
A PRELIMINARY EXPLORATION OF STRIPED HASHING 
A probabilistic scheme to speed up existing hash algorithms 

George I. Davida, Jeremy A. Hansen 
Center for Cryptography, Computer and Network Security 

University of Wisconsin - Milwaukee, 3200 N. Cramer Street, Milwaukee, WI, 53211 USA 

Keywords: hashing, MD5, probability, SHA, striping. 

Abstract: Hash algorithms generate a fixed-size output from a variable-size input. Typical algorithms will process 
every byte of the input to generate their output, which, on a very large input, can be time consuming. The 
hashes’ potential slowness, coupled with recently reported attacks on the MD5 and SHA-1 hash algorithms, 
prompted a look at hashing from a different perspective.  By generating several “striped” hashes, we may 
speed up the hash verification by a factor of the chosen stripe size. 

1 INTRODUCTION 

When an executable program is replaced with 
malicious code, the new contents will vary 
dramatically from the original file.  File integrity 
monitoring programs like Tripwire use MD5 and 
other cryptographic hash algorithms to detect the 
smallest change in an executable (or other) file, 
down to single bit inversions.  When an MD5 hash is 
calculated for the file, the entire file is read in and 
sent through the algorithm in 512-byte blocks.  
These blocks are taken from the file sequentially and 
processed until the end of the file is reached.  The 
technique described by this paper achieves one 
primary goal: decrease the time necessary to check 
the MD5 hash for large inputs by reducing the 
amount of data that is verified in each check.  

The primary motivation for this scheme is a 
system currently in development that frequently 
checks the integrity of running processes.  
Calculating a complete hash of the processes’ 
memory spaces requires too much time, and causes 
the system to slow down unnecessarily.  The system 
needs to be able to verify the integrity of a process, 
even if it is only a partial verification, without 
disrupting the standard operation of the computer. 

2 THE ALGORITHMS 

The concept behind the proposed algorithms is 
partial hashing, which uses a subset of the input 
bytes to generate the cryptographic hash. The 

strength of the hash algorithm now depends on the 
original algorithm as well as which bytes of the 
input are chosen – an unwise choice can allow an 
attacker to dodge the integrity checking altogether. 
The chosen bytes should be distributed evenly across 
the length of the input, so that any string of unused 
bytes is of the minimum possible length. 

Other algorithms use partial hashing to validate 
the accuracy of individual blocks of a file.  Peer-to-
peer networks use these, for example, when each 
party may only have a small part of a large shared 
file, but needs to know if the blocks they currently 
possess are legitimate.  Implementations like THEX, 
which use Merkle Hash Trees, organize these single-
block partial hashes as the leaves of a binary tree, 
and then concatenate the leaf hashes to generate 
intermediate hashes.  These intermediate hashes are 
in turn concatenated, until the root of the tree is 
reached, at which point a single hash value is 
returned.  One of the benefits of hash trees is that the 
verifying entity need only know a handful of 
intermediate hashes to verify the blocks. There is a 
drawback to the typical use of hash trees in that the 
data being hashed (at the leaves of the tree) is in 
contiguous blocks.  If an attacker can replace a 
single block such that the replacement hashes to the 
same value as the original, the whole file can be 
corrupted. 

2.1 p-striped Hashing 

The following algorithm is used in the interest of 
choosing a subset that, instead of being blocks of 
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contiguous data, is evenly distributed over the entire 
input. Given the length L of the input file, a small 
number p is chosen such that p < L. A buffer of size 
⎣L / p⎦ is allocated and filled, one byte at a time, 
with bytes from the file at locations (p * i), where 
i = 1 to ⎣L / p⎦. Finally, the hash of this buffer is 
computed and stored as the p-striped hash. 

The effect of this algorithm is that the hash 
function only processes every pth byte in the file. 
Therefore, any changes to the file, to remain 
undetectable by the modified hash algorithm, would 
have to be made in the gap of p-1 bytes between 
samples.  Assuming that he knew the value of p, an 
attacker could work around this partial hashing by 
only modifying bytes unchecked by the striped hash. 

For example, if L is 30K, p may be set to 17. A 
buffer of size 4388 is allocated to hold the pre-
processor’s output.  This buffer is then filled with 
the bytes found at 17, 34, 51, and so on – all 
multiples of p – until it is completely filled.  This 
data is passed to the hash algorithm which produces 
a cryptographic hash whose generation time is 
roughly 17 times faster than the calculation of a hash 
of the complete file. 

This algorithm is not particularly useful on its 
own.  Instead, the variants that follow use the basic 
ideas of the p-striped hash but are more effective. 
For example, the probability that x randomly 
selected contiguous corrupt bytes of the input will be 
detected by this basic partial hash is only x/p.  For a 
p large enough to yield substantial speed gains, the 
probability of detecting a modification is 
unacceptably low.  Algorithms that increase this 
probability are described below. 

2.2 p-offset-striped Hashing 

Using p-striped hashing as a base, p-offset-striped 
hashing adds extra “parallel” hashes by slightly 
offsetting the initial position of the stripe.  The 

original p-striped hash is stored with those of the 
offset p-striped hashes.  Instead of the marginal 
performance gains of a small p, this new algorithm 
allows the choice of a larger p with some additional 
obstacles to an attacker. 

The concatenation of two such hashes could 
create a hash twice as long as the typical output for 
the hash algorithm. Thus, a p-offset-striped MD5 
with one offset hash will generate 32 bytes of hash, 
the first 16 bytes being the p-striped hash, the 
second half being the offset hash.  Instead of 
checking both the original and the offset hashes at 
the same time to ensure integrity, only one is 
checked at a time to determine if a change has been 
made. The hash value to verify will be chosen 
randomly at the time the check is made. The 
assumption made in this case of precomputing 
multiple hashes is that the system verifying the 
hashes will do its verification frequently enough to 
ensure that it is checking both the p-striped and any 
available offset hashes on a regular basis.  The 
decision to precompute more partial hashes becomes 
a choice of how much storage space to exchange for 
the speed and security of the extra hashes. 

The offset, s, is chosen such that it is less than p 
but not a divisor of p.  A buffer of size ⎣L / p⎦ is 
allocated, as with the standard p-striped hashing, and 
is filled a byte at a time with data from the file at 
locations  

((p * i) + s) mod L 

As in p-striped hashing, i ranges from 1 to ⎣L / p⎦.  
Note that it is possible for a stripe to “wrap” back to 
the beginning of the input given a large enough 
value of s.   

Choosing a variety of values for s generates 
multiple parallel striped hashes.  A convenient way 
of generating a handful of values of s is to divide p 
into equal pieces depending on how many hashes are 
desired.  If n hashes are desired, s can be calculated 
as  

H
ash 20 

H
ash 1 

H
ash 2 

H
ash 3 

H
ash 4 

Figure 1: An 80-byte file with complete 20-striped offset hashing
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s = ⎣j * (p / n)⎦ 

where j ranges from 0 to n-1. These values for s are 
spread out evenly between 0 and p, so the length of 
the gaps between what the offset hashes cover is 
minimized.  The first hash corresponds to the p-
striped hash, while the remaining hashes are offset. 
For example, if eight hashes (that is, n = 8) that are 
spread out evenly over the input are desired, and p is 
101, values for s are calculated as 0, 12, 25, 37, 50, 
63, 75 and 88.   

In this scheme, pre-processing the input will 
speed up the hash checking by a factor of p and the 
calculation of the initial hashes by a factor of p/n. 
Verifying each of these hashes will take 
approximately the same amount of time since the 
number of input bytes for each stripe is the same. 

The probability that x randomly selected 
contiguous corrupt bytes of the input will be 
detected by the p-offset striped hash with n offsets 
and s generated as described above is nx/p.  This 
corresponds to the same probability as if a stripe size 
of p/n was chosen, and the maximum gap size is 
⎡p/n⎤ - 1.  The probability that a single randomly 
selected hash from this collection of offset hashes 
will detect these corrupt bytes is x/p, like the basic p-
striped hash. 

This preprocessing algorithm weakens the 
underlying cryptographic hash algorithm, since the 
collection of hashes is now vulnerable to collisions.  
An attacker knowledgeable of the values of p and s 
could generate two inputs that produce the same 
collection of striped hashes.  This weakness is 
eliminated with the following algorithm. 

2.3 Complete Striped Hashing 

If p is chosen properly with respect to L, a hash 
algorithm could be devised that leaves no gaps in the 
input and outputs a complete p-striped hash. That is, 
the algorithm will process every byte of the input 
file, but still have a tremendous improvement in 
speed. If p and L are relatively prime, a scheme 
similar to that of p-offset hashing can be used to 
generate the striped hashes.  A buffer is filled with 
bytes from locations 

(p * i) mod L 

where i ranges from 1 to ⎣L / p⎦, but only for the first 
partial hash.  A second buffer is then filled with 
bytes according to the above formula where i ranges 
from ⎣L / p⎦ + 1 to ⎣2 * L / p⎦. Separate buffers 
continue to be filled until the pth buffer is filled with 
similar bytes, when i ranges from ⎣(p-1) * L / p⎦ + 1 
to ⎣ p * L / p⎦.  Each of these buffers is passed to the 
hash algorithm separately, yielding p partial hashes. 
This preprocessing will assign each of the L bytes of 

the file to one of the hashes.  Any single-byte change 
to the file will be detected by one of the generated 
hashes. Thus, the probability that any change in the 
file will be detected by at least one of the hashes is 
1.  “Adjacent” hashes will detect contiguous 
modified bytes.  The probability that any single hash 
will detect an x byte contiguous change to the file is 
x/p. 

The p-offset hashing scheme can also be used to 
generate a “complete” set of hashes. With a stripe 
size of p, the number of hashes initially computed 
(described as n above) is set to the stripe size.  Since 
n = p, the offsets range from 0 to p-1 and every byte 
of the file is covered by at least one hash, as shown 
in Figure 1.  Any single-byte modification can be 
detected by checking all of the given hashes. 
However, one of the algorithm’s assumptions, as in 
p-offset striped hashing, is that the verification of 
randomly chosen striped hashes is performed 
frequently.  Because of this assumption, the 
modified hash algorithm will, with a probability 
inversely proportional to p, eventually detect the 
modification.  Given enough integrity checks, the 
modification will eventually be discovered. On 
average, it will require p/2x hash verifications to 
catch x invalid contiguous bytes in a complete p-
striped collection of hashes. 

The decision remains as to how p should be 
chosen – should it be large, so there are many 
different hashes to check quickly, but lower 
probability that a change will be detected?  Would it 
be more advantageous to choose a smaller value that 
detects modifications with a higher probability but 
only a marginal speedup? 

2.4 p-q-striped Hashing 

Instead of choosing an offset from a given p, as in p-
offset striped hashing, a separate p might be chosen, 
q.  The q-striped hash is generated separately from 
the p-striped hash and stored like an offset hash.  
With the second stripe of a different length, an 
attacker would have to evade every pth and every qth 
byte. The probability that x randomly selected 
contiguous corrupt bytes will be detected by one or 
both hashes of a p-q-striped hash is  

(px + qx – x2) / pq 

The probability that the invalid bytes are detected in 
a single check of one of the hashes, chosen 
randomly is 

(px + qx) / 2pq 

p-q-striped hashing could be expanded to include 
even more values of p, so that a p1-p2-…-pn-striped 
hash could be constructed, depending on how many 
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hash choices are desired. A similar statistical 
analysis as above could be done with three hashes to 
determine the probability that one or more of the 
hashes detects a contiguous block of corrupt data. 
This probability is 

(x3 – x2(p1+p2+p3) + x(p1p2+p2p3+p1p3)) / p1p2p3

Similarly, on average, the probability that a single 
pass of one randomly chosen striped hash will detect 
the x corrupt bytes is 

x(p2p3 + p1p2 + p1p3) / 3p1p2p3

The probabilities of detection for four or more 
stripes could also be calculated in the same way.  

Generating the full baseline hash for a file of 
length L requires processing of all L bytes.  To fully 
verify the hash of the same file at a later time will 
require the same amount of processing, as the length 
of the input will be the same.  The p-q-striped hash 
scheme, however, will only require  

⎣L / p⎦ + ⎣L / q⎦ 

bytes to be hashed to generate the two partial 
baseline hashes.  Checking the integrity of the file 
with one of the hashes requires only ⎣L / p⎦ or ⎣L / q⎦ 
bytes to be passed to the hash algorithm, giving an 
average speedup of (p + q)/2, compared to 
performing the full baseline hash. 

The lengths of the contiguous bytes unchecked 
by this algorithm vary from 1 to p-1.  The number of 
gaps of length 1 is equal to those of length 2, 3, and 
so on, up to p-1. This mix of different-length gaps 
makes even a knowledgeable attacker’s job of 
bypassing the integrity checks extremely difficult. 

As with p-offset striped hashing, a “complete” 
version of p-q-striped hashing is possible.  If p and q 
are both relatively prime to L, hashes can be 
generated by iterating past the end of the file as 
described above in “Complete Striped Hashing”. In 
essence, this scheme produces two complete sets of 
hashes – the complete p-striped hash and the 
complete q-striped hash. 

3 REMARKS 

One of the original purposes of hashing was to 
eliminate the need to store a duplicate copy of the 
file (or other input) whose integrity a system needed 
to monitor – instead, the hash could be stored.  The 
proposed system stores more hashes and only looks 
at particular parts of the input when doing a single 
check.  After several such checks, the input can be 
validated in an equivalent way to checking the entire 
input at once, but having the benefit of spreading the 
integrity checking out over a period of time. 

The aforementioned preprocessors serve to 
speed up existing hash algorithms without 
significantly sacrificing security, provided they are 
implemented properly.  The specific placement of 
these cryptographic checks in the security system is 
outside the scope of this paper, but is an area of 
work-in-progress. This work is in its preliminary 
stages and we are continuing to examine the issue of 
cryptographic hashing of software and data to 
preserve system integrity. 
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