
The Web Host Access Tools (WHAT): Exploring
Context Sensitive Information Access

Lillian N. Cassel1, Satarupa Banerjee1, Arun Narayana1, Ursula Wolz2

1 Villanova University, Department of Computing Sciences, 800 Lancaster Avenue,
Villanova, PA 19085-1699, USA

2The College of New Jersey, Department of Interactive Multimedia
2000 Pennington Road,
Ewing, NJ 08628, USA

Abstract. Search engines are an integral part of web based information gather-
ing and retrieval, but they are significantly dependent upon the words or word
phrases input by the end user. The search engine usually contributes no addi-
tional semantic data toward the information acquisition process. This paper
presents an intelligent search agent, the “Web Host Access Tools” (WHAT),
which introduces the notion of queries conducted within a specific contextual
meaning. Given a context and adaptive associated keywords that personalize to
the search history and preferences of the user, WHAT performs more intelli-
gent resource filtering than conventional search engines, providing more rele-
vant results while filtering irrelevant references.

1 Introduction

Web search is a highly refined activity that has become much more accurate in the lit-
tle more than 10 years of the web’s history. A simple Google query will likely pro-
duce relevant results. However, a number of problems remain. Web searches remain
remote services, organized and operated for masses of users and without history of
prior search experiences to guide later work. Users still may repeat a search and find
a favorite response missing from the result list. It is difficult to say “give me the new
results for this query; things I have not seen before.” The Web Host Access Tools
(WHAT) project addresses these difficulties in a unique way. The tool runs on an in-
dividual’s local computer. WHAT allows a user to define any number of contexts,
which are areas of frequent search activity. When WHAT recommends search results
to the user, it incorporates knowledge of the user’s prior searches in that context. The
search history allows a user to recover any previously found result, but also contrib-
utes to accurate definition of the context, which is used to enhance future related
searches. Because WHAT runs on the user’s own computer, the context is enhanced
specifically for that user’s purposes. User feedback on each search feeds analysis that
leads to recognition of characteristics of search results that address the broad category

N. Cassel L., Banerjee S., Narayana A. and Wolz U. (2005).
The Web Host Access Tools (WHAT): Exploring Context Sensitive Information Access.
In Proceedings of the 1st International Workshop on Web Personalisation, Recommender Systems and Intelligent User Interfaces, pages 34-42
DOI: 10.5220/0001422100340042
Copyright c© SciTePress

of the context and characteristics that are specific to a particular query and have lim-
ited relevance to the overall context definition.

This paper introduces the WHAT project, its overall architecture and internal op-
eration, as well as some very early analysis of its effectiveness in connecting the user
to the most relevant search results. Current work focuses on introducing support vec-
tor machines to extract important characteristics from search results and the user’s re-
sponse to them so that the context definition is more accurate and future query en-
hancements are more effective.

Fig. 1. The block diagram of the W.H.A.T architecture

The tool is implemented by a set of object-oriented Java classes. The user interface
begins with an initial window that receives query input and context selection. The
query, enhanced with information from prior search experience, is sent to several
internet search engines. A second window displays the recommended links, ranked by
the WHAT engine. The generated results can then be annotated and rearranged, and
recommended URLs can be accessed by links that open the operating system’s web
browser.

2 WHAT Personalization Context Manager

Before a search is passed through the WHAT engine, the user must select a specific
context to apply to the search phrase. Each context is a user-defined categorization
that is associated with a number of keywords comprising its semantic definition.
These keywords are given weighted values signifying their level of importance to the
particular context. Such weights become the key comparisons for relevance calcula-
tions in query formulation and result ranking, and they will scale according to tech-
niques employing user feedback and search history. As keyword weights adjust over

35

time, the system is trained to draw inferences from the user about the desired meaning
behind user contexts. Since this dynamic information develops on the client machine,
these contexts allow the user to conduct more meaningful searches with less effort put
into search phrase generation.

To implement this model, the Context Manager stores context categorizations,
definition keywords, and search history in a relational database. The relational
schema is composed of six 3NF tables, designed by the standard top-down entity-
relationship model to relational schema mapping algorithm:

CONTEXT (name, context_number, created)
DEFINITION (context_number, keyword, weight, initial_weight)
SEARCH (context_number, search_string, search_number, last_performed)
RESULT_LOOKUP (search_number, url, result_number)
RESULT_METADATA (result_number, search_engine, title, snippet)
RESULT_USERDATA (result_number, search_query, relevance, ranking,

impression, last_visited)

At the highest level, context entries are unique by name. Members of the defini-

tion table are associated with a particular context, thus definitions are distinguished
by the concatenated key “context_number, keyword.” Likewise, any historic entry in
the search table is related to a specific context and is ordered by the key “con-
text_number, search_string.” Under this table, the “search_number” provides the key
for details stored in the result_lookup relation, which contains the key for the more
specific result_metadata and result_userdata tables. This model allows the DBMS
to manage search strings, URLs, and meta-data which may consist of many long
strings. By design, the fundamental engine behind WHAT is not reliant on this spe-
cific data storage schema to allow for scalability.

3 Query Constructor and Search Engine Requests

Once the user enters a search phrase and a context is selected, queries are sent to stan-
dard search engines (Google, Yahoo, etc.). To take advantage of the context informa-
tion, the Query Constructor generates and formats multiple search strings for each
search engine. Initially, the constructor begins by forming a set of all possible com-
binations of the keywords for the selected context. The search phrase is then ap-
pended to each generated string. However, the number of keyword combinations
grows exponentially in relation to the number of keywords, so the constructor selects
a reasonable subset of the generated strings for submission. This subset is determined
by a user-modifiable parameter called “tolerance.” Tolerance is a percentage which
is involved in a calculation to filter out less relevant queries. Based on the associated
weights of the keywords, each string is compared against the most relevant string
generated, and those strings that are significantly irrelevant according to the tolerance
factor are removed from the submission set. Thus, the behavior of the Query Con-
structor is dependent on the client-side personalization of the Context Manager and
will improve with continued information gathering.

36

Submissions sent to search engines provide a dataset for result acquisition. Origi-
nally, WHAT interfaced with internet search engines by sending HTTP requests and
receiving an HTML response. Using a technique known as text-scraping, these
HTML documents needed to be parsed before the significant data could be abstracted.
On completion, a successful parse would separate the document from its constituent
components such as URL, title, and descriptors. However, using parsers introduces a
complication when processing results since each search engine generates documents
of different formats. Due to these differences in webpage layouts, individualized
parsers for each search engine were developed. Another issue with parsers is that
these specific formats themselves change over time. Thus, the parsers needed to be
modified whenever the output of a search engine changed.

Another issue with sending HTTP requests involved the Google search engine.
Google does not respond to HTTP requests unless the request is received from one of
the standard internet browsers. Due to the prevalence of Google in the meta-search
engine domain, integrating its capabilities into the framework of WHAT was highly
desired. As a result, a new approach was devised for search engine information re-
trieval.

The new solution for information retrieval involves using the Application Pro-
gramming Interfaces (APIs) offered by individual search engines to receive the re-
sults programmatically. In particular, two different interfaces are implemented cur-
rently for both the Yahoo and Google search engines.

3.1 Accessing Google with the SOAP Protocol

To obtain relevant search results from Google, WHAT communicates with the server
through the SOAP protocol, which Google offers to programmers implementing
Google search services within customized programs. This service is hosted on a dif-
ferent server than the one that handles HTTP requests which is accessed by browsers
like Internet Explorer and Netscape Navigator. Using the publicly downloadable
WSDL (Web Service Definition Language) file from Google, WHAT creates a client
web service project that requests Google search results using the SOAP protocol.
The web service client contains Google’s definitions for abstract input and output
data objects in addition to a proxy program which contains a specific connection URL
for the Google server. This approach returns precisely paged results with complete
access to additional features like spell checker and cached pages without the overhead
of text-scraping.

Since search results for queries to Google are returned as abstract data objects,
WHAT does not need to account for future changes to Google HTML documents.
Hence, the WHAT engine can focus less on the syntactical issues involved with han-
dling the retrieved information.

3.2 Accessing Yahoo with a Java API

Yahoo’s API is slightly different from the SOAP implementation used by Google.
Yahoo has developed a specific Web API that can be included in a Java web applica-

37

tion project to retrieve their search results. The Java Archive (JAR) file containing
the Yahoo API includes a complete Java Doc defining the structure of the package
and how to implement the functionality of each class file provided in the JAR. Since
Yahoo provides open source code for its Web API, changes were made wherever ap-
plicable to improve the efficiency of its implementation within the WHAT frame-
work. Once the compiled JAR files are in place, WHAT’s customized proxy can di-
rectly communicate with Yahoo web servers. Like Google’s servers, requests from
Yahoo APIs are handled by different servers than the ones that handle requests from
internet browsers. Again, using the Yahoo API causes WHAT to be highly compati-
ble with any future changes or developments Yahoo makes regarding search result
delivery.

4 Relevance Calculator and Result Ranking

The Relevance Calculator is responsible for filtering and ranking the results for pres-
entation to the user. After identifying and removing duplicates, an algorithm assigns
a ranking value to each result based on occurrences of context-related keywords in ti-
tles and descriptors. Keywords with higher weights contribute more to this value
than terms of lower weight, and appearances in titles are valued more than occur-
rences in descriptors. The WHAT engine is not explicitly dependent on any specific
algorithm, but a proficient relevance ranking procedure will facilitate successful re-
sults. Since ranking considers keyword weights, these results will improve with con-
tinued personalization.

After the user has finished viewing a particular website from these results, a dialog
prompts the user to rate the site with a simple scale indicating its accuracy to the de-
sired result. This feedback allows keyword weights to be modified accordingly, pro-
viding a mechanism for personalization and machine learning. The motivation for
the user to spend the small amount of time required to check off an appropriate rating
persists with the idea that a small time tradeoff leads to quality results in the long
term. Since search results relate to a context with presumed long-term significance,
the user is motivated to invest in the accuracy of future search results.

4.1 Support Vector Machine

The task of recognizing characteristics that are common among results relevant to a
context, independent of a specific query, falls on a pair of support vector machines
(SVM). SVM techniques are used to find characteristics that relate to a context and
the results are used to improve the context definition. Secondly, an SVM is used to
identify the immediate search results that are most likely to suit the user’s immediate
search need.

In order to establish a similarity or dissimilarity measure of different words, Latent
Semantic Indexing (LSI) [1, 2, 3, 4] has been implemented in the WHAT engine,
which helps to construct a semantic vector model based on word co-occurrences. LSI
[3, 4] extracts the underlying semantic structure of a text by estimating the most sig-

38

nificant statistical factors in the weighted word space. A word or word phrase is rep-
resented by a LSI coefficient, which is obtained from key words by removing com-
mon endings with porter stemmer algorithms and representing the word in a weighted
word space. Initially, the search engine contains a default knowledge base repre-
sented in terms of LSI coefficients, where each word has a unique LSI coefficient. A
Support Vector Machine (SVM) [5, 6] based classifier algorithm then interacts with a
local library of previous search history to analyze search results that the user has pre-
viously judged relevant. The result of this analysis identifies features that will help
the tool recognize relevant results from new searches according to the user’s person-
alized search history. These features are embodied in the form of LSI coefficients
and are stored in the knowledge base of the system. A Radial Basis Function (RBF)
based kernel is used in the construction of this SVM.

User feedback provides one of three outcomes for the obtained search result: (1)
Relevant, (2) May be Relevant, (3) Not relevant. For “Relevant” results, the LSI co-
efficients corresponding to the result are increased so that the next similar search will
regard the previously identified query category more favorably. Results marked as
“May be Relevant” cause no changes to the LSI coefficients. “Not Relevant” feed-
back changes the LSI coefficients such that references related to the associated cate-
gory are never obtained in a future search event.

In his pioneering work, Joachims has shown that SVM is an ideal parametric clas-
sifier for sparse matrix (e.g. a document matrix) classification [7]. The LSI coeffi-
cients in a vector space form a large sparse matrix. Hence, SVM is the ideal tool to
generate the query category for a proper classification of search keywords. The most
general form of Support Vector Classification is to separate two classes by a function,
which is induced from available examples [5]. The main goal of this classifier is to
find an optimal separating hyperplane that maximizes the separation margin or the
distance between it and the nearest data point of each class. In the case where a linear
boundary is inappropriate, the SVM can map the input vector x into a high dimen-
sional feature space, z [5]. The idea behind kernel functions is to enable operations to
be performed in the input space rather than the potentially high dimensional feature
space. With the kernel function, the inner product does not need to be evaluated in
the feature space, which provides a way of addressing the curse of dimensionality.
The theory of Reproducing Kernel Hilbert Space (RKHS) [6] claims that an inner
product in feature space has an equivalent Kernel in input space,

K(x, x’) = 〈φ(x), φ(x’)〉 (1)

provided that Mercer conditions hold. The feature vector φ(x) corresponds to the in-
put vector x. The Gaussian Radial Basis Function GRBF) has received significant at-
tention and its form is given by

K(x, x’) = exp(− || x- x’ || / 2σ2) (2)

Classical techniques using RBFs employ some method of determining a subset of
centers; typically a method of clustering is employed to select a subset of centers [5].
The most attractive feature of SVM is its implicit selection process, with each support
vector contributing to local Gaussian functions, centered at the respective data point.
By further consideration the global basis function width may be selected using the
SRM principle. The RBF based kernel helps to construct complex nonlinear decision

39

hyperplanes which help model complex classification tasks and thus contribute to-
ward increased classification accuracy.

5 Empirical Testing

Early testing of the WHAT tool provided encouragement for the approach and sug-
gested areas of further work. This experiment was conducted before the introduction
of the SVMs. The results are based on the use of multiple search engines, and an ini-
tial ranking function that did not benefit from the experience of prior user search re-
sults. These results will form a base for comparison as the more sophisticated ap-
proaches are integrated into the tool and further testing is performed. In these initial
tests, the performance of WHAT was compared against the performance of several
standard internet search engines. Five search strings were devised to measure the
relevance of results from Google, AlltheWeb, and Lycos against the results generated
by WHAT and a variation of WHAT with a vocabulary supplement tool
(WHATWORDNET). The queries tested were:

 1. Baking Bread
 2. Hiking Stoves
 3. Java I/O introduction
 4. Jaguars
 5. Improving backstroke

Once the results were received, three student researchers took subsets of the data
from each search engine ranging from 1200 to 1700 references. These results were
combined into a single set by taking the union of each search engine subset and re-
moving duplicates. Analyzing this combined data, the researchers categorized indi-
vidual results as “relevant” or “not relevant.” Once the students agreed upon a com-
mon set of relevant results, they sent each query once again to every search engine.
From these results, references were evaluated to measure the metrics recall and preci-
sion. Recall is the percentage of results from the query that also exist in the set of
known relevant references; precision is the ratio of decidedly relevant results con-
tained within the top twenty results. These measurements were then averaged among
researchers.

40

Fig. 2. Average precision is plotted against average recall for each search engine. Averages are

taken over all search queries

Fig. 3. Average precision is plotted against average recall for each search query. Here, the per-

centages are averaged over all search engines

In general, the percentages shown in the graphs indicate that on average a high per-
centage of irrelevant results are returned. Compared with WHAT, the standard search
engines generally have a higher precision rating, implying that a higher percentage of
relevant results are returned near the top of the result list. However, the WHAT en-
gine retrieves a more consistent set of relevant references. Since recall for WHAT is

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 20% 40% 60% 80% 100%

Avg Recall

A
vg

 P
re

ci
si

on

Baking Bread
Hiking
Java I/O Introduction
Jaguar
Improving backstroke

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 20% 40% 60% 80% 100%

Avg Recall

A
vg

 P
re

ci
si

on Googl
AlltheWeb
Lyco
WHAT
WHATWORDNET

41

higher for result sets with higher precision, the tool succeeds in delivering results that
are better suited to the context of the intended search query.

Summary

The WHAT project is work in progress. The goal is highly individualized search re-
sults resulting from defined search contexts and learning derived from experience
with user satisfaction with results over time. The project runs on the user’s own
computer, therefore eliminating any issue with regard to privacy and also allowing
specific attention to the individual user’s preferences. Early results show promise of
an improved search tool. Current work is enhancing the intelligence of the system in
learning user needs.

References

1. Foltz, P. W., Kintsch, W., and Landauer, T. K., (1998) “The Measurement of Textual Coher-
ence with Latent Semantic Analysis”, Discourse Processes, 25, pp. 285-307.

2. Foltz, P. W., (1990) “Using Latent Semantic Indexing for Information Filtering”. In R. B.
Allen (Ed.) Proc. of the Conference on Office Information Systems, Cambridge, MA, pp.
40-47.

3. Landauer, T. K., Foltz, P. W., and Laham, D. (1998) “Introduction to Latent Semantic
Analysis”, Discourse Processes, 25, pp. 259-284.

4. Landauer, T. K. and Dumais, S. T. (1997) “Solution to Plato's Problem: The Latent Seman-
tic Analysis Theory of Acquisition, Induction ”, Psychological Review, 104 (2),
pp.211-240.

5. Gunn S. R. (1998) “Support Vector Machines for Classification and Regression”, Technical
Report, Department of Electronics and Computer Science, University of Southampton.

6. Vapnik V., “Statistical Learning Theory”, Wiley & Sons, Chichester, GB, 1998.
7. Joachims T., “Text Categorization with Support Vector Machines”, in the proceedings of

European Conference on Machine Learning ECML-98.
8. Skonnard, A.: Understanding WSDL. In: MSDN Web Services Development

Center (2003). Available:
http://msdn.microsoft.com/webservices/understanding/webservicebasics/
default.aspx?pull=/library/en-us/dnwebsrv/html/understandwsdl.asp

9. Skonnard, A.: Understanding SOAP. In: MSDN Web Services Development Center (2003).
Available: http://msdn.microsoft.com/webservices/understanding/webservicebasics/
default.aspx?pull=/library/en-us//dnsoap/html/understandsoap.asp

10. Skonnard, A.: The XML Files: The Birth of Web Services. In: MSDN Magazine (2002).
Available: http://msdn.microsoft.com/webservices/understanding/webservicebasics/
default.aspx?pull=/msdnmag/issues/02/10/xmlfiles/default.aspx

11. Box, D., Cabrera, L. F., Kurt, C.: An Introduction to the Web Services Architecture and Its
Specifications. In: MSDN Web Services Development Center (2004). Available:
http://msdn.microsoft.com/webservices/understanding/advancedwebservices/default.aspx?
pull=/library/en-us/dnwebsrv/html/introwsa.asp

42

