
DESIGN, IMPLEMENTATION AND TESTING OF MOBILE
AGENT PROTECTION MECHANISM FOR MANETS

Khaled E. A. Negm
Etisalat College of Engineering, Sharjah, POB 980, UAE

Keywords: Secure Mobile Transactions, Mobile Agent Protection, Business to Business Secure Transaction

Abstract: In the current research, we present an operation framework and protection mechanism to facilitate secure
environment to protect mobile agents against tampering. The system depends on the presence of an
authentication authority. The advantage of the proposed system is that security measures is an integral part
of the design, thus common security retrofitting problems do not arise. This is due to the presence of
AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from
the visited host. So that eavesdropping on information from the agent is no longer possible to reveal any
confidential information. Also the inherent security constraints within the framework allow the system to
operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for
most of the well known severe attacks against agents and networked systems. The scheme proved a
promising performance that makes it very recommended for the types of transactions that needs highly
secure environments, e. g., business to business, stock market updates, and any real time data
synchronization..

1 INTRODUCTION

In a broad sense, a software agent is any program
that acts on the behalf of a user, just as different
types of agents (e.g., travel agent and insurance
agents) that represent other people in day-to-day
transactions in real world. Applications can inject
mobile agents into a network, allowing them to roam
the network on either a predetermined path, or
agents themselves determine their paths based on
dynamically gathered information. Having
accomplished their goals, the agents return to their
“hosts” in order to report their results to the user.

However; the mobile agent paradigm also adds
significant problems in the area of security and
robustness. Malicious agents are similar to viruses
and trojans, they can expose hosts, they visit, to the
risk of system penetration. While in transient, the
agent’s state becomes vulnerable to attacks in
different ways. An agent is likely to carry-as part of
its state-sensitive information about the user identity,
e.g., credit card information, personal confidential
preferences, or any other form of electronic
credentials. Such data must not be reveled to any
unauthorized hosts or modified by unauthorized
users. Unless some countermeasures are taken, such

agents can potentially leak or destroy sensitive data
and disrupt the normal functioning of the host.

In the current research we present a protection
scheme for the mobile agents that incorporate
standard cryptographic mechanisms into the agent
transfer protocol functions. The use of the one-way-
hashing and digital signatures is two fold; first detect
active, passive and tampering attacks, and second to
establish the identity of the servers participating in
the anti-tampering program (ATP) (Vincenzetti 1993
and Sielken 1999). Also encryption is used to
prevent passive attacks on the agent's state while it is
in transient (Roth 2000 and Gary 1998).

2 MOBILE AGENT SECURITY
ANALYSIS

Mobility allows an agent to move among hosts
seeking computational environment in which an
agent can operate. The host from which an agent
originates is referred to as the home host that
normally is the most trusted environment for an
agent (Fuggetta 1998, FIPA 1998, and OMG-TC
1997).

154
E. A. Negm K. (2005).
DESIGN, IMPLEMENTATION AND TESTING OF MOBILE AGENT PROTECTION MECHANISM FOR MANETS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 154-161
DOI: 10.5220/0001236301540161
Copyright c© SciTePress

In the mobile agent environment, security
problem stems from the inability to effectively
extend the trusted environment of an agent’s home
host to other hosts. The user may digitally sign an
agent on its home host before it moves onto a second
platform, but this resembles a limited protection.
The next host receiving the agent can rely on this
signature to verify the source and integrity of the
agent’s code, data, and state information provided
that the private key of the user has not been
compromised. For some applications, such minimal
protection may be adequate through which agents do
not accumulate state. For other applications, these
simple schemes may prove inadequate. For example;
the Jumping Beans agent system addresses some
security issues by implementing a client- server
architecture, whereby an agent always returns to a
secure central host first before moving to any other
platform (Ad Astra 1998, Negm 2003, and Negm
2004).

Some other category of attacks on the agent
involves tampering by its executing visited hosts.
As such, if that server is corrupted or becomes
malicious, the agent's state is vulnerable to
modification (Farmer 1996). Although a lot of
research has been done in this area, one of the
remaining problems is the presence of a nontrusted
malicious host that attacks mobile agents, for
example; a travel agency’s agent system might
modify the best offer the agent has collected, so that
its own offer appears to be the cheapest one. Also,
the travel agency might change the list of travel
agencies that the agent is going to visit to increase
its chances to propose a better offer and/or get the
prices of other travel agencies before making its
offer to the agent. All of these attacks involve
eavesdropping and tampering and yet all the
published schemes represent a simple mechanism of
protection that can not guarantee secure transactions
for the agents.

3 PROTECTION MECHANISM
AND ITS IMPLEMENTATION

Several In the current research we implement a
mechanism by which tampering of sensitive parts of
the state can be detected, stopped, and reported to
the Master Agent (MA). The framework is
composed of different modules.

First the initialization module, this module
includes two coordinating entities MA and Slave
Agents (SAs). The user resides on its own platform
and/or on a server to create the MA acquiring only
that MA must exclusively reside on a secure trusted
host. Then the MA creates SAs on another host (or

the same MA host) in which being created on a
secure host is not a must. Next MA defines tasks
and subtasks to the SAs to achieve based on the user
preferences. Then the SAs move from host to host
to finish the tasks (and/or subtasks) given from the
MA (that includes a central knowledge-base and a
central management components.).

The second module is the Constraints Module
that contains conditions and rules for each agent to
follow. This module presents the first line of
defense in which the characteristic details and
operational parameters of the visited host are listed.
The third Module is the Encryption Module,
presenting the second line of defense to afford the
security for the agents’ states. The encryption
module contains two parts. The startup part, allows
the user to declare which part of the agent as a read-
only in which any tampering with the read-only
objects can be detected. The second part is a secure
storage container, that allows the agent to create an
append-only container by which the agent can check
in data (when executed) and store it in the container,
so no one can delete or modify it without detection.

3.1 The Initialization Module

The concept of MA-SA was first introduced by
Buschmann in 1996 to support fault tolerance,
parallel computation and computational accuracy
(Buschmann 1996). Also Lange demonstrated in
1997 that it is also applicable to support tasks at
remote destinations and extended it to fit mobile
agents (White 1997). The MA-SA concept is
interacting as follows: the MA creates SAs, then the
master delegates the subtasks to the SAs, and finally
after the slaves have returned the results, the master
combines the results. The master can assign more
than one task at a time and the slaves can execute
them concurrently. A major benefit of this
abstraction is the exchangeability and the
extensibility in which decoupling the SA from the
MA and creating an abstract slave class allows to
exchange the slaves’ implementation without
changes in the master’s code.

Depending on the MA-SA concept, we built up a
system to facilitate a solution to the mobile agent
security problem. To achieve this, confidential data
is contained in a secure place that is the MA host (or
heavily protected if carried by the SAs). Then the
SA must carry essential data to fulfill the task
assigned by the MA (Tripathi 1999).

Tables 1 and 2 present the two listings of the
pseudo code implementation of MA and SA. First,
the doTask() method is called so the MA moves
to the first host where it uses its strategies to split the
tasks into subtasks. Then the MA assigns subtasks

DESIGN, IMPLEMENTATION AND TESTING OF MOBILE AGENT PROTECTION MECHANISM FOR MANETS

155

to the SAs. Afterwards it waits for the results which
will be returned by the SAs.

Table 1: MA pseudo code
Public class MA extends Agent {
 private ConstarintManager cm;
 private Vector Tasks;
private vector sentSAIds;
 protected void doTask() {
 do {
 getCurrentHost().transfer(this

object)
 splitTasks();
 waitForResults();
 mergeResults();
 } while (!supertask.finished());
 sendResultsMAHome();
 }
 private void splitTask() {
 // 1. apply strategy to divide the

task
 // 2. refine constraints for the

subtasks
 for (int i=0; i < tasks.size();++){
 SA = new SA (subtask, constraints);
 sentWorkIds.add(w.getId());
 w.doTask();
 }
 }
}

Table 2: SA pseudo code
Public class SA extends Agent {
 private ConstarintManager;
 private Vector Tasks;

SA (Task t){task=t; }
 protected void doTask() {
 do {
 task.execute();
 addResult(task.getResults());
 getCurrentHost().transfer(this
object)
 } while (!task.finished());
 }
 private void addResult(Results=r){
 if (cm.checkConstarints(task,r))
 sendResulstToMA;
 }

}

3.2 The Constraint Module

After starting the initialization module, the
constraints module starts running in a supervisory

parallel fashion during the transactions. The
constraints module is composed of three parts:
a. Routing Constraints: which define variables for

the agent’s itinerary that lists hosts, operating
systems’ type and version number including
hopes for travelling. This type has to be checked
every time before an agent moves to another
location.

b. Execution Constraints: which define
requirements on the SA visited system’s
environment which contain a limitation list of
hardware (the amount of memory storage) or
software (for example a specific version of the
database-access software or an LDAP-service)
requirements.

c. Merging Constraints: which define the relations
between subtasks that are generated by the
strategies. In contrast to the other constraints,
merging constraints are stored exclusively by the
MA.

3.3 The Cryptography Module

The cryptography module provides a secure
container for any credentials that the agent might
carry and acts as an intrusion detection system to
discover tampering. This protection mechanism
contains two parts:

a. The read only-state: in which it function to
assign part of the “agent’s object” as read-only sub-
object in which its credentials could not be modified
by anyone, and thus are read-only during its travels.
To protect such read-only state we have to declare
the associated objects as constants and incorporate a
cryptographic mechanism to protect these constants.

In Table 3 we list the pseudo code of this object.
It contains a vector of objects of arbitrary type,
along with the agent owner's digital signature on
these objects. The digital signature is computed by
first using a one-way hash function to digest the
vector of objects down to a single 128-bit value, and
then encrypt it using the private key of the agent’s
owner. The Digital Signature Algorithm (DSA) is
used for this purpose (Bellare, M.1997).

()()objshKsign A
−=

The verify method of the
ReadOnlyContainer object allows any host on
the SA’s path to check whether the read-only state
has been tampered via contacting the certifying
authority to honor the user’s signature (while it
needs an access to the agent's public key.) It uses
the public key to decrypt the signature, and
compares the result with a recomputed one-way hash
of the vector of objects. If these values match, the

WEBIST 2005 - INTERNET COMPUTING

156

visited host can assume that none of the objects has
been modified since the signature was computed.
Thus, the condition it checks are:

() ()signKobjsh A
+= .

The read-only container mechanism is limited in
utility to those parts of the state that remain constant
throughout the agent's travels. But in real life, SAs
collect data from the hosts it visits and need to
prevent any subsequent modification of the data.
This could be termed as write-once data.

b. Append-only logs: This object guarantees
that the stored entries within it can not be deleted,
modified or read by an unauthorized user. When
data object needs to be nonmodifiable for the
remainder of the agent's journey, it can be inserted
into this append only log and to provide secrecy, the
data is then encrypted with the MA’s public key
before it is stored in the log file. We used this
module to preserve the results that the SA’s had
gathered. The pseudo code of this object is shown in
Table 4.

The AppendOnlyContainer object contains
vector of objects to be protect, along with their
corresponding digital signatures and the identities of
the signers (in case of MA only). It also contains a
checkSum array to detect tampering. When an SA
is created, its AppendOnlyContainer is empty.
The checksum is initialized by encrypting a nonce
with the agent's public key

()aA NKcheckSum +=

This nonce Na is not known to any host other than
the MA’s host, and must be kept secret. Therefore,

it is not carried by the SA. The encryption is
performed using the ElGamal cryptosystem
(ElGamal 1984). At any stage during the SAs travel,
the agent can use the checkIn method to insert an
object X (of any type) into an
AppendOnlyContainer. For example, after
collecting a quotation from a travel agent, it can
check the in-value, in order to protect it from any
further modification. The checkIn procedure
requests the current server “C” to sign the object
using its own private key. The object, its signature
and the identity of the signer are inserted into the
corresponding vectors in the
AppendOnlyContainer. Then, the checksum is
updated as follows

()()CXSigcheckSumKcheckSum CA ++= +
.

First, the signature and the signer's identity is
concatenated to the current value of the checksum.
This byte array is then encrypted further using the
MA’s ElGamal public key, rendering it to be
unreadable by anyone other than the agent's owner.
Then, the encrypted version of the object would be
carried along and protected from tampering. When
the agent returns, the user can use the verify method
to ensure that the AppendOnlyContainer has not
been tampered. As shown in Table 4, the verify
process works backwards, unrolling the nested
encryptions of the checksum, and verifying the
signature corresponding to each item in the protected
state. In each iteration of this loop, the following
decryption is performed

() () SXSigcheckSumcheckSumK SA ++⇒−
,

Table 3: The ReadOnlyContainer pseudo code.

class ReadOnlyContainer {
 Vector objs; // the read-only objects being carried along
 byte[] sign; // owner's signature on the above vector
 // Constructor
 ReadOnlyContainer(Vector o, PrivateKey k) {
 objs = o;
 sign = DSA—Signature (hash(objs), k);
 }
 public boolean verify(PublicKey k) {
 // Verify the agent owner's signature on the objects
 // using the owner's public key
 }
}

DESIGN, IMPLEMENTATION AND TESTING OF MOBILE AGENT PROTECTION MECHANISM FOR MANETS

157

Table 4: The AppendOnlyContainer

class AppendOnlyContainer –{
 Vector objs; // the objects to be protected
 Vector signs; // corresponding signatures
 Vector signers; // corresponding signers' URNs
 byte[] checkSum; // a checksum to detect tampering
 // Constructor
 AppendOnlyContainer(PublicKey k, int nonce) {
 objs = new Vector(); // initially empty
 signs = new Vector(); // initially empty
 signers = new Vector(); // initially empty
 checkSum = encrypt (nonce); // with ElGamal key k
 }
 public void checkIn (Object X) {
 // Ask the current server to sign this object
 sig = host.sign (X);
 // Next, update the vectors
 objs.addElement (X);
 signs.addElement (sig);
 signers.addElement (current server);
 // Finally, update the checksum as follows
 checkSum = encrypt (checkSum + sig + current server);
 }
 public boolean verify (PrivateKey k, int nonce) {
 loop {
 checkSum = decrypt (checkSum); // using private key k
 // Now chop off the ''sig'' and server's URN at its end.
 // These should match the last elements of the signs and
 // signers vectors. Verify this signature.
 } until what ever is left is the initial nonce;
 }
}

where S is the server in the current position of the
objs vector. The verify procedure then ensures that

()() ()XhXSigK SS ==+
.

If any mismatches are found, the agent’s owner
knows that the corresponding object has been
tampered and then it can discard the value. The
objects extracted up to this point can still be relied

upon to be valid, but other objects whose signatures
are nested deeper within the checksum can not be
used. When the unrolling is complete, we are left
with the random nonce that was used in the
initialization of the checksum. This number is
compared with the original random number Na. If it
does not match, a security exception can be thrown.

Figure 1: The testing network

Host 11
LINUX RH

Host 10
WIN2000

Host 9
WINXP

Host 12
LINUX MDK

Traffic Generator
5

Host 6
LINUX RH

Host 7
WINXP

Traffic Generator
3

Host
8

BSD

Host 5
LINUX MDK

Cisco 7000M
W/VLAN
Shared

Backbone

CISCO 1700

VPN Host
Client Private Key

Constrainst
System

BlackBoard
System

CISCO 3600

CISCO 2950

FIRE WALL 2
Cisco 535

CISCO 2950

IDS Sensor
WKST

LINUX
Route

r

DMZ SERVER

Host 4
LINUX RH

Traffic Generator
1

Host 3
WIN2000

Host 2
WINXP

Host 1
LINUX MDK

NET 1

NET 2

NET 3
VPN Concentrator

Cisco 7210

FIRE WALL 1
Cisco 535

Traffic Generator
2

Traffic Generator
4

Public Key
Certifying
Authority

WEBIST 2005 - INTERNET COMPUTING

158

Table 5: Testing Scenario Parameters

Scenario Client Master (I/O) Slave Host: ports Target Hosts
1 VPN host VPN host:

(4444/3333)
DMZ host: 3062
DMZ host: 3063
DMZ host: 3064

H1: 3155
H5: 3150
H10: 2774

2 VPN host DMZ host
(44444/60000)

H4: 3009
H11: 3010
H12: 3011

NET1
NET2
NET3

Table 6: Validity and Parallelizing Test Parameters

packets Bytes Source Ports Destination Ports
20 3000 Any 3150
40 7050 Any 3155
14 2683 Any 2774
56 6388 Any All the remaining
138 19121 All traffic All traffic

4 TESTING

The basic goal of the testing is to monitor the system
behavior against malicious attacks and measure the
network utilization for different operational
scenarios. We executed the most common well
know attacks for agents, systems, and networks
against the proposed system and collected the results
to study the feasibility (CVE 2005). Five traffic
generators are installed and distributed among its
testing network to simulate the real world
environment. Additional normal www traffic is
generated while activating and running the system to
introduce the normal competitive packet dynamics
and latencies within the queuing buffers in each
router (TG 2004).

The major role of the utilization testing is to
evaluate the network resources usage while
implementing the framework. Also we performed
functionality testing of the framework in which
“Parallelizing” scheme enables concurrent task
execution. In every testing scenario, there is a list of
hosts for the SAs to visit according to their
respective predefined strategy.

4.1 Validity and Parallelizing Test

In this scenario, the client operates from the VPN
host at which he creates the MA Then the MA
creates three ASs on the DMZ host from which they
start travelling to their designated hosts according to
the predefined constraints.

Each SA queries its target host via the dedicated
port for such a process. Then each SA will activate
a security query to the CVE host requesting security
clearance to communicate to the dedicated target
hosts. On receiving the clearance it will proceed to
collect and/or communicate to the target host. In
case of successful transaction, the collected

information is returned to MA. Then the MA
prepares the final report and pass it to the user. Note
that this is not a fully guaranteed security check, but
it helps in some ways to eliminate some security
risks especially for home users.

In here two of the SAs are targeting hosts 5 and
10 will stop execution due to the fact that the
dedicated ports of communication assigned by these
host match malicious attacks (according to the
CVEs) on the SA itself, namely the deep throat, the
Foreplay and the Mini BackLash attacks on port
3150 and the subseven, and subseven 2.1 Gold on
port 2774. This is achieved through the
confirmation channel between the SAs and the MA
to approve communication via the designated port
by the visited host. The MA confirms
communication after checking the CVEs list.

4.2 DDoS Attack Test

In this scenario a malicious software is activated at
Host 1 acting against the three networks in which
host 6 and 9 are trojaned to be malicious to deny any
execution to all arriving agents. In general the MA
creates five the SAs at Host 5. Then each one
moves to all hosts to collect the desired information.
During this test, the MA enforces a new constraint
that concerns retries in denial-of-service attacks as:
* if repeatedCreation() < 3 then

begin true end
else alarm_user(); false end.
The method repeatedCreation() returns

the number of already done retries to create a SA for
a certain task. So for example if one of the SA failes
and the MA creates another one, then the return
value of this method would be one. The constrains
for the SAs are the same as in the previous scenario:
* if placename == "Host 2 12"

then begin true end.

DESIGN, IMPLEMENTATION AND TESTING OF MOBILE AGENT PROTECTION MECHANISM FOR MANETS

159

* if ostype == "LINUX MDK or RH"
then begin true end.

In here the system information is not collected
from hosts in NET1 because it suffers from DDoS
and host 11 because it does not have the correct
name and the last one because it is not the desired
Linux machine. But the encryption module will
detect this behavior, file it, and report it back to the
user via the blackboard system.

The DDoS will not propagate from NET1 to the
other networks because of the network intrusion
detection systems (NIDS) and host based intrusion
detection systems (HIDS) installed to filter out any
traffic back and forth. The SA that moves to host 1
do not return any status report or result within the
given deadline so the MA retried to send it several
time. After retrying it twice the MA’s constraint
number one returns false. Thus, the MA stops trying
to send an agent to these hosts and returns a special
report to the user.

This shows that a malicious host can not trap or
stop the overall process by a denial of service attack.
When the SA does not return within a given deadline
the MA could start another one or redefine the
subtasks and then start a new one.

5 SUMMARY AND CONCLUSION

Mobile agents differ from other techniques in regard
to security issues and security mechanisms, whose
requirements are not met by classical security
systems. Concerning security in traditional
operating systems, the system is always trusted.
This is not true for mobile agents, here the visited
operating system can be the untrusted one and the
agent is the trusted one. The problem arising is that
the users have no chance to check the functionality
of the operating system.

To eliminate some of the security risks we
incorporate a sophisticated mechanism to be built in
within the mobile agent design by which none would
be able to retrofit into the application. This aim is
fully accomplished. The framework limits the risks
of leakage and tampering as the data stored in the
Master Agent will never be accessible to potential
malicious hosts, since it will only reside on trusted
hosts. In addition to implementing the MA-SA
system in an enhanced way to facilitate full
optimizad operation and protection to the agent
system.

Besides the main intent to make mobile agent
technology more secure the Master Agent-Slave
Agent Framework provides additional benefits and
boosts some of the mobile agent’s advantages due to
its design and structure (e.g. flexibility, simplicity,

separation of concerns, etc.). Its separation of code
focusing on coordination and code focusing on
computation make the pattern an ideal basis for the
framework. This design allows easy integration of
this framework in applications and eases porting to
other mobile agent systems.

The framework consists of a coordinating entity
(the MA) and several independent entities (the SAs).
The MA holds all the current knowledge found by
the Slave Agents and uses this knowledge to
accomplish its task. The key difference to the client-
server paradigm is that the MA component is mobile
as well. So it can move to a host near the area its
SAs scenarios will operate in. The only prerequisite
is that the MA must exclusively visit secure trusted
places. In the worst case this is the host where it has
been initialized. We have demonstrated that this
framework solves special aspects of mobile agent
security, in addition to that eavesdropping
information and tampering the agent is no longer
possible or does not reveal any confidential
information.

Every time the agent departs a host, its server
inserts a log entry into the AppendOnlyContainer.
This entry includes the current server's name, the
name of the server from which the agent arrived, and
the name of its intended destination. This travel log
can be used by the agent's owner when the agent
returns, to verify that it followed the itinerary
prescribed when it was dispatched.

If the agent's itinerary is known in advance of its
dispatch, we can insert a copy of the itinerary into
the agent's ReadOnlyContainer. Thus, each
host visited by the agent has access to the original
itinerary, as intended by the agent's creator. The
receiving host can check the current itinerary to
ensure that the agent is following the specified path,
and that the method to be executed is as specified
originally.

This ensures that any tampering with the
method's parameters by any host on the agent's path
can be detected, before the agent is allowed to
execute. In addition, an audit trail of the agent's
migration path can be maintained using an instance
of the AppendOnlyContainer class. One
limitation of AppendOnlyContainer scheme is
that the verification process requires the agent's
private key, and can thus only be done by the agent's
host.

6 FUTURE WORK

Currently we are working on enhancing the IDS
feature of the system by adding a backboard system
to the encryption module. But in this case we have

WEBIST 2005 - INTERNET COMPUTING

160

to implement a rigorous reporting mechanism from
the slave agents to the master agent.

ACKNOWLEDGEMENT

The author would like to thank Cisco systems in
Dubai, UAE to support this research by the needed
Cisco equipments. Also the author would like to
acknowledge the Etisalat Academy in Dubai to
facilitate the premises to run this research.

REFERENECES

Bellare, M. et al (1997). S. Goldwasser, and D.
Micciancio, “Pseudo-Random Number Generation
with Cryptographic Algorithms: the DSS Case, Crypto
97, LNCS 1294, pp. 1-12.

Buschmann, F., et al (1996). Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley, UK.

CVE (2005). Common Vulnerability Exposure
http://cve.mitre.org/.

ElGamal, T. (1984). A public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms,
Proc. of Crypto ’84, LNCS 196, pp. 10-18.

Farmer, W. et al (1996). Security for Mobile Agents:
Issues and Requirements. In Proc. of the 19th
International Information Systems Security
Conference, pp. 591-597.

FIPA (1998). Agent Management,. Specification, part 1,
ver. 2.0, Foundation for Intelligent Physical Agents,
1998.

Fuggetta, G, and G. Vigna (1998). Understanding Code
Mobility, IEEE Transactions on Software Engineering,
24, pp. 342-361.

Gray, R., (1998). D’Agents: Security in a Multiple
Language, Mobile-Agent System, in Mobile Agents
and Security, G. Vigna, ed., LNCS 1419 pp. 154-187,
Springer.

Negm, K. A. E. (2003). Implementation of Secure Mobile
Agent for Ad-Hoc Networks, WEAS Transactions on
Communications, Vol. 2, pp. 519-526.

Negm, K. A. E., and W. Adi (2004). Secure Mobile Code
Computing in Distributed Remote Environment, Proc.
2004 IEEE International Conference on Networking,
Sensing and Control, pp. 270-275.

OMG-TC (1997). Mobile Agent System Interoperability
Facilities Specification, OMG-TC-orbos/97, 1997.

Roth, V., (2000). Scalable and Secure Global Name
Services for Mobile Agents,” 6th ECOOP Workshop
on Mobile Object Systems: Operating System Support,
Security and Programming Languages.

Sielken, R. (1999). Application Intrusion Detection, Univ.
of Virginia Computer Science Technical Report CS-
99-17.

TG (2004).Traffic Generator,
http://www.postel.org/services.html.

Tripathi, A. et al (1999), N. Karnik, N. Vora, T. Ahmed,
R. Singh, Mobile Agent Programming in Ajanta, Proc.
of 19th IEEE International Conference on Distributed
Computing Systems, pp. 190-197.

Vincenzetti, D. and M. Cotrozzi 1993. ATP anti tampering
program, in Edward DeHart, ed., Proc. of Security IV
Conf.-USENIX Assoc., pp 79-90.

White, J. 1997. Mobile Agents,” in Software Agents (J.
Bradshow, ed.) 437-472, MIT Press.

DESIGN, IMPLEMENTATION AND TESTING OF MOBILE AGENT PROTECTION MECHANISM FOR MANETS

161

