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Abstract: A fundamental characteristic of the majority of communications networks is the mean message delay. In a 
packet-switching network, the mean packet and message delay may differ considerably from each other, and 
their distribution will often take different forms. The mean message delay depends both on the mean packet 
delay and on the dispersion of the packet delay. Obviously, by reducing the mean packet delay one can also 
reduce the message delay. However, it is not always possible to decrease the mean packet delay in the 
network. A proposed method of transmitting data in a network is based on the use of error-correcting 
coding, which reduces the dispersion of the packet delay with some increase in the mean packet delay. The 
conditions were obtained for which an increase in the mean packet delay with simultaneous reduction in the 
dispersion leads to a reduction in the mean message delay. In many real time networks there are exist some 
restrictions on the message delay. Use of the transport coding makes it possible to deliver the messages over 
the network during some limited time with high probability.  

1 INTRODUCTION 

In this paper we will consider the applications of 
error correcting codes to the data network. It is well 
known, that using of error controlling codes adapted 
to typical errors in a defended system is the 
universal method of error protection. However in 
modern data networks error correcting (or 
controlling) codes are used only as means of 
increasing the reliability of information during the 
data transmission over the different channels; and no 
correlation between coding and other network 
procedures is considered. The application of coding 
not only to the physical layer but also to the 
procedures at higher layers (e.g. transport layer) 
gives us some unexpected results indicating that 
coding in network helps not only to increase the 
reliability of the transmitted information, but also 
can be used to improve such important characteristic 
of a network, as the mean message delay. In this 
chapter we will consider mostly the packet switching 

network with datagram routing (or in datagram 
mode). Packet switching is switching in which 
messages are broken into packets and one packet at a 
time is transmitted on a communication link. Thus, 
when a packet arrives at a switching node on its path 
to the destination site, it waits in a queue for its turn 
to be transmitted on the next link in its path. The 
datagram routing is packet switching in which each 
packet finds its own path through the network 
according to the current information available at the 
nodes visited (Bertsekas, Gallager, 1992). To be 
more precise, there is only one restriction on the 
considered network model, which is essential for the 
exposition of this chapter. This is the possibility to 
get the packets out of order at the destination node. 
It is shown in (Bertsekas, Gallager, 1992) that not 
only the datagram networks but also the virtual 
circuit networks have this feature as well. However, 
for simplicity we assume that we are dealing with a 
datagram network and that packets can get out of 
order arbitrarily on the network consider a packet 
switching network. 
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The outline of the paper is as follows. Section 2 
describes the concept of transport coding. Section 3 
analyses the possibility of using transport coding for 
improving the probability of message delivery 
during limited time. Section 4 discusses an 
interpretation of the results.  

2 DECREASING THE MESSAGE 
DELAY WITH THE HELP OF 
TRANSPORT CODING 

The one of the most important measure of the 
effectiveness of a data network is the information 
delay. The mean packet delay has been subject to 
many studies, for example (Kleinrock, 1975), 
(Kleinrock, 1964), (Kleinrock, Naylor, 1974). 
However, in a packet-switching network, the 
parameter of interest is not the delay of a separate 
packet but the delay of a message as a whole. And 
the mean message delay can differ from the mean 
packet delay, as the assembly of a message at a 
destination node can be delayed due to the absence 
of a small number of packets (for example one). 
This section deals with an analysis of the method of 
decreasing the mean message delay with the help of 
error-correcting code at the transport level of 
network. This method was suggested in 
(Kabatianskii, Krouk, 1993) and generalized in 
(Krouk, Semenov, 2002). The possibility of using 
error-correcting code in a bipolar network was 
described in (Maxemchuk, 1975). 

Let us consider a model of a network having M 
channels, in which the capacity of the ith channel is 
Ci . The time taken to transmit a packet over a 
channel has an exponential distribution with the 
expectation µ1 . When the servicing device is busy, 
the packet may be placed in a queue. Each message, 
arriving in the network, is divided into K  similar 
packets. The length of each packet is s  bits. The 
traffic arriving in the network from external sources 
forms a Poisson process with the intensity γ  
(packets per second). We will denote the mean 
number of packets passing through the ith channel 
per second by iλ . The total network traffic is then 
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If the packets arrive to a node via different 

routes, we can assume that the dependence between 

packet delays is negligible. Hence, the model of the 
network turns out to be close to the Kleinrock 
model, for which the Kleinrock «assumption of 
independence» holds (Kleinrock, 1975), (Kleinrock, 
1964). According to this assumption, the packet 
delays can be regarded as independent random 
variables. This statement was proved in 
(Vvedenskaya, 1998) for some network types. Then 
the ith channel can be represented in the form of a 
queuing system with a Poisson flow of intensity iλ  
at the input and an exponential servicing time with 

mean 
iC⋅µ

1
. In this case we can assume that the 

packet delays in the network have an exponential 
distribution with the expectation ),( µλt , where 
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If we consider a case where all M  channels 

have the same carrying capacity while the external 
traffic is uniformly distributed between the channels 
(so that the intensity of the packet flow for all 
channels is the same), expression (2) can be written 
as follows: 
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traversed by a packet along the network, 
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 is the overall 

capacity of the network channels. The value of the 
network load in this case is identical with the 

i

i
i C⋅
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λ

ρ , the load of a single channel. In fact, as 

it will be shown later, all needed assumptions are as 
follows: the packet delays are independent random 
variables with the exponential distribution and with 

expectation of form 
ρ−1

a , where ρ  is the network 

load and a is the constant for the given network. 
The delay T  of an uncoded message in the 

network is determined by the maximum delay 
among the K  packets of the given message 
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},,...,max{ 1 KttT =  
where it  is the delay of the ith packet of the 
message; i.e., the message delay is equal to the delay 
of the packet which arrives last. If we redenote the 
packet delays of the message in increasing order 

KKKK ttt ::2:1 ...≤≤≤ , we have 
.:KKtT =  

We can apply now the coding at the transport 
level of the network and to encode the message, 
which consists of K packets with the help of an 
MDS (N, K) code (for example Reed-Solomon 
code). In case of using the Reed-Solomon code each 
of K packets is considered an element of a field 
GF(2s) (s is the packet length), and after encoding 
the original message consisting of K packets is 
replaced by a message consisting of N packets. 
When the encoded messages are transmitting over 
the network, the traffic increases by a factor of 1/R 
(R=K/N is the rate of the code used). This naturally 
leads to an increase in the mean packet delay in the 
network. However, at the node-addressee, to 
reconstruct the message (in view of properties of 
MDS codes), only K packets need to be received, as 
against all N packets. We will show that with some 
restrictions on the operation of the network this 
method leads to a decrease of the mean message 
delay. We will denote this method further on as 
transport coding. 

In case of using transport coding, the delay of the 
encoded message is 

.:NKcod tT =  
Using the apparatus of order statistics (David, 

1981), the mathematical expectation of the delay of 
the ith packet (for an overall number of packets N ) 
can be written as follows: 
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function of packet delay and )(1 uP−  is the inverse 
function of )(tP . In the case of an exponential 
distribution of the packet delay in the network 
equations (4), (5) can be rewritten as follows: 
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where t  is the mean packet delay in the network 
(depends on λ  and µ ). The mean delay of the 
uncoded message in the network is then 
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where ),( µλt  is defined by (3). The sum on the 
right-hand side of (7) can be represented as follows: 
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where ...577.0=ε  is Euler’s constant. Hence we 
obtain the following estimate for the mean delay of 
the uncoded message 1T : 
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We can write the mean delay of the coded 

message 2T  for given N , in accordance with (6), as 
follows:  
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where ),/( µλ Rt  is the mean packet delay for traffic 
that has been increased as a result of using coded 
messages by a factor of R1 ; R = K/N is the rate of 
the code used. The sum on the right-hand side of (9) 
can be represented as follows: 
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Figure 1: A gain of transport coding vs. network load. 

 
It is possible to choose the code rate R in such a 

way as to minimize the mean message delay 2T . For 
the best-chosen code, we obtain 
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Then, with the help of (10) we can estimate (9) 

as 
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The mean packet delay for traffic which has been 

increased by a factor of R1  can be written in 
accordance with (3), as 
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Rl  is the mean path length 

traversed by a packet along the network and 

C⋅
=
µ
λρ  is the load of the network when using the 

uncoded messages. Minimizing (12) with respect to 
R , obtain 
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The gain of using coding at the transport level of 

the network can be obtained when the following 
condition is satisfied: 
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Figure 2: A gain of transport coding vs. number of 

information packets in message. 
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Substituting (8) and (14) into (15), we obtain the 

following condition for gain of using coding at 
transport level 
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The plots of gain of transport coding (in the 

sense of decrease the mean message delay) are 
shown in Fig. 1, 2. 

As one can see from Fig. 1. exact calculation 
shows that gain of transport coding can be obtained 
with wider range of network load than it follows 
from condition (16). However, the estimation 
reflects the proper tend of changing gain versus 
network load. The plot in Fig. 2 shows that increase 
of number of information packets in message leads 
to the gain increase that has logarithmic behaviour. 

3 MESSAGE DELIVERY DURING 
LIMITED TIME 

For many data networks the probability )( 0TP of 
message delivery during the time no more than 0T  
has the same importance as the mean message delay. 
Let us show that in this case transport coding also 
can be used to increase )( 0TP . Let { }0Pr Ttp ≤=  
denote the probability of message delivery during 
the time no more than 0T  and let Rp  denote the 
same probability for the encoded message having 
regard to the increased network load. Then for the 
uncoded messages we have 
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Figure 3: A probability of message delivery during time T0 
vs. number of information packets in message, a = 4, ρ = 

0.2. 
 

KpTP =)( 0  (17) 
 

and in case of using the encoded messages (code 
length is N) the probability )( 0

)( TP R  that the 
encoded message is delivered during the time no 
more than oT  can be written as follows 
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Now if we will use the same assumptions as in 

Section 1 about exponential distribution of packet 
delay and about dependence of the mean packet 
delay on the network load (3) we obtain the 
following expression for p: 
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where t ( , )λ µ  is the mean packet delay defined by 
(3). Let denote as a the ratio T t0 / ( , )λ µ  and as ξ  
the ratio of the mean packet delay in the ordinary 
network without transport coding to the mean packet 
delay in the network with transport coding, 
ξ λ µ λ µ ρ ρ= = − −−t t R R( , ) ( / , ) ( ) ( )1 11 . Then 
formulas (17) and (18) can be rewritten as follows: 
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Figure 4: A probability of message delivery during time T0 
vs. number of information packets in message, a = 4, ρ = 

0.6. 
 
It is easy to verify that 0)( 0 →TP  with 

increasing the number of packets in the message K. 
From the other hand, in case ξaeR −>− )1( , 

cTP R →)( 0
)( , )10( ≤< c  with increasing K. The 

condition ξaeR −>− )1(  with the restriction ρ>R  
can be written as the following inequality 
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Figure 5: A probability of message delivery during time T0 
vs. number of information packets in message, a = 7, ρ = 

0.6. 
 
Thus, for any R satisfying (22) the addition of N-

K redundant packets to the message leads to the fact 
that the probability )( 0

)( TP R  tends to the constant 
greater than zero, whilst the probability )( 0TP  tends 
to zero with increasing K. The plots of )( 0TP  and 

)( 0
)( TP R  against K are represented in Fig. 3 - 5. 
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4 CONCLUDING REMARKS 

The given estimates of mean message delays in the 
network are rather rough. However, even these 
estimations show that transport coding leads to a 
significant decrease of mean message delay under 
conditions of moderate network load. Moreover, it is 
possible to use transport coding not only to decrease 
the mean message delay, but also to increase the 
reliability of message delivery during limited time, 
which also is a question of great interest. All given 
estimations and exact formulas given are based on 
the assumption that packet delay in a network has an 
exponential distribution. Although this assumption 
has some grounding in (Kleinrock, 1975), 
(Vvedenskaya, 1998) for many kinds of networks, it 
is possible that in some networks the distribution of 
the packet delay differs from the exponential one. 
However, this assumption was used only for the 
simplification of calculations. It is necessary to note 
that an exponential distribution of packet delay is 
not the best case for use of transport coding because 
the probability of a high packet delay is very small. 
We can therefore expect that the gain of transport 
coding could be more significant for another 
distribution of packet delay. 
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