Using Restricted Random Walks for Library Recommendations

Markus Franke and Andreas Geyer-Schulz
Institut für Informationswirtschaft und -management
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract. Recommendations are a valuable help for library users e.g. striving to gain an overview of the important literature for a certain topic. We describe a new method for generating recommendations for documents based on clustering purchase histories. The algorithm presented here is called restricted random walk (RRW) clustering and has proven to cope efficiently with large data sets. Furthermore, as will be shown, the clusters are very well suited for giving recommendations in the context of library usage data.

1 Motivation and Introduction

Services like amazon.com’s “Customers who bought this book also bought . . .” are an important service – for all involved parties: The customer receives assistance in finding his way through the range of books offered by the shop, the bookseller has the possibility to increase its sales by proposing complementary literature to its customers [1].

Technically, a recommender service can be implemented in different ways. We will present an innovative approach based on a fast clustering algorithm for large object sets [2] and making use of product cross-occurrences in purchase histories: In our case, the purchase histories are those of users of the Online Public Access Catalogue (OPAC) of the university’s library at Karlsruhe, and a purchase is the viewing of a document’s detail page in the WWW interface of the OPAC. A cross-occurrence between two documents is given when their detail pages have been viewed together in one user session.

Following the standard assumption for behavior-based recommender systems, we assume that a high number of cross-occurrences hints at a high complementarity of two documents that we can interpret in the recommender context as similarity.

The paper is structured as follows: We start by outlining existing recommender systems and cluster algorithms in section 2. In section 3 we will present the restricted random walk clustering algorithm before discussing the generation of recommendations from clusters in section 4. Results will be shown in section 5 and a conclusion as well as an outlook onto further research topics are given in section 6.

2 Recommender systems and Cluster Algorithms for Library OPACs

General classification schemes for recommender systems have been presented by Resnick and Varian [3], by Schafer et al. [1], and Gaul et al. [4].
The systems we will scrutinize more closely are so-called implicit recommender systems that generate recommendations from user protocol data – e.g. purchase histories at the (online) store, Usenet postings or bookmarks – without the need of user cooperation. This distinction between implicit and explicit recommender systems is important since no additional customer effort is necessary to gain these recommendations and thus incentive-related problems like free riding or bias are minimal. This has been discussed e.g. by Geyer-Schulz et al. [5] or Nichols [6].

All recommender systems mentioned here have in common that they do not perform content analysis, contrary to information retrieval based methods as described for instance by Semeraro [7], Yang [8] and others. This is important since in a hybrid library like the one in Karlsruhe, only a fraction of the corpus is available in digital form.

Currently, two methods are being broadly used to generate recommendations from purchase histories: A straightforward one employed for instance by amazon.com, and an LSD model based approach using Ehrenberg’s repeat buying theory [9] used for example at the university library in Karlsruhe [10].

The first approach is to recommend the books that have been bought (or viewed) most often together with the book the customer is currently considering. The challenges of this idea lie mainly in its implementation for large data sets, even if the matrix of common purchases is quite sparse.

Another, more sophisticated model makes use of Ehrenberg’s repeat buying theory [9, 10]. Its advantage lies in a noticeably better quality of the recommendations, because the underlying assumption of a logarithmic series distribution allows to distinguish between random and meaningful cross-occurrences in a more robust way.

However, these recommender systems only take into account direct neighborhoods in the similarity graph generated by the purchase histories. Each extension that includes the neighbors of the neighbors into the recommendations quickly becomes computationally intractable. This is not the case with cluster-based recommender systems: the recommendations do not only contain the documents directly related to each other, but the clusters also account for indirect relations where this is necessary.

For a general overview of clustering and classification algorithms, we refer to Duda et al. [11] or Bock [12]. In the past there have been some proposals for recommender systems or collaborative filtering based on cluster algorithms [13, 14].

We chose restricted random walk clustering for two reasons: Its ability to cope with large data sets that will be discussed in section 3.4 and the quality of its clusters with respect to library purchase histories.

Viegener [15] investigated the use of cluster algorithms for the construction of a library’s thesaurus extensively. On the one hand, Viegener’s results are encouraging because he found semantically meaningful patterns in library data. On the other hand, all standard cluster algorithms proved to be computationally expensive – Viegener’s results were computed on a supercomputer at the Universität Karlsruhe that is not available for routine library operations. Besides, the quality of the clusters generated by the algorithms scrutinized may not be sufficient for recommendations. Single linkage clustering for instance is prone to bridging, i.e. to connecting independent clusters via an object located between clusters, a bridge element.
The bridging effect is much weaker with restricted random walk clustering as has been shown by Schöll and Paschinger [16] and it is even smaller with the modifications proposed in [2]. Furthermore the cluster size is more appropriate for giving recommendations as will be demonstrated in section 3.3.

A more comprehensive overview of the performance of restricted random walk clustering in comparison to other cluster algorithms can be found in the appendix of [17].

3 Restricted Random Walks

The basic idea of clustering with restricted random walks on a similarity graph as first described by Schöll and Paschinger [18] is as follows: Start at a randomly chosen node, and advance through the graph by iteratively picking a neighbor of the current node as successor. While walking over the document set, we only consider edges for the neighborhood that have a higher similarity than the edge taken in the last step. This procedure is repeated until we arrive at a document via its highest-weighted incident edge, then another walk is started. The foundation of the cluster construction is the assumption that the higher the position of an edge in a walk is, the higher is its importance and thus the probability that the two documents connected by the edge are in the same cluster.

In this section, we will develop the idea in a more formal way.

3.1 The Input Data

We derive our input data from purchase histories generated by users of the Karlsruhe OPAC hosted at the university’s library. As users browse through the catalogues, they contribute to constructing raw baskets: Each session with the OPAC contains a number of documents whose detail page the user has inspected. This data is aggregated and stored in the raw baskets such that the raw basket of a document contains a list of all other documents that occurred in one or more sessions together with it. Furthermore, the cross-occurrence frequency of the two documents, i.e. the number of sessions that contain both documents, is included in the raw basket.

We interpret these cross-occurrence frequencies as a measure for the similarity of two documents and construct a similarity graph \(G = (V, E, \omega) \) as follows: \(V \), the set of vertices, is the set of documents in the OPAC with a purchase history; if two documents have ever been viewed together in a session, \(E \subseteq V \times V \) contains an edge between these documents, and the weight \(\omega_{ij} \) on the edge between documents \(i \) and \(j \) is the number of cross-occurrences of \(i \) and \(j \). \(\omega_{ii} \) is set to zero in order to prevent the walk from visiting the same document in two consecutive steps. The neighborhood of a document or node consists of all documents that share an edge with it.

3.2 The Walks

Formally, a restricted random walk is a series of nodes \(R = (i_0, \ldots, i_r) \in V^r \) that has a finite length – \(r \) in this case – contrary to normal random walks that may be infinite.

\[
T_{i_{m-1}i_m} = \{ (i_m,j) | \omega_{i_mj} > \omega_{i_{m-1}i_m} \}
\] (1)
is the set of all possible successors edges that have a higher weight than \((i_{m-1}, i_m)\) and thus can be chosen in the \(m + 1\)st step.

In order to obtain a sufficient covering of the complete document set, we start several walks from each node, labeling the start node as \(i_0\). Currently, we use ten walks per node, more sophisticated methods are being developed using random graph theory [19].

For the start of the walk, we choose at random one of the start node’s neighbors as \(i_1\), this choice is based on a uniform distribution. The set of possible successor edges is constructed as the set of all incident edges of \(i_1\) with a higher weight, i.e. similarity than \(\omega_{i_0i_1}\): \(T_{i_0i_1} = \{(i_1j)|\omega_{i_1j} > \omega_{i_0i_1}\}\). From this set, \(i_2\) is picked at random using a uniform distribution and \(T_{i_1i_2}\) is constructed accordingly. This procedure is repeated until \(T_{i_r-1i_r}\) is empty, i.e. until no incident edge with a higher weight is found. For an example of such a walk, consider Fig. 1.

When a walk starts from node \(A\), the first successor node may either be \(B\) or \(C\) with equal probability. If \(C\) is chosen, the only successor edge is \(CB\) and after that \(BA\). As we can see, at this point there is no edge with a higher weight than 7, the weight on \(BA\). Thus the walk ends here. Similarly, we might get walks like \(BC\), \(CDE\), \(DCAB\), and \(ED\).

The formulation of the walk as a stochastic process on the edges of the graph and the introduction of an “empty” transition state as shown in [2] lead to an intransitive and infinite Markov chain, which allows the application of the corresponding tool set for the investigation of the properties of the process.

From the description of the walks it is clear that there is no need to consider the whole matrix at a time like other cluster algorithms do. Instead, only local information, namely the neighborhood of the current node or one row of the similarity matrix per step is needed in order to complete the walks. This is a factor that greatly facilitates the implementation and the time and space requirements of the algorithm.

3.3 The Clusters

For the actual cluster construction, several variants can be employed: The original approach by Schöll and Paschinger or the walk context introduced in [2].

It is important to note that clustering with restricted random walks does not generate one cluster, but a hierarchy of clusters. Thus it is necessary to fix a cutoff level \(l\), i.e. a height at which a cut is made through the treelike structure (dendrogram) in order to
determine the cluster for a given node. If \(l \) cannot be fixed in advance, cluster hierarchies allow the user to interactively explore clusters by adapting the level and judging the quality of the resulting clusters. If cluster members are sorted by the minimum level at which they belong to the cluster, it is equally feasible to use the \(m \) top members for recommendations.

The original idea by Schöll and Paschinger was to generate, for a given node, component clusters as follows: A series of graphs \(G_k = (V, E_k) \) is constructed from the data generated by all walks. \(V \) is the set of objects visited by at least one walk. An edge \((i, j)\) is present in \(E_k \) if the transition \((i, j)\) has been made in the \(k \)-th step of any walk. Then, the union

\[
H_l = \bigcup_{k=1}^{\infty} G_k
\]

is constructed for each level \(l \). Schöll and Paschinger define a cluster at level \(l \) as a component (connected subgraph) of \(H_l \). Consequently, if a path between two nodes exists in \(H_l \), they are in the same cluster.

In the example given above containing the walks ACBA, BC, CDE, DCAB, and ED this means that \(G_3 = (V, \{BA\}) \) (the edges are undirected, thus there is no distinction between \(BA \) and \(AB \)) and \(G_2 = (V, \{CB, DE, CA\}) \). As a consequence, the only cluster at level 4 is \(\{A, B\} \), at level 3 we get the clusters \(\{A, B, C\} \) and \(\{D, E\} \), reflecting nicely the structure of the original graph.

The problem with this clustering approach is that we experienced very large clusters with our purchase histories, sometimes containing several hundred documents even at the highest step level available. We conjecture that the reason is a bridging effect due to documents covering more than one subject or read in connection with documents from different domains thus linking clusters.

Furthermore, the step number as level measure has two major disadvantages: First, it mixes final steps from short walks that have a relatively high significance with steps from the middle of long walks where the random factor is still strong. This is evident for the clusters at \(l = 3 \): Although C and D have a high similarity, they do not appear in the top-level cluster because the walks containing them are too short. Second, the maximum step level is dependent on the course of the walks as well as the underlying data set and cannot be fixed a priori.

As a remedy for the large clusters, we introduced walk context clusters: Instead of including all documents indirectly connected to the one in question, we only consider those nodes that have been visited in the same walk as the node whose cluster is to be generated (the central cluster), respecting the condition that both nodes have a higher step level than the given cutoff in the corresponding walk. This has the advantage of reducing the cluster size on the one hand and the bridging effect on the other since it is less probable that some bridge between different clusters has been crossed in the course of one of the walks containing the document in question. Even if a bridge element is included in the walk, the number of documents from another clusters that are falsely included in the currently constructed cluster is limited since only members of the walk are considered that are located relatively near the bridge element.

For walk context clusters, different measures exist for the cluster level: The step, the level and adjusted levels. The step shows the same weakness as described above (cf. [2]) and will not be considered further. The level is defined as a relative position of
the step in a walk.

\[l = \frac{\text{step number}}{\text{total steps in this walk}} \] (3)

For the adjusted levels, two variants were tested:

\[l^- = \frac{\text{step number} - 1}{\text{total steps in this walk}} \] (4)

and

\[l^+ = \frac{\text{step number}}{\text{total steps in this walk} + 1} \] (5)

Those have the advantage of taking into account the total length of the walk: While the first (and last) step from a one-step walk has much less meaning than the tenth from a ten-step walk, both have the level \(l = 1 \). The adjusted levels, however, only converge asymptotically to one for the last step in a walk. The longer the walk, the higher are \(l^- \) and \(l^+ \) of its last step. The quality of these measures will be discussed in section 5.

In our example, the clusters at \(l = 1 \) are as follows: \{A, B\}, \{B, A, C\}, \{C, B\}, \{D, E\}, \{E, D\} where the first node is the central node for the respective cluster. As can be seen, a cluster-based recommendation for B includes both A and C whereas C’s recommendation does not contain B. This will be discussed further in section 4.

3.4 Complexity

Let \(n \) be the number of documents or, more generally, nodes. Schöll and Paschinger [18] give a time complexity of \(O(\log n) \) per walk; \(\log 2 \) seems to be a good estimate. Executing 10 walks per document we get a total complexity of \(O(10n \log n) = O(n \log n) \).

Considering the development of the usage data over the last two years, it is possible that the size of the neighborhood – and thus the degree of the nodes – is bounded by a constant and independent of \(n \). Although the number of documents has grown, the important factor for the complexity, namely the maximum size of the neighborhood of a node, remains constant. Since the walk complexity is thus decoupled from the total size of the graph, even a linear complexity is possible if further developments confirm this conjecture [2].

The complexity of the cluster construction phase depends on the implementation of the data structures holding the walk data. With a hash table, the construction of a cluster for a given document can be done in \(O(\text{number of walks visiting the document} \times 1) \). If the neighborhood size is constant, thus the length of the walks is constant with growing \(n \), the number of walks that have visited a certain document is also constant, otherwise, it is \(O(\log n) \): Assuming that the number of walks visiting a node more than once is negligible, a total of \(O(n \log n) \) nodes is visited during \(n \) walks of length \(O(\log n) \), leading to an average of \(O(\log n) \) walks visiting a node.

Currently, the input data comprises library purchase histories for about 1.8 million documents in the catalogue out of which 800,000 have sufficient data for clustering. They are connected by nearly 36 million edges, i.e. the average degree of a node is about 39. On an Intel dual Xeon machine with 2.4 GHz, the computation of 10 walks per document, that is about 8 million walks in total, takes about 2 days.
4 Giving Recommendations

Once the clustering is complete, the recommendations follow naturally from the clusters. Since clusters contain per definition objects that are most similar to each other and most dissimilar to non-members of the cluster, the recommendations for a given document are the other documents in its cluster. The clusters generated by the walk context method are not disjunctive. This means that, even if documents A and B are both in the cluster for document C, B is not necessarily in the cluster generated for A and vice versa. This property is highly desirable when giving recommendations for books: Recommendations for bridge documents that belong to more than one domain (document C in our example) should contain books from all domains that are concerned (e.g. A and B), while document A normally has no connection to B and thus should not be listed in its recommendation list.

As mentioned, clustering with restricted random walks generates a hierarchy of clusters, thus an optimal cutoff level has to be determined which will be done in the following section.

5 Results

As shown in section 3.3, there are several variables influencing the quality and size of recommendations. We have therefore tested the optimal combination of measure and its value with a training sample of 40000 documents (approximately 5% of the documents).

In lack of a human test group, we took the manual classification scheme used in Karlsruhe as benchmark that follows the SWD Sachgruppen [20] schema introduced by the Deutsche Bibliothek. For each document in the training sample, we counted the documents in the cluster that share at least one category in the manual classification. This is the number of correctly recommended documents. Thus we define the precision as

$$\text{precision} = \frac{\text{number of correctly recommended documents}}{\text{total number of recommended documents}}$$

Recall was not tested because for a recommender, quality is more important than quantity. Furthermore, the manual classification only covers about 55% of the documents in the university’s catalogue, so that the number of documents that “should” be recommended could not be determined without a considerable error. Due to this fact, the precision as described tends to be rather too low, especially if we consider the fact that the quality of the manual classification system at Karlsruhe differs strongly between the topics.

It must be noted that the fine tuning of the above factors is always a compromise between precision on the one hand and the number of documents for which a cluster can be generated as well as cluster size on the other. This can be seen in Fig. 2. The unadjusted level l obviously is an inferior measure. Both of the adjusted levels lie close to each other, with a slight advantage for l^+. This is not too surprising since asymptotically, they are equal.

The maximum precision that was reached by using l^+ was 0.95 at level 0.95, but then, recommendations could only be generated for 11 documents out of nearly 40,000,
Fig. 2. Precision versus number of documents with a recommendation

On the other hand, in order to have recommendations for more than 50% (26,067 in this case) of the documents, a precision of 67% is feasible.

A manual evaluation of these results by a human test group is in preparation in order to verify these first results.

6 Conclusion and Outlook

We have presented a new method for generating recommendations on large data sets in an efficient way. The precision and performance we were able to achieve are promising.

However, there remain some open questions for further research: An important issue that is currently in the focus of research is that of intelligently updating the clusters when new usages histories arrive by reusing as much as possible from the existing walks. Furthermore, a more intelligent decision for the number of walks that are started from a node will be implemented in order to maximize coverage of the graph without unnecessarily driving up computation time. For this purpose, it is also important to better understand the asymptotic behavior of the algorithm as the number of walks approaches infinity.

Although Schöll [17] has tested this clustering method against others in several typical situations, it will be interesting to perform this comparison also on our library data or – due to computational complexity – on a subset thereof.

Acknowledgment. We gratefully acknowledge the funding of the project “RecKVK” by the Deutsche Forschungsgemeinschaft (DFG).
References