
Data Quality and Sparsity Issues in Collaborative
Filtering on Web Logs

Miha Gřcar, Dunja Mladenǐc and Marko Grobelnik

J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. In this paper, we present our experience in applying collaborative fil-
tering to real-life corporate data in the light of data quality and sparsity. The qual-
ity of collaborative filtering recommendations is highly dependent on the quality
of the data used to identify users’ preferences. To understand the influence that
highly sparse server-side collected data has on the accuracy of collaborative filter-
ing, we ran a series of experiments in which we used publicly available datasets
and, on the other hand, a real-life corporate dataset that does not fit the profile of
ideal data for collaborative filtering. We have also experimentally compared two
standard distance measures (Pearson correlation and Cosine similarity)used by
k-Nearest Neighbor classifier, showing that depending on the datasetone outper-
forms the other - but no consistent difference can be claimed.

1 Introduction

Data quality is recognized as an important issue for different problems where the re-
sults highly rely on the data, such as machine learning, datamining or recommendation
systems. In addition, a problem of data sparsity is recognized as important in recom-
mendation systems especially when based on collaborative filtering. The goal of collab-
orative filtering in general is to explore a vast collection of items in order to detect those
which might be of interest to the active user. In contrast to content-based recommender
systems which focus on finding contents that best match the user’s query, collaborative
filtering is based on the assumption that similar users have similar preferences. It ex-
plores the database of users’ preferences and searches for users that are similar to the
active user. The active user’s preferences are then inferred from preferences of the simi-
lar users. One of the main advantages of pure collaborative filtering is that it ignores the
form and the content of items and can therefore also be applied to non-textual items.

The accuracy of collaborative filtering recommendations ishighly dependent on the
quality of the users’ preferences database. In this paper wewould like to emphasize the
differences between applying collaborative filtering to publicly available datasets and,
on the other hand, to a dataset derived from real-life corporate Web logs. The latter does
not fit the profile of ideal data for collaborative filtering.

The rest of this paper is arranged as follows. In Sections 2 and 3 we discuss collab-
orative filtering algorithms and data quality for collaborative filtering. Our evaluation
platform and the three datasets used in our experiments are described in Sections 4 and
5. In Sections 6 and 7 the experimental setting and the evaluation results are presented.
The paper concludes with the discussion and some ideas for future work (Section 8).

Grcǎr M., Mladenič D. and Grobelnik M. (2005).
Data Quality and Sparsity Issues in Collaborative Filtering on Web Logs.
In Proceedings of the 1st International Workshop on Web Personalisation, Recommender Systems and Intelligent User Interfaces, pages 89-97
DOI: 10.5220/0001421500890097
Copyright c© SciTePress



2 Collaborative filtering

There are basically two approaches to the implementation ofa collaborative filter-
ing algorithm. The first one is the so called “lazy learning” approach (also known as
the memory-based approach) which skips the learning phase.Each time it is about to
make a recommendation, it simply explores the database of user-item interactions. The
model-based approach, on the other hand, first builds a modelout of the user-item in-
teraction database and then uses this model to make recommendations. “Making rec-
ommendations” is equivalent to predicting the user’s preferences for unobserved items.

The data in the user-item interaction database can be collected either explicitly (ex-
plicit ratings) or implicitly (implicit preferences). In the first case the user’s participation
is required. The user is asked to explicitly submit his/her rating for the given item. In
contrast to this, implicit preferences are inferred from the user’s actions in the context
of an item (that is why the term “user-item interaction” is used instead of the word
“rating” when referring to users’ preferences in this paper). Data can be collected im-
plicitly either on the client side or on the server side. In the first case the user is bound
to use modified client-side software that logs his/her actions. Since we do not want to
enforce modified client-side software, this possibility isusually omitted. In the second
case the logging is done by a server. In the context of the Web,implicit preferences can
be determined from access logs that are automatically maintained by Web servers.

Collected data is first preprocessed and arranged into a user-item matrix. Rows rep-
resent users and columns represent items. Each matrix element is in general a set of
actions that a specific user took in the context of a specific item. In most cases a matrix
element is a single number representing either an explicit rating or a rating that was
inferred from the user’s actions.

Since a user usually does not access every item in the repository, the vector (i.e. the
matrix row), representing the user, is missing some/many values. To emphasize this, we
use the terms “sparse vector” and “sparse matrix”.

The most intuitive and widely used algorithm for collaborative filtering is the so
called k-Nearest Neighbors algorithm which is a memory-based approach. Technical
details can be found, for example, in [6]. The algorithm is asfollows:

1. Represent each user by a sparse vector of his/her ratings.

2. Define the similarity measure between two sparse vectors.In this paper, we con-
sider two widely used measures: (i) the Pearson correlationcoefficient which is
used in statistics to measure the degree of correlation between two variables [12],
and (ii) the Cosine similarity measure which is originally used in information re-
trieval to compare between two documents (introduced by Salton and McGill in
1983).

3. Find k users that have rated the item in question and are most similar to the active
user (i.e. the user’s neighborhood).

4. Predict the active user’s rating for the item in question by calculating the weighted
average of the ratings given to that item by other users from the neighborhood.

90



3 Sparsity problem and data quality for collaborative filter ing

The fact that we are dealing with a sparse matrix can result inthe most concerning
problem of collaborative filtering – the so called sparsity problem. In order to be able
to compare two sparse vectors, similarity measures requiresome values to overlap.
Furthermore, the lower the amount of overlapping values, the lower the relialibility of
these measures. If we are dealing with high level of sparsity, we are unable to form
reliable neighborhoods. Furthermore, in highly sparse data there might be many un-
rated (unseen) items and many inactive users. Those items/users, unfortunately, cannot
participate in the collaborative filtering.

Sparsity is not the only reason for the inaccuracy of recommendations provided
by collaborative filtering. If we are dealing with implicit preferences, the ratings are
usually inferred from the user-item interactions, as already mentioned earlier in the
text. Mapping implicit preferences into explicit ratings is a non-trivial task and can
result in false mappings. The latter is even more true for server-side collected data in
the context of the Web since Web logs contain very limited information. To determine
how much time a user was reading a document, we need to computethe difference in
time-stamps of two consecutive requests from that user. This, however, does not tell us
weather the user was actually reading the document or he/she, for example, went out
to lunch, leaving the browser opened. Furthermore, the usermay be accessing cached
information (either from a local cache or from an intermediate proxy server cache) and
there is no way to detect these events on the server side.

Fig. 1.Data characteristics that influence the data quality, and the positioning of the three datasets
used in our experiments, according to their properties.

Also, if a user is not logged in and he/she does not accept cookies, we are unable to
track him/her. In such case, the only available informationthat could potentially help us

91



to track the user is his/her IP address. However, many users can share the same IP and,
furthermore, one user can have many IP addresses even in the same session. The only
reliable tracking mechanisms are cookies and requiring users to log in order to access
relevant contents.

From this brief description of data problems we can concludethat for applying
collaborative filtering, explicitly given data with low sparsity are preferred to implicitly
collected data with high sparsity (as also pointed out in [7]). The worst case scenario
is having highly sparse data derived from Web logs. So why would we want to apply
collaborative filtering to Web logs? The answer is that collecting data in such manner
requires no effort from the users and also, the users are not obliged to use any kind of
specialized Web browsing software. This “conflict of interests” is illustrated in Figure 1.

4 Evaluation platform

To understand the influence that highly sparse server-side collected data has on the ac-
curacy of collaborative filtering, we built an evaluation platform. This platform is a set
of modules arranged into a pipeline. The pipeline consists of the following four con-
secutive steps: (i) importing a user-item matrix (in the case of implicit preferences, data
needs to be preprocessed prior to entering the pipeline), (ii) splitting data according to
an evaluation protocol, (iii) setting a collaborative filtering algorithm (in the case of
the kNN algorithm we also need to specify a similarity measure), (iv) making predic-
tions about users’ ratings and collecting evaluation results. The platform is illustrated
in Figure 2.

Fig. 2. The evaluation platform. The notes initalics illustrate our experimental setting (see Sec-
tion 6).

92



Let us briefly discuss some of these stages. In the process of splitting the data,
ratings from each user are partitioned into “given” and “hidden” ratings, according
to the evaluation protocol. Notice that this is different from splitting all the users to
training and testing as used in [7]. For example, 30% of randomly selected ratings from
a particular user are hidden, the rest are treated as our soleknowledge about the user (i.e.
given ratings). Given ratings are used to find neighbors, while hidden ratings are used
to evaluate the accuracy of the selected collaborative filtering algorithm. The algorithm
predicts the hidden ratings and since we know their actual values, we can compute the
mean absolute error (MAE) or apply some other evaluation metric.

5 Data description

For our experiments we used three distinct datasets. The first dataset was EachMovie
(provided by Digital Equipment Corporation) which contains explicit ratings for movies.
The service was available for 18 months. The second dataset with explicit ratings was
Jester (provided by [5]) which contains ratings for jokes, collected over a 4-year pe-
riod. Users were using a scrollbar to express their ratings –they had no notion of actual
values. The third dataset was derived from real-life corporate Web logs. The logs con-
tain accesses to an internal digital library of a fairly large company. The time-span of
acquired Web logs is 920 days. In this third case the user’s preferences are implicit
and collected on the server side, which implies the worst data quality for collaborative
filtering (see Figure 1).

In contrast to EachMovie and Jester, Web logs first needed to be extensively pre-
processed. Raw logs contained over 9.3 million requests. First, failed requests, redirec-
tions, posts, and requests by anonymous users were removed.We were left with slightly
over 1.2 million requests (14% of all the requests). These requests, however, still con-
tained images, non-content pages (such as index pages), andother irrelevant pages. Fur-
thermore, there were several different collections of documents in the corporate digital
library. It turned out that only one of the collections was relevant for the application of
collaborative filtering. Thus, the amount of potentially relevant requests dropped dras-
tically. At the end we were left with only slightly over 20,500 useful requests, which is
0.22% of the initial database size.

The next problem emerged from the fact that we needed to map implicit preferences
contained in log files, into explicit ratings. As already explained, this is not a trivial task.
The easiest way to do this is to label items as 1 (accessed) or 0(not accessed) as also
discussed in [2]. The downside of this kind of mapping is thatit does not give any notion
of likes and dislikes. [3] have shown linear correlations between the time spent reading
a document and the explicit rating given to that same document by the same user (this
was already published by [10]). However, their test-users were using specialized client-
side software, which made the collected data more reliable (hence, in their case, we
talk about client-side implicit preferences). Despite this fact we decided to take reading
times into account when preprocessing Web logs.

We plotted reading times inferred from consecutive requests onto a scatter plot.
From that plot we noticed that the area indicating around 24 hours reading time is
very dense. We interpret these as the last accesses of a day, when the users went home

93



and logged in again the next day, which resulted in approximately 24-hour “reading”
time. Below the 24-hour line, there is a gap at approximately10-hour reading time. We
decided to use this gap to define outliers – accesses above thegap are clearly outliers.
We decided to map reading times onto a discrete 3-score scale(scores being 1=“not
interesting”, 2=“interesting”, and 3=“very interesting”). Somewhat ad-hoc (intuitively)
we defined two more boundaries: one at 20 seconds and another at 10 minutes. Since
items were research papers and 20 seconds is merely enough tobrowse through the
abstract, we decided to label documents with reading times below 20 seconds as “not
interesting”. Documents with reading times between 20 seconds and 10 minutes were
labelled as “interesting” and documents with reading timesfrom 10 minutes to 10 hours
were labelled as “very interesting”. The previously definedoutliers were included due
to the lack of data. In the first scenario they were labelled as“very interesting” and in the
second one as “interesting”. Since we had no reliable knowledge about the outliers, the
second scenario should have minimized the error we made by taking them into account.

Table 1 shows the data characteristics of the three datasets. It is evident that a low
number of requests and somewhat ad-hoc mapping onto a discrete scale are not the
biggest issues with our corporate dataset. The concerning fact is that the average number
of ratings per item is only 1.22, which indicates extremely poor overlapping. Sparsity is
consequently very high, 99.93%. The other two datasets are much more promising. The
most appropriate is the Jester dataset with very low sparsity, followed by EachMovie
with higher sparsity but still relatively high average number of ratings per item. Also,
the latter two contain explicit ratings, which means that they are more reliable than the
corporate dataset (see also Figure 1).

Table 1. The data characteristics for the three datasets showing the kind of rating (explicit, im-
plicit), size of the dataset and the level of sparsity.

6 Experimental setting

We ran a series of experiments to see how the accuracy of collaborative filtering recom-
mendations differs between the three datasets (from EachMovie and Jester we consid-
ered only 10,000 randomly selected users to speed up the evaluation process). Ratings

94



from each user were partitioned into “given” and “hidden” ratings according to the “all-
but-30%” evaluation protocol. The name of the protocol implies that 30% of all the
ratings were hidden and the remaining 70% were used to form neighborhoods.

We applied three variants of memory-based collaborative filtering algorithms: (i) k-
Nearest Neighbors using the Pearson correlation (kNN Pearson), (ii) k-Nearest Neigh-
bors using the Cosine similarity measure (kNN Cosine), and (iii) the popularity pre-
dictor (Popularity). The latter predicts the user’s ratings by simply averaging all the
available ratings for the given item. It does not form neighborhoods and it provides
each user with the same recommendations. It serves merely asa baseline when evaluat-
ing collaborative filtering algorithms (termed “POP” in [2]). For kNN variants, we used
a neighborhood of 120 users (i.e. k=120), as suggested in [5]. We decided to evaluate
both variants of the corporate dataset (the one where the outliers were labelled as “very
interesting”, referred to as “1/2/3/3”, and the one where the outliers were labelled as
“interesting”, referred to as “1/2/3/2”).

For each dataset-algorithm pair we ran 5 experiments, each time with a different
random seed (we also selected a different set of 10,000 usersfrom EachMovie and Jester
each time). When applying collaborative filtering to the variants of the corporate dataset,
we made 10 repetitions (instead of 5) since these datasets were smaller and highly
sparse, which resulted in less reliable evaluation results. Thus, we ran 90 experiments
altogether.

We decided to use normalized mean absolute error (NMAE) as the accuracy evalu-
ation metric. We first computed NMAE for each user and then we averaged it over all
the users (termed “per-user NMAE”) (see [8]). MAE is extensively used for evaluating
collaborative filtering accuracy and was normalized in our experiments to enable us to
compare evaluation results from different datasets.

7 Evaluation of results

Our evaluation of experimental results are shown in Figure 4. It can be seen that kNN
Cosine significantly outperforms kNN Pearson on EachMovie dataset (we used two-
tailed paired Student’s t-Test with significance 0.05 to determine if the differences in
results are statistically significant). However, in the case of Jester, which has the small-
est degree of sparsity, kNN Pearson slightly, yet significantly outperforms kNN Cosine.
On both these two datasets the two variants of a kNN algorithmsignificantly outperform
Popularity. For both variants of the corporate dataset, on the other hand, kNN Cosine
significantly outperforms kNN Pearson. In the first scenario(i.e. with the 1/2/3/3 map-
ping), the difference between applying kNN Cosine and Popularity is statistically in-
significant. For the second scenario (i.e. with the 1/2/3/2 mapping), our intuition proves
to be right – NMAE values are generally lower than in the first scenario. However, this
time Popularity outperforms both kNN algorithms. Evaluation results from the corpo-
rate datasets show that predictions are less accurate and that NMAE value is relatively
unstable (hence the larger error bars showing standard deviations of NMAE values).
The main reason for this is low/no overlapping between values (i.e. extremely high
sparsity), which results in inability to make several predictions.

95



Fig. 3.The results of experiments.

8 Discussion and future work

We have proposed a way to characterize the data used in collaborative filtering to indi-
cate its quality in the light of collaborative filtering performance. Our experiemnts have
confirmed that high sparsity of the used corporate dataset resulted in unstable perfor-
mance. Before we will really be able to evaluate collaborative filtering algorithms on
the given corporate dataset, we will need to reduce its sparsity. One idea is to apply LSI
(latent semantic indexing) [4] or to use pLSI (probabilistic latent semantic indexing)
[9] to reduce the dimensionality of the user-item matrix, which consequently reduces
sparsity. Another idea, which we believe is even more promising in our context, is to
incorporate textual contents of the items. There were already some researches done on
how to use textual contents to reduce sparsity and improve the accuracy of collabora-
tive filtering [11]. Luckily we are able to obtain textual contents for the given corporate
dataset.

What is evident from our experiments is that mapping implicitinto explicit ratings
has great influence on the evaluation results. Since the mapping was done somewhat ad-
hoc, we can not assure that the results are valid and that the users will be statisfied with
the recommendations. This needs to be investigated in greater depth. Also interesting,
the Cosine similarity works just as well as Pearson on EachMovie and Jester. Early
researches show much poorer performance of the Cosine similarity measure [2].

As a side-product we noticed that the true value of collaborative filtering (in general)
is shown yet when computing NMAE over some top percentage of eccentric users.
We defined eccentricity intuitively as MAE (mean absolute error) over the overlapping
ratings between “the average user” and the user in question (greater MAE yields greater
eccentricity). The average user was defined by averaging ratings for each particular
item. This is based on the intuition that the ideal average user would rate every item with
the item’s average rating. The incorporation of the notion of eccentricity can give the

96



more sophisticated algorithms a fairer trial. We computed average per-user NMAE only
over the top 5% of eccentric users. The power of the kNN algorithms over Popularity
became even more evident. In near future, we will define an accuracy measure that
will weight per-user NMAE according to the user’s eccentricity, and include it into our
evaluation platform. We will also consider ways of handlingthe more eccentric users
differently.

References

1. BALDI, P., FRASCONI, P., and SMYTH, P. (2003): Modelling and Understanding Human
Behavior on the Web. In:Modelling the Internet and the Web, ISBN: 0-470-84906-1, 171–
209.

2. BREESE, J.S., HECKERMAN, D., and KADIE, C. (1998): Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In:Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence.

3. CLAYPOOL, M., LE, P., WASEDA, M., and BROWN, D. (2001): Implicit Interest Indica-
tors. In:Proceedings of IUI’01.

4. DEERWESTER, S., DUMAIS, S.T., and HARSHMAN, R. (1990): Indexing by Latent Se-
mantic Analysis. In:Journal of the Society for Information Science, Vol. 41, No. 6, 391–407.

5. GOLDBERG, K., ROEDER, T., GUPTA, D., and PERKINS, C. (2001): Eigentaste: A Con-
stant Time Collaborative Filtering Algorithm. In:Information Retrieval, No. 4, 133–151.

6. GRCAR, M. (2004): User Profiling: Collaborative Filtering. In:Proceedings of SIKDD 2004
at Multiconference IS 2004, 75–78.

7. GRCAR, M., MLADENIC D., GROBELNIK, M. (2005): Applying Collaborative Filtering
to Real-life Corporate Data. In:Proceedings of the 29th Annual Conference of the German
Classification Society (GfKl 2005), Springer, 2005.

8. HERLOCKER, J.L., KONSTAN, J.A., TERVEEN, L.G., and RIEDL, J.T. (2004): Evaluat-
ing Collaborative Filtering Recommender Systems. In:ACM Transactions on Information
Systems, Vol. 22, No. 1, 5–53.

9. HOFMANN, T. (1999): Probabilistic Latent Semantic Analysis. In:Proceedings of the 15th
Conference on Uncertainty in Artificial Intelligence.

10. KONSTAN, J.A., MILLER, B.N., MALTZ, D., HERLOCKER, J.L., GORDON, L.R., and
RIEDL, J. (1997): GroupLens: Applying Collaborative Filtering to Usenet News. In:Com-
munications of the ACM, Vol. 40, No. 3, 77–87.

11. MELVILLE, P., MOONEY, R.J., and NAGARAJAN, R. (2002): Content-boosted Collabo-
rative Filtering for Improved Recommendations. In:Proceedings of the 18th National Con-
ference on Artificial Intelligence, 187–192.

12. RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTROM, P., andRIEDL, J. (1994):
GroupLens: An Open Architecture for Collaborative Filtering for Netnews. In:Proceedings
of CSCW’94, 175–186.

97


