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Abstract: This paper presents a systematic solution to the serious problem of GOT/PLT exploitation attacks. A large 
class of security mechanisms has been defeated by those attacks. While some security mechanisms are 
concerned with preventing GOT/PLT exploitation attacks, however, they are not complete against 
GOT/PLT exploitation attacks or the considerable performance decline occurs. We describe the selective 
checking of shared library calls, called SCC. The SCC dynamically relocates a program’s Global Offset 
Table (GOT) and checks whether the accesses via Procedure Linkage Table (PLT) are legal. The SCC is 
implemented by modifying only the Linux dynamic loader, hence it is transparent to applications and easily 
deployable. In experiment results, we show that the SCC is effective in defeating against GOT/PLT 
exploitation attacks and is the mechanism with the very low runtime overhead. 

1 INTRODUCTION 

The C and C++ languages are popular primarily be-
cause of the sensitive control they provide over 
system resources including memory. This control is 
more than most programmers can handle, as 
appeared by the memory-related programming errors 
which torment programs written in these languages. 
Attacks which exploit memory errors such as buffer 
overflows constitute over the 60 percentage of 
serious attacks reported by organizations such as the 
CERT Coordination Center, and are concerned with 
important threats to the computing environment.  
A number of attacks which exploit memory 
vulnerabilities have been developed. The earliest of 
these to achieve widespread popularity was the stack 
smashing attacks (Aleph One 2000, Mudge 1997), in 
which a stack buffer is overflowed so that a return 
address stored in the stack is overwritten with the 
starting address of injected shellcode. (See Figure 1). 
To avoid such attacks, several approaches were 
developed, which, in one way or another, prevent 
undetected modifications to a function’s return 
address. They include the StackGuard (Crispin 

1998) of putting canary values around the return 
address, so that the stack smashing can be detected 
when the canary value is contaminated; and others 
(Arash 2000, Tzi-cker 2001). Despite numerous 
technologies designed to prevent buffer overflow 
vulnerabilities, the problem persists, and the buffer 
overflows remain the dominant attacks of software 
security vulnerabilities. 
Attacks have moved from stack smashes (Aleph One 
2000) to heap overflows (Michel 2001), format 
string vulnerabilities (Crispin 2001), multiple free 
errors (Anonymous 2001), return-into-library (Rafal 
2001), etc. which bypass existing buffer overflow 
defences such as StackGuard (Crispin 1998), 
LibSafe (Arash 2000) and non-executable memory 
segments (Solar Designer). While mechanisms to 
collapse these attacks are effective in protecting a 
system against the specific attack they focus on, 
incorporating many individual techniques to defend 
against a wide range of attacks is nontrivial and 
often requires resolving conflicting requirements 
imposed by the different techniques. Many new 
defence mechanisms to prevent new attacks lead us 
to conclude that additional ways to exploit the 
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memory vulnerabilities of C and C++ will continue 
to be emerged in the future. As a first step towards 
developing more general solutions against memory 
exploits, we observe that an attacker must correctly 
determine the runtime address values of the control 
information position such as the return address and 
the address where the malicious code is located. 
This paper proposes, the Selective Checking of 
shared library Calls (SCC), a generalized approach 
to protect systems against GOT/PLT exploitation 
attacks that exploit memory vulnerabilities. The 
Linux Kernel 2.6 dynamically and randomly 
relocates a program’s stack, heap, shared libraries, 
and makes the stack and heap non-executable. (See 
Figure 2).  To totally overcome a number of 
software vulnerabilities, these security mechanisms 
will be adapted. The SCC mechanism can support 
memory layout randomization mechanisms such as 
the Linux Kernel 2.6. In addition to the Linux 
Kernel 2.6 security mechanisms, the SCC 
dynamically relocates a program’s Global Offset 
Table (GOT) and checks whether the accesses via 
Procedure Linkage Table (PLT) are legal. Making a 
program’s GOT position different each time it 
obfuscates the attacker’s assumptions about the 
addresses of GOT entries of the vulnerable program 
and makes the determination of critical address 
values difficult if not impossible. Checking the 
accesses via PLT frustrates the trial of attacker to 
illegally call shared libraries such as system with 
malicious argument ("/bin/bash"). 

In this paper, the PLT checking is the main 
contribution of SCC. The SCC is implemented by 
modifying the dynamic program loader compatible 
with Linux Kernel 2.6.x, therefore, it is transparent 
to the application programs, i.e., existing 
applications run without any modification or 
recompilation. To date, the SCC has been 
implemented on Linux Kernel 2.6.x/IA-32 

Figure 1: The stack smashing attack. 
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Figure 2: The linux kernel 2.6 address space. 
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platforms. It is shown to be effective against 
GOT/PLT exploitation attacks, and has the low 
runtime overhead.  
The rest of this paper is organized as follows. In 
Section 2, we describe several related works, and 
Section 3 introduces the motivation and detailed 
mechanisms of our idea, followed by the analysis of 
experiments in Section 4. Finally, Section 5 provides 
conclusion.  

2 RELATED WORKS 

Address randomizing is an instance of the broader 
idea of introducing diversity in nonfunctional 
aspects of software, and idea suggested by Forrest, 
Somayaji, and Ackley (1997). Their implementation 
model was called a randomizing compiler, which 
can introduce randomness in several non-functional 
aspects of the compiled code without affecting the 
language semantics. As a proof of concept, they 
developed a modification to the gcc compiler to add 
a random amount of padding to each stack allocation 
request. This transformation defeats most stack 
smashing attacks prevalent today, but does not work 
against the overflow attacks with a large amount of 
NOPs. 

The PaX project has developed an approach for 
randomizing the memory regions occupied by a 
program code and data, called Address Space 
Layout Randomization (ASLR). It have modified the 
Linux Kernel so that it randomizes the base address 
of different segments of memory, such as the stack, 
heap, code, and mapped shared library segments. 
There are, however, several weak features to ASLR. 
ASLR requires changes to the Linux Kernel. Kernel-
level implementation requires re-installation or even 
reboot of the operating system. While the GOT is a 
frequent target of many attacks, ASLR doesn't 
randomize the location of GOT in the SEGMEXEC 
mechanism on i386. The performance impact of 
ASLR about the PAGEEXEC based on the fault 
mechanism is not yet to be officially evaluated. 
Finally, the implementation and detailed 
mechanisms are seriously architecture-dependent. 

Xu, Kalbarczyk, and Iyer developed transparent 
runtime randomization (TRR) (Jun 2003), in which 
the dynamic loader is modified to randomize the 
base address of stack, heap, dynamically loaded 
libraries, and GOT. This mechanism, however, 
doesn't consider return-into-PLT (Nergal 2001) 
attacks. To allow return-into-PLT attacks can't be 
concerned with the complete mechanism for 
preventing the illegal operations of shared libraries. 

3 SELECTIVE CHECKING OF 
SHARED LIBRARY CALLS 
(SCC) 

3.1 Motivation 

While TRR (Jun 2003) has the low initialization 
overhead and no runtime overhead, it is imperfect 
against return-into-PLT (Nergal 2001) attacks. The 
PaX project doesn't randomize the location of GOT 
or may allow many fault handling overheads due to 
the CODE region relocation to prevent return-into-
PLT attacks. We observe that there are a common 
characteristic of return-into-PLT attacks. That is the 
fact that the number of libraries selected by attackers 
to get the critical authorities (root or administrator) 
of target system is a few of hundreds and thousands 
of shared libraries. The shared libraries they require 
to attack are system calls such as execve, system, 
setuid32, chmod, etc. Other shared libraries are not 
appropriate to accomplish the purposes of attackers, 
root shell acquisition and so on. 

To exploit critical system calls, attackers can call 
normal libraries that include these system calls. 
While return-into-PLT can be exploited by attackers 
if there are buffer overflow vulnerabilities in 
program code, the way to detour normal libraries is 
very difficult to find some libraries satisfying some 
attack requirements (e.g. system (“/bin/bash”) 
included in normal libraries.) and to manipulate 
some arguments of critical system calls in memory 
layout randomization mechanisms.  

In environments of the stack and heap non-
executable such as Linux Kernel 2.6, if attackers 
can't run the inserted shellcode to acquire root 
authority through overflowing buffers, those 
overflows don't mean serious attacks. We arrived in 
one conclusion by the facts that to relocate the 
CODE region to prevent return-into-PLT generates 
continuously some fault handling overheads and the 
number of shared libraries required to succeed 
return-into-PLT attacks is within the limit of a few 
libraries. 

The SCC, our mechanism, is designed through 
these facts. The SCC relocates Global Offset Table 
(GOT) through a similar idea to TRR (Jun 2003) and 
checks whether the accesses via Procedure Linkage 
Table (PLT) to call shared libraries such as above 
system calls are legal. The 'legal' means that the 
shared libraries are called from the call instruction 
of CODE region. All PLT accesses except for those 
are ‘illegal’. 
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3.2 The Operations of SCC 

The objectives of SCC are to randomize the GOT 
location and check whether the accesses via the 
specified PLT entries are legal. The GOT relocation 
is similar to TRR (Jun 2003), and the PLT checking 
can be achieved using PLT rewritings and inserting 
the Checking Code in a random memory space. Both 
the GOT relocation and the PLT checking 
mechanisms are only dynamic loader modification 
approach, not Kernel. 

Figure 3 shows the typical sequence of steps 
required to launch an application, using ‘vim’  as an 
example. In this example, a user types ‘vim’ at the 
shell prompt, and the shell creates a child process 
using the fork system call. The new child process 
uses the execve system call to load and initialize 
‘vim’. Inside the execve system call, the operating 
system kernel maps the executable into memory, 
sets up its CODE/DATA segments, stack, heap and 
dynamic program loader, and then transfers the 
program control, which is the program counter 
(%eip), to the dynamic program loader. The 
dynamic program loader maps the shared libraries 
required by ‘vim’ into memory. Finally, the dynamic 
program loader hands over the program control to 
the entry point of ‘vim’, and ‘vim’ begins to execute. 
The SCC operations are shown in 2, 3 and 4 of 
‘Dynamic program loader’.  

3.3 The Overview of SCC 

It is assume that the GOT is already randomized by 
the dynamic program loader through a similar 

mechanism of TRR (Jun 2003). The PLT, therefore, 
must be rewritten to correctly refer to new GOT. 

In Figure 4, the PLT can be accessed by the 
return of current function when the return address in 
stack is overwritten by a attacker (ATTACK), or can 
be accessed by the legal call due to the operation of 
call instructions in the CODE region. As mentioned 
earlier, attackers are primarily concerned with a few 
of critical system calls. 

We modify the PLT entries (in Figure 4, PLT2) 
which a attacker requires to get root shell. The each 
entries of PLT are related with each shared library 
functions, and when a PLT entry (PLT2) modified 
for security is accessed, a changed jmp instruction in 
the PLT entry (PLT2) passes the program control to 
the Checking Code. The Checking Code checks 
whether this PLT access is legal, and if 'legal', the 
Checking Code passes the program control to the 
related shared library with the reference of address 
value in the GOT. In the case of other PLT entries, 
only one of three instructions in each original PLT 
entries is modified. The accesses to other PLT 
entries, therefore, are operated like as no SCC. 

3.4 The Checking Code 

Figure 5 shows the stack status when the PLT entry 
is just accessed by the legal call in the CODE region 
and the illegal return in the stack. The PLT2 entry of 
Figure 4 assumes the entry related with a critical 
library function such as system and the entry that 
instructions have been modified by our dynamic 
program loader. The main idea of Checking Code is 
that the return address value is still remained in the 
stack after returning due to the return address 
overflowed by a attacker. If the return value in stack 
is equal to the accessed PLT entry address, this PLT 
access can be determined as the attack trial. In 
Figure 5, SP is the stack pointer and the things that 
two thunder marks are pointing present the contents 
in (SP-4) address. The Checking Code is mapped to 
the random position in the shared library region by 
the dynamic program loader.  

Figure 4: The overview of SCC. 
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The Checking Code requires two values to check 
whether the critical PLT entry is accessed by attacks 
or not. The first value is the content of (SP-4) 
address when the PLT entry is just accessed. In 
Figure 5, that is the content of a thunder-marked 
word, and if this value is related with the accessed 
PLT address, the PLT entry access is determined as 
the attack trial. If legal call, this value is not related 
with the accessed PLT entry. The second value 
required for the Checking Code is the address of 
accessed PLT entry. It is used to compare with the 
content of (SP-4) address. 

In the case of real SCC's mechanism, the 
accessed PLT entry inserts the XORed offset, (it is 
exclusive OR of original offset in the PLT entry and 
a random-generated value during the initial phase of 
dynamic loader.), value in the stack to help the 
Checking Code to identify the accessed PLT entry 
address and to defend possibly the other types of 
return-into-PLT attacks. There are two types of 
return-into-PLT attacks. In the case of first attack 
type, the program control is directly changed to the 
PLT entry (PLT2) by using the overflowed return 
address from the stack. The second attack type 
overflows the stack with the offset of critical PLT 
entry and returns to the PLT_init. (See Figure 8). To 
prevent this second attack type, XORing the offset is 
required. 

Figure 6 shows the stack status including a 
XORed offset inserted by the modified PLT entry 
when the Checking Code is just accessed. The 
Checking Code can use the values required to check  
attacks because the overflowed return address and 
the accessed PLT entry address (be calculated by 
XORed offset) are in the stack. 

Figure 7 shows the operations of Checking Code. 
In (1), the original offset is calculated by XOR (the 
XORed offset). We can calculate the GOT entry 
address related with the original offset because there 
are a regular rule between the original offset and 
GOT entry address. In (2), the GOT entries related 
with the critical PLT entries are initialized as zero 

when mapping the new GOT. In the case of lazy-
loading, if a shared library is first called, the 
dynamic program loader resolves a called library 
address and writes the address to the desired GOT 
entry. If the value in the GOT entry is zero, the 
Checking Code transfers the program control to the 
dynamic program loader to resolve the address of a 
desired shared library. If not, the Checking Code 
passes the program control to the related shared 
library with the reference of address value in the 
GOT. 

3.5 The PLT Entry Modification 

We explain how the selected PLT entries are 
modified. Figure 8(a) shows the original PLT entries 
in the CODE region. Each PLT entry consists of 
three instructions and the PLT entries (In Figure 8, 
PLT2) to be selected for security are the entries 
jumping to the critical shared libraries such as 
system. In Figure 8(b), the dynamic program loader 
rewrites PLT entries for pointing at new GOT 
entries and jumping to the Checking Code when the 
critical PLT entries (PLT2) are accessed. The 
dynamic program loader sets the writable flag of 
CODE region and rewrites the PLT entries from 
PLT_init to the end of PLT. The all GOT_entry 

Figure 5: The stack status when the critical PLT entries 
are just accessed. 
 

Figure 6: The stack status when the checking code is 
just accessed. 
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values of Figure 8(b) are new GOT_entry values. 
The dynamic program loader can find out the real 
names of shared libraries by using fixup function of 
dynamic program loader referring to each offset 

values, $0x0 and so on, and can search what are the 
critical PLT entries. We assume the PLT2 entry is a 
critical PLT entry. The information required for the 
Checking Code is a return address in the stack and 
the accessed PLT address. The purpose of PLT 
modification is to give this information to the 
Checking Code. 

In the PLT2 entry of Figure 8(b), the first 
instruct-ion inserts the XORed_offset value in (SP-
8) address to maintain the malicious return address 
of attacker. The accessed PLT address can be 
calculated from the XORed_offset value. The 
second instruction passes the program control to the 
Checking Code. 

4 EFFECTIVENESS AND 
PERFORMANCE EVALUATION 

This section describes the experimental evaluation 
of SCC. Subsection 4.1 describes the SCC's 
effectiveness against the attacks related with the 
GOT and PLT. Subsection 4.2 describes the 
performance cost of SCC through various types of 
programs. In this experiments, execve(), execl(), 
execlp(), execle(), execv(), execvp(), chmod(), 
setuid32(), chown32(), setresuid32(), fchown32(), 
fchmod(), setpgid() and system(), these 14 system 
calls are checked from the PLT entry accesses due to 
attacks. The measurement is taken on a PC with 
Kore Linux 2004 (Kernel 2.6.7), Pentium III 
800MHz processor, 256MB memory and dynamic 
program loader ld-2.3.3.so we modified. 

4.1 Effectiveness Evaluation 

Here we illustrate the SCC's effectiveness in 
thwarting attacks related with the GOT and PLT. 
The effectiveness of SCC was tested using publicly 
available vulnerable programs and attacks against 
them. The programs listed in Table 1 are 
conventionally installed as SetUID root. If the 
attacker can get on of these programs to start a shell, 
then the attacker gets a root shell. The vulnerabilities 
and the attacks we used are presented below. 
 

Table 1: Evaluation against security attacks. 
 

Program Description No SCC SCC 

plt-exploit1 stack overflow 
/PLT 

local root 
shell 

detected 

plt-exploit2 stack overflow 
/PLT 

local root  
shell 

crash 

null httpd heap overflow 
/GOT 

remote root 
shell 

crash 

sendmail integer overflow 
/GOT 

local root  
shell 

crash 

 
 We made a simple stack overflow program, plt-

exploit1.c, related with the return-into-PLT 
attack. plt-exploit1.c is the attack directly 
returning to the critical PLT entry. When a 
large number of strings are supplied to the 
program by a attacker, the stack buffer is 
overflowed, and when the vulnerable function 
is returned, the program control is moved to the 
critical PLT entry, and a root shell is created. 

 We made second simple stack overflow 
program, plt-exploit2.c, related with the return-
into-PLT attack. When the vulnerable function 
is returned, the program control is returned to 
the start address of PLT_init, and a root shell is 
created. The details of mechanism are described 
to the Phrack document (Nergal 2001). 

 null httpd is a web server for Linux. A heap 
overflow vulnerability exists in its handling of 
the POST request. The attack passes a negative 
content length to start a heap overflow, 
overwrite a function pointer in the GOT, and 
create a remote root shell. 

 sendmail is the email agent that sends messages 
to remote hosts. An integer overflow 
vulnerability exists in sendmail's function when 
it uses user-supplied signed integer to address 
an array. The attack uses a large number to 
overwrite a function pointer in the GOT to 
create a local root shell. 
 

Figure 8: The original and modified PLT entries. 
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This is not a comprehensive exploit list, but it 
showed that all tests are terminated with the crash or 
detection message. They didn't invoke a root shell. 

4.2 Runtime Overhead 

The runtime overhead occurs when the Checking 
Code is accessed, and if the critical PLT entries are 
accessed the Checking Code is processed. The 
overhead size is, therefore, dependent to the 
overhead of Checking Code itself and the accessed 
number of modified PLT entries. The Checking 
Code may be constructed with 15 line assembly 
codes, and the average processing time of Checking 
Code is about 0.072us (The avg. of 1000 runs). The 
overhead of Checking Code itself is, therefore, very 
small because one instruction is processed within 
one cycle to the pipelined-architecture. 
 

Table 2:  The count of used system calls. 
 

The Count of System Calls 
Program 

Total Critical Description 

traceroute 918 1 setuid32(1) 
hanterm 831 4 chown32(1) chmod(1) 

setresuid32(2) 
passwd 1113 2 fchown32(1) fchmod(1) 
emacs 21086 2 chmod(1)  

setpgid(1) 

vim 689 2 chmod(1)chown32(1) 
/bin/bash 928 2 setpgid(2) 
mozilla 43088 3 execve(1)  

chmod(2) 
telnet 514 0  

 
Table 2 shows the count of system calls from the 

program start to the program end. The 'strace' 
program in Linux can count the number of used 
system calls. The above four programs are SetUID 
programs and the below four programs are normally 
popular programs. In these results, we can know the 
accessed number of Checking Code is even smaller 
than the accessed number of total system calls. 
Although the 'critical' number of some programs 
increases according to the running time or other 
versions of same program, the increasing number is 
relatively very smaller than that of total system calls. 

Table 3 shows the elapsed time of pure code 
running except for the time waiting for some user 
inputs, etc. The evaluation program is supported as 
'/usr/bin/time' in Linux. When a specified program 
finishes, '/usr/bin/time' writes a message to standard 
out giving timing statistics about the program. 
Because the resolution of '/usr/bin/time' is 
millisecond (ms) unit, we consider the result of '0s 

024' as the result of '24000 us'. The 'SCC overhead' 
means the total overhead time due to the accessed 
Checking Code. We measured the number of clock 
cycles and convert them to microseconds using the 
processor clock frequency. These experiments show 
that the runtime overhead generated by the SCC is 
very small. (nearly 0%). 

 
Table 3: The runtime overhead. 

 
The Elapsed Time (usec) 

Program 
No SCC 

SCC 
overhead 

Overhead (%) 

traceroute 24000 0.5821 0.0024 
hanterm 308000 1.356 4.403 x 10PP-4PP 
passwd 29000 0.662 0.0023 
emacs 994000 1.17 1.177 x 10PP-4PP 

vim 107000 0.882 8.243 x 10PP-4PP 
/bin/bash 128000 0.876 6.800 x 10PP-4PP 
mozilla 3169000 1.18 3.724 x 10PP-4PP 
telnet 16000 0.312 0.195 x 10PP-4PP 

5 CONCLUSION 

This paper proposes Selective Checking of shared 
library Calls (SCC) against GOT/PLT exploitation 
attacks. The underlying principle of SCC follows to 
randomize the application memory layout so that it 
is virtually impossible to determine locations of 
critical program data such as buffers, return 
addresses, and pointers of function. New idea 
against return-into-PLT attacks is applied to the SCC 
because the randomization of CODE region 
produces continuously many runtime overheads. The 
SCC's mechanism is fully transparent to application 
programs because it is implemented by modifying 
only the dynamic program loader. The effectiveness 
of SCC shows that it can defeat some known 
GOT/PLT attacks. Performance measurements show 
that the SCC produces very low runtime overhead. 
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