
 AN ADAPTABLE MIDDLEWARE FOR PERSONALIZING WEB
APPLICATIONS

Zahi Jarir 1,2 And Mohammed Erradi 2

1 Cadi Ayyad University, Faculty of Sciences Semlalia Marrakech
Department of Computer Science

 B.P. 2390, Bvd. Prince My Abdellah, Marrakech, Morocco

2 Computer Networks and Multimedia Research Group , UFR-RT
Mohamed V Souissi University, ENSIAS

B.P. 713, Agdal, Rabat, Morocco.

Keywords: Web Personalization, Dynamic Reconfiguration, Computational Reflection, Reflective Middleware,
Separation of concerns, Component-based Application, EJB, JOnAS, Web application.

Abstract: The personalization is an important topic for the Web industry. It consists in providing the capabilities to
accommodate Web applications to user’s requirements such as defining preferences on the execution of the
application, associating the provided application to a specific terminal, specifying or modifying QoS
parameters, and so on. The contribution of this paper is to present a solution to ensure an advanced Web
application personalization by focusing on the middleware level rather than the application level. We
provide an enhanced architecture to personalize Web applications using the EJB technology. An
implementation using JOnAS environment is presented. It has the advantage to adapt and/or reconfigure
Web application’s behavior at runtime according to the user’s specific needs.

1 INTRODUCTION

Web applications users become more and more
experienced and thereafter require more advanced
and sophisticated Web applications. In fact these
“smart users” are interested in Web applications that
are easy to reconfigure and/or adapt to their new
requirements. The users may require defining
preferences related to the application’s execution
such as fluctuating network bandwidth, and/or
associating the Web application to a specific
terminal, and so on. For instance certain users may
wish to adapt their Video-On-Demand web
application on their PDA instead of their laptop by
selecting voice rather than sub-titles. The capability
to accommodate applications to the user’s
preferences such as technological restrictions,
mobility requirements, resources constraints, etc. is
called personalization.

The personalization may consist in offering the
possibility to adapt dynamically or statically Web
applications to build ad-hoc applications related to

the user’s needs. In the new provision environments,
Web applications Providers are looking to introduce
new architectures and techniques to allow users to
have an active role and to be involved in the
personalization process of their applications.

Personalizing Web applications is therefore a
challenging task and becomes even more powerful
when applied to advanced and multimedia
applications. Consequently, new tools and
architectures for personalization, especially dynamic
personalization, are required. In this direction a new
paradigm, called engineering adaptive Web
applications, have been emerged.

The rest of this paper is organized as follow. In
Section 2, we discuss related work. In Section 3, we
argue the motivations to choose EJB platform and
thereafter we expose the main entities of the EJB
architecture. In Section 4, we show how the EJB
architecture can be extended to allow dynamic
adaptability of services. In Section 5, we apply the
suggested approach to personalize a Web application
which consists in interacting with a Multimedia
Conferencing System before concluding in Section6.

287
Jarir Z. and Mohammed Erradi A. (2005).
AN ADAPTABLE MIDDLEWARE FOR PERSONALIZING WEB APPLICATIONS.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 287-292
DOI: 10.5220/0001234602870292
Copyright c© SciTePress

2 RELATED WORK

Several approaches in adaptive Web applications are
currently investigated, using different techniques
and methodologies, in different areas e.g.
eCommerce, Distributed eLearning Environments,
Telecommunication Services, etc. These approaches
concern mainly the following topics:

a. Web Information Personalization that focuses
on searching and browsing the Web information
using personalized Web search systems. Recently
researchers are interesting to define how to enable
personalization functionality to personalize the
interaction with web content (Henze et al., 2004;
Shahabi, 2003).
b. Web Presentation Personalization that
contributes to tailor the information presented and
the structure to the user’s preferences, knowledge
or interests. This topic focuses on how adaptation
can be implemented through the manipulation of
links, and content and presentation of nodes
(Fortier et al., 2001; Goderis et al., 2001; Koch et
al., 2002). One sub-category of this context is
terminal adaptivity (Hinz et al., 2004).
c. Web Application Personalization, that
contributes to tailor the Web application structure
and/or behavior to satisfy specific user
requirements. To address this kind of
personalization there is mainly two ways :

o Using conceptual approaches that consist
in modeling and designing personalized Web
applications. The aim of this approach is to
bring dynamic personalization support in
Web conceptual modeling constructs by
creating new conceptual modeling approach
or extending the existing ones e.g. OOH,
OOHDM, etc. (Garrigos et al., 2003).
o Using implementation approaches that
consist in modifying the implementation
details of the developed Web applications.
These approaches introduce personalization
features using different techniques such as
mobile agent, reflection techniques, and so on
(Maknavicius et al., 1999; Jarir et al., 2002).

Most of the evoked researches focus mainly to a
specific Web application concern such as building
tailored presentation interface, showing personalized
information, adapting application's functionalities,
etc. However less attention has been paid to build an
architecture that covers almost all the concerns of
Web personalization.

Building an architecture for personalizing Web
application imply to deal with different
personalization concerns that must be seamlessly
integrated. That’s why we have elaborated as a first

step a deep taxonomy showing the varieties of
personalization concerns. Based on this taxonomy, a
new problem emerges: what is the best level among
the application level and middleware level to deal
with the diversity of personalization concerns
(diversity of users devices, evolvable execution
context, etc.)?

Recall that Web applications are usually
developed over a Middleware which in turn is
implemented over a protocol stack to ensure data
communication and to manage the communication
resources. Performing dynamic changes to Web
applications become a tedious task and need to
consider changes at the underlying levels especially
at the middleware level. The idea behind this
approach is that applications built on the top of the
middleware rely on it for all interactions with the
execution environment, so adapting the middleware
allows us to indirectly adapt the applications.
Moreover at the middleware level, the Web
application may be adapted to a given configuration,
either by replacing some components of code or by
adding new components in order to enhance existing
functionalities. Furthermore it is very difficult to
adapt Web application to the continuous variations
of their execution contexts at the application level.

3 WHY ENTERPRISE JAVABEANS
ARCHITECTURE

Object-Oriented Middleware technologies such as
CORBA or Java RMI have proved their suitability
for standard client-server applications. However,
such platforms do not provide the required levels of
adaptation and/or reconfiguration that are needed to
accommodate the diversity of modern distributed
applications including support for multimedia, real
time, mobility, etc. This motivates many middleware
research groups to built new and advanced
middleware technologies.

Sun Microsystem, OMG and Microsoft are
aware of these limitations that’s why the current
developments of the Enterprise Java Beans (EJB),
CORBA Components Model and COM+ are
proposed. The main focus of these platforms is to
alleviate the application-level programmability
issues by hiding, within the so-called component
containers, a large part of the complexity with more
declarative interfaces.

The growing popularity of EJB architecture is
due to the advantages offered to the distributed and
Web-based applications, e.g. faster application
development, ability to build complex applications,
separation of business logic from presentation logic,

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

288

application interoperability, etc. Furthermore,
currently there are more than 30 implementations
(free and commercial) of EJB servers and that
number is increasing (Emmerich et al., 2002).
Therefore, we choose the EJB technology as an
example of component-based middleware to prove
that Web application personalization can be dealt
with at the middleware layer.

Enterprise JavaBeans (EJB) is a specification
and architecture for the development and
deployment of distributed server-side, transactional,
and secure business application components.
Therefore EJB servers reduce the complexity of
developing middleware by providing automatic
support for middleware services such as
transactions, security, database connectivity, and
more. The EJB specification defines also several
standard roles and responsibilities that introduce
three fundamental. These entities are EJB server,
EJB Container and EJB component.

However, the EJB platform does not address the
needs for adaptation and extension required in
several applications. Our suggested solution focuses
on the EJB architecture to show how it can be
extended to allow reconfigurations and extension at
runtime providing an adaptable EJB infrastructure
(Jarir et al., 2002). This research was supported by
the RNTL project ARCAD (ARCAD, 2005).

4 TOWARDS AN ADAPTABLE EJB
INFRASTRUCTURE

In this section we first show how to introduce
runtime adaptability in the EJB environment. Then
we present our approach for an adaptable EJB
infrastructure. This infrastructure is made using the
computational reflection (Maes, 1987), which is a
suitable technique for dynamic adaptation features.

4.1 How to make EJB adaptable?

According to the separation of concerns paradigm
used by the EJB architecture, the code of an EJB
application is split in two parts: the functional code,
representing EJB components, and the non-
functional code, representing middleware services
(e.g. transactions, persistence, security, etc.).
However, the configuration between EJB
components and Middleware services is only
supported at deployment-time using a declarative
deployment descriptor. This descriptor, presented in
XML format, defines a set of accessor methods for

setting and getting information about the Entreprise
Java Beans being deployed.

To make EJB adaptable we need to make
explicit the separation between functional code and
non-functional code. Then, the associations between
these two kinds of codes can be modified at runtime
according to the user’s requirements, to personalize
its application. This reconfiguration is made by
identifying which piece of the functional code is
affected (and how it is affected) by the non-
functional code.

To ensure an advanced adaptability of an EJB
application to the desired changes, we need to focus
on the EJB container layer. This is because the EJB
container is an intermediary between the EJB
components and the outside world especially
between the EJB component and the access to
various resources and EJB services. The containers
are generated statically using the information
provided by the EJB component’s deployment
descriptors. These descriptors cannot modify the
associations between the EJB components and the
EJB services at run-time without modifying the
containers.

4.2 Computational reflection

Computational reflection, or just reflection, has been
proposed as a solution to the problem of creating
applications able to maintain, use, and change
representation of their own designs. It is defined as
the capability to monitor and modify dynamically
the structure and the behavior of a system. A
reflective system is therefore able to use self-
representations to extend, modify and analyze its
own computation (cf. Figure 1).

Program

Interpreter

Data

Problem
Domain

Reflective System Represent

Compute

Figure 1: Reflective system

AN ADAPTABLE MIDDLEWARE FOR PERSONALIZING WEB APPLICATIONS

289

4.3 The adaptable EJB infrastructure

JOnAS (Java Open Application Server) (Jonas,
2005) is an Open Source implementation of the
J2EETM specification. It is a pure JavaTM
implementation of this specification that relies on
the JDK. It is part of the ObjectWeb Open Source
initiative. The Opening of JOnAS environment
opens us the way for introducing the reflection
features to try to make EJB architecture adaptable.
In addition, JonAS environment offers an open
source tool, called the GenIC (Generate Interposition
Classes) that allows generating the EJB container
code. Therefore this tool will guarantee to set up our
approach by focusing on the EJB container layer as
mentioned earlier.

In order to respect the EJB container
specification, we have delegated the task of a
dynamic composition of services to another object
called DynamicComposite, representing the meta-
object of the EJB container as shown in Figure 2.
The set up of this indirection is made thanks to the
computational reflective features that allow diverting
all methods call from EJB container to its associated
DynamicComposite object. This object is able to
compose dynamically attached or detached EJB
services before or after sending the method call to
the EJB component. Therefore the
DynamicComposite object will be responsible for
playing the role of a dynamic composer of the EJB
services.

To perform the required reconfiguration
(attachment and/or detachment of EJB services) for
each application, a generic adaptation engine is
introduced. This reconfiguration is guided by the
adaptation policies, described in XML format, and
they are initiated by the engine when significant

evolutions of the environment are detected by a
simple monitoring framework, consisting of a
collection of probes (CPU usage, battery life,
bandwidth measure…).

These adaptation policies are:
- System policies, consisting in sets of rules of the

form condition ⇒ action, where the condition
is related to the execution environment (as
reified by the monitoring framework), and the
action is either the attachment or detachment of
a specific services, possibly with configuration
parameters.

- Application policies, which define groups of
EJB components according to their runtime
properties and bind existing system policies to
these groups.

The following XML code presents an example of
a system policy named “bandwidth-policy”, which
are interpreted at run-time by the adaptation engine.

<system-policy name="bandwidth-policy">
 <rule>
 <when>
 <less-than>
 <property-value name="/system/network.bandwidth"/>
 <number value="40000"/>
 </less-than>
 </when>
 <ensure>
 <detached service="VideoService"/>
 <updated service=”AudioService”>
 <parameter name=”SoundEncoder” property-
value=”classLpc”/>
 </updated>
 </ensure>
 </rule>
</system-policy>

EJB Server

Physical Resources

System.xml
Application.xml

EJB Services

T
ra

ns
ac

ti
on

 Dynamic
Adaptation

EJB Container

Enterprise
JavaBean EJBObject

Home Object

DynamicComposite

…

Monitoring
Framework

Adaptation
Engine

D
at

ab
as

e

Se
rv

ic
e

3

Se
rv

ic
e

2

Se
rv

ic
e

1

Figure 2: An adaptable EJB infrastructure

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

290

5 AN ENHANCED EJB
ARCHITECTURE FOR WEB
APPLICATIONS
PERSONALIZATION

The increasing popularity of the World Wide Web
and the diversity of hardware appliances make the
Internet users crave to have the privilege to control
the functionalities of the Web applications to which
they are subscribed. For example a user may need to
obtain a MPEG2 Format for a movie, obtained from
a Video-on-Demand server, instead of a classic VHS
quality received by default.

The Web application personalization considers
many types of reconfiguration. These
reconfigurations may concern changes of:
- Parameters of the application that concerns the

application’s data, as for example QoS
parameters of the multimedia applications (e.g.
debit, video resolution, etc.)

- Functional aspect of the application that
concerns the application’s behavior such as:
o Adaptability that affects the application’s

behavior without calling new components or
functionalities within the application. This
personalization consists in activating and/or
deactivating some of their already existing
functionalities.

o Extensibility that corresponds to introduce
new additional behavior or functionalities in
the application to answer a specific need.

- Technological aspect that concerns the
modification of the application in order to be
executed on different platforms (e.g. operating
system, etc.), different types of terminals, the
run-time variations of availability of certain
resources such as CPU, memory, communication
capacities, and so on.

To build personalizable Web application, a more
flexible architecture, that takes into account those
varieties of adaptation and/or reconfiguration, is
needed.

To build a more flexible architecture for Web
applications personalization, we have reused the
adaptable JOnAS EJB infrastructure that allows
component-based applications to be aware of, and
adapt to, the variations in the execution context.
Therefore our goal was to see how this infrastructure
could be transformed in response to all varieties of
reconfiguration and/or adaptation studied before.

Figure 3 shows the elaborated architecture for
Web applications personalization. This EJB-based
architecture has the advantage to be able to ensure a
runtime tailorability of the Web applications
behavior. This tailorability concerns both the
behaviors of each EJB service and also each other’s
composition that build the desired Web application.
More precisely, the dynamic personalization takes
into account the attachment and/or detachment of a
service and also the update of a specific attached
service behavior. This personalization can be
activated according to:
• The expressed user’s requirements on the
Graphical User Interface (GUI). These requirements
are thereafter translated to a specialized policy,
called personalization policy, that will be performed
by the adaptation engine incorporated inside the
Dynamic Adaptation service. After the required
actions expressed by this policy are handled by the
DynamicAdaption Service, the EJB Client will
thereafter modify the GUI presentation according to
these changes. The following code shows an
example of a personalization policy:

<personalization-policy>
 <updated service name="VideoService">
 <parameters name=”resolution” value
="1024x768"/>
 <parameters name=”VideoEncoder” value
="MPEG1"/>
 </updated>

Physical
Resources

Monitoring
Framework

EJB
Client

EJB Server

System.xml

EJB Services

T
ra

ns
ac

ti
on

 Dynamic
Adaptation

EJB Container
Enterprise
JavaBean EJBObject

Home Object

DynamicComposite

…
Adaptation

Engine D
at

ab
as

e

V
id

eo

Se
rv

ic
e

C
ha

t
Se

rv
ic

e
A

ud
io

Se

rv
ic

e
1

Personalization.xml

Figure 3: An EJB architecture for Web applications personalization

AN ADAPTABLE MIDDLEWARE FOR PERSONALIZING WEB APPLICATIONS

291

 <detached service name=”chat”/>
 <attached service name="AudioService">
 <parameters name=”AudioEncoder” value
="classGSM"/>
 </attached>
</personalization-policy>

• The variations of the client environment that
considers the technological restrictions, the
continuous variations of the execution
environment, etc. This detection is handled by
the monitoring framework, placed at the client-
side, in response to the conditions introduced by
the system policies rules. To allow the EJB
client to be informed about what type of
variations can be taken into account to notify the
EJBObject, we have injected implicitly the
conditions of the system policies rules during
the initialization of the application.

6 CONCLUSION AND
PERSPECTIVES

The contribution of this paper deals with Web
applications personalization. Specifically, we have
shown how the personalization can be dealt at the
Middleware level by developing an adaptable
JOnAS EJB infrastructure. This infrastructure
consists in modifying at run-time and with a fine
granularity the association between EJB components
and middleware services. Based on this EJB
infrastructure, we have presented an adaptable EJB
architecture to personalize Web applications. This
enhanced architecture allows users to take an active
role in personalizing dynamically their Web
applications, and also enables Web applications to
be aware of, and to adapt to, the variations in the
execution environment.

Currently we are interested in the extensibility of
the Web application by adding a required service
from other application service provider. However
this extensibility may cause deviation from desired
behavior or systems failure. This issue generates a
broad topic, named feature interaction problem that
requires service (or feature) interference detection
and resolution.

REFERENCES

ARCAD, http://arcad.essi.fr
Emmerich, W., & Kaveh, N., 2002. Component

Technologies: Java Beans, COM, CORBA, RMI, EJB

and the CORBA Component Model. Proc. of the 24th
Int. Conference on Software Engineering, Orlando,
Florida. pp. 691-692. ACM Press.

Fortier, A., Rossi, G., & Cappi, J., 2001. Using Meta-
Level Techniques to Personalize O-O Applications”,
Object-Oriented Programming, Systems, Languages,
and Applications OOPSLA 2001/ECOOSE.

Garrigos, I., Gomez, J., & Cachero, C., 2003. Modelling
Dynamic Personalization in Web Applications. In
Proc. 3 rd Int. Conf. Web Engineering, volume 2722
of LNCS., pages 472–475. Springer Verlag,

Goderis, S., Rossi, G., Fortier, A., Cappi, & J., Schwabe
D., 2001. Combining Meta-level and Logic-Based
Constructs in Web Personalization, In Proc.of the 6th
International Computer Science Conference on Active
Media Technology, Pages: 57 – 64.

Henze, N., & Kriesell, M., 2004. Personalization
Functionality for the Semantic Web: Architectural
Outline and First Sample Implementations. First
International Workshop on Engineering the Adaptive
Web.

Hinz, M., Fiala, Z., Wehner, F., 2004. Personalization-
based Optimization of Web Interfaces for Mobile
Devices; In: Proceedings of 6th International
Conference on Human Computer Interaction with
Mobile Devices and Services, Glasgow, Scotland.

Jarir, Z ., David, P.C. & Ledoux, T., 2002. Dynamic
Adaptability of services in Entreprise JavaBeans
Architecture , Seventh International Workshop on
Component-Oriented Programming /ECOOP 2002,
Malaga, Spain.

Jarir, Z., & Erradi, M., 2002. Telecommunication Services
Customisation , Association for the Advancement of
Modelling and Simulation Techniques in Enterprises,
Vol. 23 n°3, pp. 1-14, AMSE-Journal.

JOnAS, http://www.evidian.com/jonas
Koch, N. et al, 2002. Patterns for Adaptive Web

Applications. In 7th European Conference on Pattern
Languages of Programs, Irsee, Germany.

Maes, P., 1987. Concepts and Experiments in
Computational Reflection , in Proc. Conference on
Object-Oriented Programming systems, Languages
and Applications, Orlando, FA, pp. 147-155.

Maknavicius, L., Koscielny, G. & Znaty, S., 1999.
Customizing Telecommunication Services : Patterns,
Issues and Models, , vol. 1597, pp. 194-209, Lectures
Notes in Computer Science Springer-Verlag.

Shahabi, C., 2003. Web Information Personalization:
Challenges and Approaches, In the 3nd International
Workshop on Databases in Networked Information
Systems , Aizu-Wakamatsu, Japan.

WEBIST 2005 - WEB INTERFACES AND APPLICATIONS

292

