
and so forth.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

14

For brevity reasons, we assume here that input
domain compatibility measures have indicated that
the AcceptOnline component is a candidate for
further evaluation – after comparing AID, CID
(from specification SC) to AOnline.ASI and
AOnline.DSI. We should note that values of the
input domain do not exactly match: billing_phone is
used instead of cardholder_name to identify
cardholders; and merchant_email is used for
Bank_id. Similarly, ok_Auth, ok_Capture, and
BD_Update might correspond to the different values
of TransactionStatus. However, in all cases
matching is possible since purpose is similar. Then,
similarity is basically determined by analysing
semantics of concepts with respect to their use.

Now, computing measures from Table 1
produces the following results:

CFC = 2; MFC = 0; AFC = 4; and CCF = 1

These results indicate that the AcceptOnline

component has proved being 100% (CCF = 1)
functionally suitable, and thus a candidate for further
evaluation during the filtering process – for example
by analysing size and complexity of adaptation.
Measures also indicate that there are four added
functions (AFC = 4), which deserve more careful
examination.

Let us analyse a second component from the
same group, i.e. catalogued as a member of “Credit
Card Authorization”. This time, we have chosen the
Energy Credit Card component by Energy
Programming as the candidate to provide the
required functionality.

The Energy Credit Card component provides two
functions described as follows:

1. Functionality “Extract_Card_Data”, which

provides the ability to decode the magnetic data on
the swipe card; and

2. Functionality “Validate_Card_Details”, which
provides the ability to validate keyed entry data from
other systems.

To accomplish both functionalities, input data is

required as follows:

Input:
{surname, initials, salutation, card_number,
card_type, startDate, expiryDate, issue}
Output: {error_number, error_text}

As we easily can see, this second component

does not provide the required functionality of our
scenario. Although the component is classified as a
member of the “Credit Card Authorization” group,
functionalities show that only validation of credit

card data is provided. Therefore, calculating
measures from Table 1 would produce the following
results:

CFC = 0; MFC = 2; AFC = 0; and CCF = 0

These results indicate that the Energy Credit

Card component is 0% (CCF = 0) functionally
suitable, and we should not invest more time and
effort in more evaluation. However, note that
functionalities provided by the Energy Credit Card
component might be part of the required
functionality associated to the “Authorization”
scenario. To make this point explicit, if necessary,
evaluators should expose the different functionalities
through a more detailed description of the required
scenario; hence calculation of partially satisfied
functionality would be possible. In our example,
“Authorization” could be expressed as “Credit Card
Validation” and “Amount Authorization”. In this
way, calculating measures for the Energy Credit
Card component would result in:

CFC = 1; MFC = 2; AFC = 0; and CCF = 0.33

These results would indicate that the Energy

Credit Card component might be a candidate to be
combined along with other components to provide
the required functionality (and not necessarily
discharged). Of course, decisions on how detailed an
scenario should be depend on requirements on a
particular domain; i.e. components that do not
provide the whole authorization procedure might not
be useful in a particular case. We suppose here that
balanced requirements among all stakeholders have
been considered to provide the appropriated
scenarios (Cechich and Piattini, 2004b).

Now, let us consider a third component for our
evaluation procedure: the PaymentCardAssist
component by Aldebaran, that supports e-mail
verification, event logging, data encryption, file
compression, and payment card detail validation.

The PaymentCard object within the
DeveloperAssist Object Library validates payment
card (credit, debit and charge card) information. The
PaymentCard object does not provide authorization
or clearing functionality, but rather provides a means
to validate payment information entered by a site
visitor, before pursuing a full authorization. After
considering detailed data to be validated, we can see
that our measures will result as:

CFC = 0; MFC = 2; AFC = 4; and CCF = 0;

or after considering a more detailed scenario, in

which card data validation is made explicit,
measures will result as:

EARLY DETECTION OF COTS FUNCTIONAL SUITABILITY FOR AN E-PAYMENT CASE STUDY

15

CFC = 1; MFC = 2; AFC = 4; and CCF = 0.33

Finally, let us consider another component from

the same group – the CCProcessing component by
Bahs Software. It supports the authorization,
settlement (capture) , and credit/refund operations.

“Authorization” is divided into
“PerformAuthorization” and “AddToBatch”
operations, meanwhile “Capture” corresponds to the
“PerformSettlement” operation. Transaction
descriptions are presented as follows:

• “PURCHASE”: Standard purchase

transaction (In "card not present" mode);
• “PURCHASE_TRACK1”: Purchase

transaction in "card present" mode. Track1
property should be set for such transaction
type.

• “VALIDATE_CARD”: Card authentication
to determine only if a card has been reported
lost or stolen.

• “REVERSE_AUTHORIZATION”: On-line
Authorization Reversal.

• “REVERSE_SETTLEMENT”: Store &
Forward Authorization Reversal.

• “CREDIT”: Credit/refund operation.

By analysing input and output domains of

CCProcessing, we have identified mappings that
cover the functionalities described by our scenario.
Considering “credit” and address validation (part of
“validate card”) as additional functionality (reverse
authorization and reverse settlement might be
considered as part of a “Cancel” operation),
measurement results might be expressed as:

CFC = 2; MFC = 0; AFC = 2; and CCF = 1

A similar treatment was applied to evaluate the

other components in the group. From 22
components, we consider 12 for analysis since the
other 10 components differ only in terms of their
implementations, preserving the same functionality.

Results of our calculations are shown in Table 3.
Note that only four components provide the
functionality required by our scenario. This fact
would indicate that those components are pre-
selected for more evaluation, since they are 100%
functionally suitable. A special remark should be
made on values assigned to the ComponentOne
Studio Enterprise: this component is a combination
of four individual components that support
reporting, charting, data manipulation, and user
interface capabilities for .NET, ASP.NET, and
ActiveX applications. As readers easily can see, this
component essentially differs from the others in the
group; however it is classified as a “Credit Card

Authorization” component. For this reason,
additional functionality (AFC) has not been scored.

Table 3: Measurement results for components in the

“Credit Card Authorization” category
Component CFC MFC AFC CCF
AcceptOnline 2 0 4 1
CCProcessing 2 0 2 1
CCValidate 0 2 0 0
CreditCardPack 0 2 0 0
EnergyCreditCard 0 2 0 0
IBiz 2 0 2 1
InaCardCheck 0 2 0 0
IPWorks 2 0 1 1
LuhnCheck 0 2 0 0
PaymentCardAssist 0 2 4 0
SafeCard 0 2 0 0
ComponentOneStudio 0 2 ** 0

3.1 Discussion

Scenarios have been widely used during design as a
method to compare design alternatives and to
express the particular instances of each quality
attribute important to the customer of a system.
Scenarios differ widely in breadth and scope, and its
appropriate selection is not straightforward. Our use
of scenarios is a brief description of some
anticipated or desired use of a system. We
emphasize the use of scenarios appropriated to all
roles involving a system. The evaluator role is one
widely considered but we also have roles for the
system composer, the reuse architect, and others,
depending on the domain.

The process of choosing scenarios for analysis
forces designers to consider the future uses of, and
changes to, the system. It also forces to consider
non-functional properties that should be properly
measured during the COTS selection process. In
some cases, this diversity of concerns produces fine-
grained functionality described by scenarios, but
coarse-grained functionality might be described as
well.

As a consequence, our measures are affected by a
particular scenario’s description since calculation
refers to the number of functions – without further
discussion about their particular specification. For
example, in our CCard system, “validation with
address” and “reverse authorization” could be
considered as part of an ordinary credit card
authorization process. Assuming that, scores for
added functionality (AFC) would be decreased (only
“credit” would be considered as added
functionality). As another example, we could choose
a more detailed description of the functionality and

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

16

decompose “Authorization” into “Credit Card
Validation” and “Credit Card Authorization”. In this
case, calculation of provided and missed
functionality would be different and contribution
(CCF) would show which components partially
contribute to reach credit card authorization.

Table 4 shows our measures considering the last
two assumptions: (1) including validation
with/without address and reverse authorization as
part of the procedure, and (2) splitting
“Authorization” into two processes – validation and
authorization itself. By comparing scores from Table
3 and Table 4 we illustrate the importance of
standardizing the description of required
functionality as well as providing a more formal
definition of scenarios.

Also, note that components providing all
required functionality remain unchanged on both
tables: only four components provide authorization
and capture as required in our case (4 / 12 = 33%). It
would indicate that searching a catalogue by
category is not enough to find appropriated
components. In our example, better categorizations
would help distinguish credit card validation from
authorization. Moreover, a better categorization
would help avoid that a component that does not
provide any functionality (accordingly to the
category), like ComponentOneStudio, be catalogued
as a member of any of those classes.

Table 4: Measurement results after changing scenarios

Component CFC MFC AFC CCF
AcceptOnline 3 0 1 1
CCProcessing 3 0 1 1
CCValidate 1 2 0 0.33
CreditCardPack 1 2 0 0.33
EnergyCreditCard 1 2 0 0.33
 IBiz 3 0 1 1
InaCardCheck 1 2 0 0.33
IPWorks 3 0 0 1
LuhnCheck 1 2 0 0.33
PaymentCardAssist 1 2 4 0.33
SafeCard 1 2 0 0.33
ComponentOneStudio 0 3 *** 0

Our measures indicate that four components are

candidates to be accepted for more evaluation, i.e.
the components are functionally suitable but there is
some additional functionality that could inject
harmful side effects into the final composition.
Identifying and quantifying added functionality are
subject to similar considerations – the number of
functions essentially is a rough indicator that might
be improved by weighting functionality; i.e. clearly
the four functions added by the component
PaymentCardAssist are different in scope and

meaning from the other added functions. However,
just counting functions would help decide on which
components the analysis should start.

Table 4 also shows that there are some candidates
which are able to provide some required
functionality – “credit card validation”. But making
this functionality more visible not necessarily
indicate the type of validation that actually is taking
place, for example whether or not a MOD10/Luhn
check digit validation is carried out. Our measures
are just indicators of candidates for further
evaluation, on which additional effort might be
invested. Nevertheless, our measures do not detect
the best candidates at a first glance but a possible
interesting set. A process guides calculations so
ambiguity is decreased (Cechich and Piattini,
2004a), but committed scenarios still depend on
particular system’s requirements.

Besides, there are another types of analysis the
component should be exposed before being eligible
as a solution – such as analysis of non-functional
properties, analysis of vendor viability, and so forth
(Ballurio et al., 2002). Our set of measures are only
providing a way of identifying suitable components
from a functional point of view. We might provide a
more precise indicator when calculating the
maintenance equilibrium value as introduced in
(Abts, 2002): “Maximise the amount of functionality
in your system provided by COTS components but
using as few COTS components as possible”.

A final remark brings our attention into the
necessity of balancing required and offered
functionality during COTS-based developments.
After analysing candidates, we might also change
our expectations on finding appropriated
components. In this case, we could potentially resign
most of our expectations on a particular requirement
letting offered services prevail. For example, we
could keep some of the alternative services resigning
others whether COTS candidates are hard to find or
adapt. An additional measure on modifiability of
goals (Cechich and Piattini, 2004b) would help
detect the degree in which certain functionality can
be changed when selecting COTS components. Of
course, we could also decide not to select
components at all, and build a solution from scratch.

4 CONCLUSION

We have briefly presented some measures for
determining functional suitability of COTS
candidates by applying the calculations on a case
study. It showed how COTS information may be
mapped onto our measurement model leading to an
early value for decision making.

EARLY DETECTION OF COTS FUNCTIONAL SUITABILITY FOR AN E-PAYMENT CASE STUDY

17

However, differences in COTS component
documentation make evaluation harder. Our
application clearly remarks the importance of
standardising COTS component documentation and
analysing the diverse ways of structuring COTS
component’s information to facilitate functional
matching detection. However, successful matching
also depends on how functional requirements are
specified. Then, a formal procedure for
identification of candidates should be defined to
make the process cost-effectively.

Constraints on the component’s use and
constraints relative to a context might be also useful
to be considered. These aspects would indicate that
providing more complex classifications, such as
taxonomies of components, would help catalogue
them in a marketplace. Additionally, more complex
descriptions might be provided by using ontologies
and contexts. Along these lines, our future work
aims at defining some guidelines and hints on the
searching and learning process of COTS component
candidates.

ACKNOWLEDGMENTS

This work was partially supported by the CyTED
project VII-J-RITOS2, by the UNComa project
04/E059, and by the MAS project supported by the
Dirección General de Investigación of the Ministerio
de Ciencia y Tecnología (TIC 2003-02737-C02-02).

REFERENCES

Abts C. COTS-Based Systems (CBS) Functional density -
A Heuristic for Better CBS Design, 2002. In
Proceedings of the First International Conference on
COTS-Based Software Systems, Springer Verlag
LNCS 2255, pages 1–9.

Alexander R. and Blackburn M., 1999. Component
Assessment Using Specification-Based Analysis and
Testing. Technical Report SPC-98095-CMC,
Software Productivity Consortium.

Alves C. and Filkenstein A., 2002. Challenges in COTS-
Decision Making: A Goal-Driven Requirements
Engineering Perspective. In Proceedings of the
Fourteenth International Conference on Software
Engineering and Knowledge Engineering, SEKE’02.

Ballurio K., Scalzo B., and Rose L, 2002. Risk Reduction
in COTS Software Selection with BASIS. In
Proceedings of the First International Conference on
COTS-Based Software Systems, ICCBSS 2002,
Springer-Verlag LNCS 2255 , pp. 31-43.

Bertoa M., Troya J., and Vallecillo A., 2003. A Survey on
the Quality Information Provided by Software

Component Vendors. In Proceedings of the ECOOP
QAOOSE Workshop.

Braga R., Mattoso M., and Werner C., 2001. The use of
mediation and ontology for software component
information retrieval. In Proceedings of the 2001
Symposium on Software Reusability: putting software
reuse in context, ACM Press, pp. 19-28.

Cechich A. and Piattini M., 2004a. Managing COTS
Components using a Six Sigma-Based Process. In
Proceedings of the 5th International Conference on
Product Focused Software Process Improvement,
PROFES 2004, volume 2009 of LNCS, Springer-
Verlag, pp.556-567.

Cechich A. and Piattini M., 2004b. Balancing
Stakeholder’s Preferences on Measuring COTS
Component Functional Suitability. In Proceedings of
the 6th International Conference on Enterprise
Information Systems, ICEIS 2004, pp. 115-122.

Cechich A. and Piattini M., 2004c. On the Measurement
of COTS Functional Suitability. In Proceedings of the
3 International Conference on COTS-based Software
Systems, ICCBSS 2004, volume 2959 of LNCS,
Springer-Verlag, pp. 31-40.

rd

Cooper K. and Chung L., 2002. A COTS-Aware
Requirements Engineering and Architecting
Approach: Defining System Level Agents, Goals,
Requirements and Architecture, Technical Report
UTDCS-20-02, Department of Computer Science, The
University of Texas at Dallas.

Jaccheri L. and Torchiano M., 2002. A Software Process
Model to Support Learning of COTS Products.
Technical Report, IDI NTNU.

Jilani L. and Desharnais J., 2001. Defining and Applying
Measures of Distance Between Specifications. IEEE
Transactions on Software Engineering, 27(8):673—
703 .

Martín-Albo J., Bertoa M., Calero C., Vallecillo A.,
Cechich A., and Piattini M., 2003. CQM: A Software
Component Metric Classification Model. In Proc. of
the 7th ECOOP Workshop QAOOSE 2003, pages 54-
60, Darmstadt, Germany.

Ochs, D. Pfahl, G. Chrobok-Diening, and Nothhelfer-
Kolb, 2000. A Method for Efficient Measurement-
based COTS Assessment and Selection - Method
Description and Evaluation Results. Technical Report
IESE-055.00/ E, Fraunhofer Institut Experimentelles
Software Engineering.

Pahl C., 2003. An Ontology for Software Component
Matching. In Proceedings of the Sixth International
Conference on Fundamental Approaches to Software
Engineering, volume 2621 of LNCS, Springer-Verlag,
pp. 6-21.

Tayntor C., 2002. Six Sigma Software Development.
Auerbach Publications.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

18

