Agent-Oriented Design of a Multi-Robot System

Bram Gruneit, Ben Minerg, Alaa Khamig, Hamada Ghenniwsand Mohamed
KameP

! Department of Systems Design Engineering, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1

2 Department of Electrical and Computer Engineering, University of Waterloo
3 Department of Electrical and Computer Engineering, The University of Western Ontario,
1151 Richmond Street, Suite 2, London, Ontario, Canada, N6A 5B8

Abstract. This paper presents a new architecture for multiple robot systems us-
ing an agent oriented design methodology. The proposed architecture combines
the hierarchical and the decentralized approaches. It splits all processes into two
layers: the cognitive layer, where the higher brain functions take place and the
action layer, where the low level functions take place. It also addresses the use of
cooperative software agents organized in hardware or software components. Each
of these agents independently handles a small set of specialized tasks and coop-
erates to achieve system-level goals. The overall system behaviour emerges from
the autonomous behaviours of the individual agents. Advantages include sup-
port for multiple robots with different specifications to communicate with each
other and perform meaningful tasks. Experiments using mobile, autonomous ro-
bots equipped with a vision system demonstrate the usefulness of the proposed
architecture in the development of multi-robot cooperative behaviours.

1 Introduction

Intense research activities have been conducted over the last decade to develop multi-
robot systems capable of performing robust cooperative work. In the context of multi-
robot systems, cooperation is defined as the situation in which several robots operate
together to perform a global task that either cannot be achieved by a single robot, or
whose execution can be improved by using more than one robot, thus obtaining higher
performance [1].

Agent technology is one of the most important paradigms that can be used to fa-
cilitate the development of multi-robot systems. Agents represent a fairly new way to
conceptualize and implement software applications. Linguistically, an agent is an au-
tonomous entity with an ontological commitment and agenda of its own. A software
agent is a computational entity that is not limited to react to external stimuli, but is
also able to start new communicative acts autonomously to accomplish a given task. A
software agent is perceptive; it is able to perceive and respond to changes in its environ-
ment. A software agent is autonomous; the agent is capable of operating as a standalone
process and performing actions without user intervention.

Wooldrige and Jennings define a software agent as a computer system that is capable
of autonomous action in its environment to meet its design objectives [2]. They describe

Gruneir B., Miners B., Khamis A., Ghenniwa H. and Kamel M. (2005).

Agent-Oriented Design of a Multi-Robot System.

In Proceedings of the 1st International Workshop on Multi-Agent Robotic Systems, pages 132-143
DOI: 10.5220/0001196601320143

Copyright © SciTePress

autonomy, reactivity, pro-activeness and social abilgyeasential properties of this
computer system [2, 3]. This conceptual definition shows thiege four features help
explain the recent popularity and research in using agetintdogy in cooperative
robotics.

Cooperative agents are a popular candidate for dealingthétiize and complexity
of multi-robot systems. This paradigm provides moduladtgtribution and abstraction
for the system. Problem solving techniques can also be asedifling intelligence into
agents for critical tasks such as providing cognitive b&hae and learning from expe-
rience. An important question that must be answered by catipe agents’ strategies
is whether to use centralized, hierarchical or distribatedhitectures for managing the
cooperation between agents.

A centralized approach maintains a central controllerigwasponsible for all other
individual entities. The main drawback to this approachéslarge communication load
because all the computational entities information hauveettransferred to the central
processor. The central processor also may have a high catignal load as it has to
handle all of the information. This approach proves not towéy reliable as a single
central processor is critical to the performance of theremstystem.

The hierarchical or multilayer approach distributes theapatational load and pos-
sibly lowers the communication load but the system is stitl mbust due to the pres-
ence of a single coordinator. The distributed or deceatdlapproach can be used to
increase the robustness of the system to component faihgdeecrease the compu-
tation and communication load. The most important advantagurvivability. When
one node or computational entity fails, the entire netwak continue to function by
reallocating processing load to the remaining nodes. Arsemvantage is reduced
computational complexity on a per processor basis.

The proposed architecture allows for a hierarchical andcamtealized approach.
It splits all processes into two layers: the cognitive layerere the higher brain func-
tions takes place and the action layer, where the low levedtians take place. It also
addresses the use of cooperative agents organized in hrardngoftware components,
such that each one independently handles a small set ofaipeditasks and coop-
erate to achieve system-level goals. The overall systeraviairs emerge from the
autonomous behaviours of the individual agents.

This architecture is designed to standardize both theriatend external interfaces
for diverse robots. Standardizing the inner design of eabbtr as well the basic way
in which robots interact with each other, simplifies develemt and implementation.
Although robots may be extremely dissimilar in both funotend programming, the
layered architecture minimizes the effort required to iempént a variety of techniques.

The remainder of the paper is structured as follows: Se@tjoresents a brief survey
on agent-based architectures for multi-robot systemgid®e8 describes the proposed
architecture, addressing its two layers and modules,vieltbby its implementation in
section 4. Section 5 explains the experiments conductedritythe usefulness of the
proposed architecture. Finally, conclusions are sumradiiiz section 6.

2 Background: Agent-Based Approaches for Multi-Robot Systems

Many agent-based architectures are proposed to facitietelevelopment of multi-
robot systems capable of performing robust cooperativik wdireusable framework
is proposed for coordinating a team of mobile robots thatazromplish high level
or tightly coupled missions that could not be easily achieusing single robot so-
lutions [7]. Their proposed framework is based on the behavased architecture
model for the basic control layer and agent-oriented sofveagineering paradigm for
coordinating the team of autonomous mobile robots. Infengit al propose a method,
implemented using a FIPA compliant platform, for the desagmulti-agent robot ar-
chitectures including vision agents [8]. This method edtethe classical behaviour-
based approach and is used in the design and implementétiorobot vision system
based on agent inserted in a generic multilevel architectur

A collective robot framework is presented in [9], where aneaf heterogeneous
communicating mobile robots, operating without a supervand without a central-
ized control of their behaviours, adapt the collective éha during runtime in the
presence of a changing environment. The innovative aspebts approach rests on a
system integrating communication as an active and dynaorigponent in the adap-
tation, and not only as a static part of the robot’s intecardi While several research
groups are investigating the development of multi-agesefarchitectures for multi-
robot systems, as mentioned above, the proposed approestnped in this paper is
unique by its focus on the inner design of each robot. Thi®igedy making both the
design of each robot, as well the way in which the robots atewith each other, a
standardized system. This standardization allows rolegtds even though the robots
may be extremely dissimilar in both function and progranmgnifihe proposed archi-
tecture will allow a variety of techniques to be implementgth minimal difficultly.

3 Architecture Description

Many issues arise when designing a multi-robot system ssi@litonomy, cooperation,
communication structure and coordination. Collectiveoaatny refers to the ability
of the robots to work autonomously without human intervemtiCooperation is the
ability of the robots to work with each other and requires namication whenever
the robots’ actions depend critically on knowledge thatisessible only from another
agent. Coordination addresses the interdependency ntapagamong the cooperative
robots to achieve a common goal.

All of these issues can be addressed by using an agent atiappgoach. Taking
into account that the system deals with physical robotssinmtlated ones, a completely
agent-based solution is difficult due to the lack of low legehtrol in agent-based
languages. In addition, if the agents do not exist withinrtiteot, having the low level
controls reside in the agent would not be practical. Baseith@f®hysical Robot Agent
(PRA) concept described in [10], a new architecture has legeloped as shown in
Fig. 1. The two layers of the proposed architecture are thimAtayer, which handles
all the sensory and movement functions; and the Cognitiwest,avhich handles the
decision making.

Action Layer ‘ Cognitive Layer

4 Execution Module Coordination Module -
£l Ee 3
i3l —— Tl . waiaw |-
IR E 1 1 e : 2
o o : v e v
on M. .
E Behavior Executor
2 !
£ S
&

Behavior

Repository

Magellan Pro

Fig. 1. Proposed Architecture

This layering system is inspired from ethology, the scievicstudying animal be-
haviours, where the cognitive layer represents the consdicain and the action layer
represents a combination of both the body and the uncorsdimin. For example,
when controlling a limb, the action layer understands tmeirworkings of the move-
ment as well as the touch and heat sensors, but the overalsgiescribed by the cog-
nitive layer. Although these layers are only abstractitms way they are implemented
affects the overall structure of how the robot functionse Tallowing subsections de-
scribe these two layers and the inter-layer communication.

3.1 Action Layer

The action layer is where the actual physical actions of timt are controlled. In
this layer, tasks or reactions are executed. These tasksimapde programs that are
controlled from the cognitive layer. The action layer caisiof a three key elements:
the Executor, the Repository and the State Monitor as showgi. 1.

The Executor controls every aspect of the physical operaifdhe PRA. It tells
the action modules what to do and receives feedback frometteeption modules. The
State Monitor tells the executor what tasks it should beguering and the Repository
tells it how to perform these tasks. In return, the Executéorins the State Monitor
of all updated variables. The Executor is the only elemernthénPRA that has access
to sensors and actuators through the perception and actidales as shown in Fig. 1.
This part of the abstraction is critical, as it ensures thiaplaysical manifestations
are controlled in the same element. Without the Executoobatrwill not be able to
interact with its surrounding world. The types of tasks that required to implement
the Executor include:

— Initializes which are run once, at start-up, to initializerge aspect of the robot, e.g.
the pan and tilt of a camera;

— Actions or steps which are run as part of a state machine;

— Alerts which are run and sit idle until a specific conditiortors; and

— Reflexes which quickly react to a situation without consigitthe cognitive layer,
such as crash avoidance.

The State Monitor is the Action Layer’s communication chelnit is the only way
in which the Action Layer can communicate with the Cognitivayer. The complex
nature of all the interactions between the layers givestosa element in both layers
designed to handle the intricacies of these communicatieoisthe Executor to run
tasks, it must know which ones are required. And in order lier€ognitive Layer to
have a full picture of the current status of the PRA, the Stinitor must both package
the data and inform it of the updates.

As the State Monitor is the element in the Action Layer thdye information
between the two layers, it must be able to both send and eedata from the Cognitive
Layer. The State Monitor must be able to inform the Executdhe tasks that need to
be run, all of the variables and constraints for those taskishow and when to run
them. It might also need to find the index or location of tagkefl in the Repository,
or even update or alter the stored tasks. It must also senes$hitts of these tasks (if
any) and updates on a list of internal variables as requéstéte Cognitive Layer.

3.2 Cognitive Layer

In the Cognitive Layer all high level decisions are mades lthie Cognitive Layer that
makes the PRA autonomous. The Cognitive Layer receiveasstgidates from the
Action Layer and uses these updates to determine which eairaction to pursue.
Even with the vastly different requirements for differepstems, three main elements
are always required in the Cognitive Layer: the Decision &tathe Negotiator and the
Coordinator as shown in Fig. 1. The Cognitive Layer is whaedgents reside as two
of these key elements are already included within an aggrddbnition), the Decision
Maker and the Negotiator. Due to these pre-existing commsnan agent oriented
solution is the most likely course of action.

The Decision Maker is the main and the most important elewighe PRA. Itis the
thinker, the problem solver, the higher brain. Everythingttoccurs within the PRA of
any consequence must go through the Decision Maker. Withigielement, the robot
would not be autonomous, would not be able to adapt to newtmns and would not
be able to form any consensus with other robots. From thesizecMaker, commands
are sent to the Action Layer via the Coordinator and all intdrot communications are
facilitated through the Negotiator.

The Negotiator enables communication between robots alps higem interpret
responses. Assuming an agent oriented design is alreadyg bsid, this element is
already included in every agent, based in the definition oagent. The Negotiator
must have the ability to communicate with other robots anthierstand what is being
communicated. The Negotiator does not only relay messhgesan also perform any
bidding or handshaking required for decisions and consebsilding.

The Coordinator is the element that is in charge of commuieics with the Action
Layer. This is the Cognitive Layer’s version of the Actionjea’s State Monitor. It only
receives communications from the Action Layer and the DeciMaker. It maintains
this single pathway of communication; it ensures that theifden Maker is always in

charge of all aspects of the PRA. The primary reason thataraepelement is required
for the Coordinator is to emphasize that this pathway is génigt.

3.3 Communication

Cooperation requires communication whenever a robotisretdepend critically on

knowledge that is accessible only from another robot. Theroanication structure of
a group determines the possible modes of inter-agent oitena These modes of inter-
action are sometimes classified into Interaction via Emritent, Interaction via Sens-
ing and Interaction via Communications [11]. In the progbdesign, the Interaction via
Communications is adopted. As shown in Fig. 2, there areyped of communications
in the proposed system: inter-layer communication and-sgent communication.

P The PRA Envi

Action Layer Cognitive Layer

.[Robot 1 I-

L)
------ ﬂ Agent 1 |-—

g

« 1 L:] E

g 2

Robot 2 2 o Agent 2 g

a o - 5

| . B

8 — E3 i
Robot N T‘ AgentN |—-

Fig. 2. Communication Links

The communication between layers is important if this aeafture is to be used for
real-time applications. The performance of the robots éllimited by either commu-
nication or processing speed. If a bottleneck exists withencommunications, there
are only two locations where this can occur. The first is withiPRA between the two
layers, where all communication should be minimized. Tloosd location is between
PRAs, in which network speed and traffic are the main culfoitslower speeds.

Communication is essential for multiple agents to work tbge Agents must be
able to communicate between one another to locate othetsaged talk to them. For
this, two main components are needed, a communicationgoiofar inter-agent com-
munication and a network protocol in which to send the messabhe most important
aspect of inter-agent communications is that it shouldrbéed to as few and as small
messages as possible. If there are too much data being gbetrerlre too many mes-
sages being sent, the load they create can severely slow @ewstem. It is here that
network constraints define the total amount of communicatiat can occur. Inter-
agent communications should be concise yet meaningfuk Wil help reduce the
amount of network traffic.

4 Architecture Implementation

Ideally, if a large number of known action layer tasks exisén it is possible to write
thebrain behind a robot without having to re-write any of the lowerdifunctionality.
This simplified development process is supported with a Biégny of useful tasks. The
cognitive layer can only ask the action layer to do the foltayvinitiate a task; cancel a
task; watch a variable; stop watching a variable and assigmiable. This intentionally
limits the abilities of the cognitive layer to help keep thes@action between high and
low level tasks. To enable the cognitive level to commumagith other robots yet still
be independent, autonomous and cooperative, an agentaatisolution is the natural
course.

To create the cognitive layer, a number of software ageetsised. Each robot can
have as many agents as required acting collectively as tivétae layer of a particular
robot. Currently, only two agents per robot are used. Thedigent is the maifrain
of the cognitive layer. It encompasses both the Decisionéviakd the Negotiator. A
second agent acts as the Coordinator. This Coordinatot ageénas the intermediary
between the Decision Maker and the action layer of the rdliet.reasoning behind this
two agent system is simply that every robot requires a Coatdr and incorporating
it into the main agent unnecessarily complicates the matténis manner, every robot
can has exact same Coordinator agent, no matter how thefigt cognitive layer is
designed.

Each robot may have completely different agents or they rfidedahe same. This
depends entirely on the project. For the most part, the Goatal should be indepen-
dent from the project. All of these agents, including theuiegg infrastructure can be
placed on one or multiple servers and they need not actueslge on the robots them-
selves. This enables robots with less processing powelilltdage advantage of the
proposed multi-level architecture. This architecture @ésigned to be independent of
any specific goal so that it can be tailored to satisfy eaclepts requirements.

The action layer serves two important purposes; to abstea@tions in physical
hardware from the cognitive layer and to carry out local ticniéical tasks. Abstracting
the hardware in this layer is an approach to allow the sanierglcigic to be carried out
on several different hardware platforms. Latency is miaidi using an event-driven
approach to ensure appropriate tasks or reactions aredaut for each external stim-
ulus.

The action layer communicates with physical robot hardvlai@ugh an abstraction
interface. This interface maps each received sensor valaespecific location and ori-
entation and translates generic motion control commantsartdware specific values.
All action logic is defined using a set of simple concurresskta Each of these tasks
can be in one of two states as decided by the cognitive lagssiyge or active. Active
tasks can carry out their actions when triggered, whileipagasks do nothing until
activated from the cognitive layer. Activation and deaatiion of tasks is the primary
method of control from the cognitive layer.

A specific precondition based on external stimuli is definmdefach task. Exam-
ples of these conditions include the arrival of new a videonfe, a sonar measurement,
or a change in robot position. Including these precondstioutside task logic helps to
keep internal logic simple and allows for a single task talgasspond to different trig-

gers or external stimuli. As soon as a task’s preconditiomes$, the task is executed.
During execution, tasks can process sensor data, contsot movement and sensor
parameters in addition to exposing high-level task statieedback to the cognitive
layer. Processing sensor data locally in the action layerightes unnecessary commu-
nication of low-level data while ensuring relevant highdkinformation is available to
the cognitive layer.

5 Experiments

An experiment has been conducted to validate the proposbitersture. The overall
goal of this experiment is to validate the architecture, eindo so, a task was defined
that could be performed using a differing number of MageRao [13] robots.

The defined task requires the robots to encircle (or surrparidrget. A coloured
can on top of a basketball was chosen as the target of chaideisaeasy to spot from
afar and allowed a good estimate of distance when up clogecai has four colours,
green, blue, yellow and magenta, evenly placed along ite@eir These colours are
used by the robots to determine which angle they are viewiagdrget from. Thus,
the robots have a common form of perception of the target anddéscuss which one
should move to where to corner it. The method with which thedhieved is dependent
on the number of robots participating. If there is only onlgatp it should find the front
of the target. The front of the target is an arbitrary pointthis case, the line between
the yellow and blue colours was chosen. If there are two mliben they both should
be 180 degrees apart from each other. With three robotsstimyld all be 120 degrees
apart.

One important aspect of this experiment is that it must bsiptesto add or remove
robots from the system. If one robot is attempting to lookhat front of the target
when another joins, the system should adjust and both rabasid attempt to place
themselves at 180 degrees apart. Similarly, if there asettobots encircling the target,
when one is removed, the remaining two should compensate.

5.1 Coordinator Agent

For the purposes of this experiment, a Coordinator agemhjgeimented. This agent
acts as an intermediary between the agents representingpgimitive level and the

low level functions of the action layer. It accepts messayus based on a specified
format, performs a variety of operations. The most impdrtgeration is the one which
sends the action layer a command to initiate a task. This comdris sent to the action
layer through an open port that the action layer is sensttiverhis agent also can
request that a variable be monitored and it can also caneska\Vhenever a variable
being monitored is altered, the action layer sends an uptedegh a Java stub. The
Coordinator sees this and sends an update to the subscgbet @nly the variables to

which an agent is subscribed are sent through the Java stighmEans that even though
a task may make a variety of variables available, only thes @dhat are needed in the
cognitive layer are actually sent. Thus, the library of @attiayer tasks can be used in
not only a single experiment, but for future ones as well. Therdinator agent needs

to be quick to allow for seamless operation of the robot, harehis agent should only
need to be created once and then it can be used on all futyjee{so

5.2 Single-Robot Scenario

A single robot agent was created to test the communicatitwdss the cognitive layer
and the action layer. As it is designed only for a single robaty the Decision Maker
element was included.

The single robot followed a state machine with a series &&taghe first task is that
of finding the target. The robot rotates until the target éated. The second task is for
the robot to approach and then centre in on the target. Omopleted, the robot pre-
pares for pivoting by panning the camera 90 degrees whilalsameously backing off
from the target. This preparation is required because thetranly has two functional
wheels, so to allow a pivot around the target, it must be parin a tangential trajec-
tory from the target. As well, the camera is rotated to keeptéinget in view. Finally,
the robot calculates the fastest route to get to the 0 degagle, e front of the target,
and pivots accordingly. Once there, the robot remains am fmleany new commands
or changes to the target. If at any time the robot loses sitiesotan, it will return to the
first state and start searching for the can anew.

This agent performed well. The main problem with the singleot scenario was in
the action layer where there were complications with colietection under different
lighting conditions.

5.3 Multi-Robot Scenario

The multi-robot agent encompasses both the Decision Ma&eremt and the Negotia-
tor element. This software agent is used on multiple robdwsiot only communicate
with the action layer through the Coordinator agent, bub alsmmunicate with other
agents on other robots. This agent builds upon the singlet reysion however it now
coordinates its actions with the other software agentsingnim the cognitive layers
of the other robots. The state machine of this agent can beisdég. 3. This state
machine is very similar to that of the single robot versionlike the single robot state
machine, there are new steps that are designed for negaotiatih other PRAs. Each
of these new steps is a cognitive layer task and not an acti@r bne. These steps in-
clude: greeting the other agents; reporting to the othentaat this machine is ready
to pivot; getting and sending the cost to travel to the diffédocations around the can;
and telling the other robots that an error has occurred amavtiole process needs to
be restarted. It is important to note that none of the actigei tasks had to be altered
for this new agent. For both signal and multiple robot impdemations, the action layer
performs the exact same tasks.

This scenario again suffered from the same lighting problasithe single robot
scenario; nevertheless, the robots were able to functidiraga team. A new challenge
was as occasionally, a PRA saw the red color of another rambnastook it for the
basketball. This does not seem to adversely affect the firtabme of the program, as
this only occurs at far distances. The robots all locate déinget and encircle it while
staying in sync with one another. When one robot’s path igraopted, all the other

Al Lowation

Pivot required
location
based on cost

Greet other -
Robots

. . Report Calculate &

{ Find Tatget Lost } Report Cost

puno_{ 0N 19518 |

Found Others

pune | 135e]

e %,
@ S 2
o
B
Panai 90 Got Costs

Farget Not Found
largat Not Found

{ Approach &

Centre Target ReportReady

Ready Pivot J

Fig. 3. Multiple Robot State Machine

robots correctly react almost instantly and reset to séagcfor the target. Table 1
summarizes the results obtained during this experimentFénd4 is a photograph of
the robots in action.

The communication between agents functioned flawlessly it latency and the
robots performed as expected. There were an acceptableendiaiibres when the ro-
bots were operating during all of the tests, but none of tlaeseattributed to the ar-
chitecture. Failures arose due to errors in detection oflifiance from the target and
a robot hitting a piece of furniture or wall (as there is noed#ibn or avoidance cur-
rently for other objects). When a failure occurred, the relvabuld typically reset, as
previously defined in the state machine.

Table 1.Best-View Demonstration Experiment Scenario

Scenario Number of Robots|Results
Encircle Target 1 (find front of tar{The robots performed as expected. |All
get only) three robots were tested.
2 Any two robots performed as expected.
3 The robots performed as expected.
Remove Robot 3downto 2 The robots performed as expected.
Choice of robot did not affect the results.
2downto 1l The robots performed as expected.
Choice of robot did not affect the results.
Add Robot 1to2 The robots performed as expected.
2t03 The robots performed as expected.

Fig. 4. Robots in Action

6 Conclusion and Future Work

A new architecture using an agent oriented design methodojsoged for Multiple
Robot Systems. This architecture combines the hierarchighthe decentralized ap-
proaches. It splits all processes into two layers, the t¢ivgniayer where the higher
brain functions take place and the action layer where thddeel functions take place.
It also addresses the use of cooperative agents organiheddware or software com-
ponents that each independently handle a small set of $igedidasks and cooper-
ate to achieve system-level goals. The overall system halmagmerges from the au-
tonomous behaviours of the individual agents. The architeds designed to make the
inner design of each robot, as well the way in which the robdesact with each other,
a standardized system. Although the robots may be extredigdymilar in both func-
tion and programming, this layered architecture will allfiw a variety of techniques
to be implemented with almost no difficultly.

The conducted experiments show the usefulness of the prd@shitecture in fa-
cilitating the development of cooperative behaviours leetmvmultiple robots. Further
testing of the system presented above is being performathdfmore, a robot soc-
cer team is currently being developed in which this architexis being used. Another
project is currently using the proposed architecture taréma multi-agent based re-
mote interaction with multi-robot system. In future workora cooperative behaviours
will be developed using the proposed architecture.

References

1. F. Heylighen, "Collective Intelligence and its Implementation on the Wégporthms to De-
velop a Collective Mental Map”, Computational and Mathematical Theb@rganizations
5(3), 253-280, 1999.

2. M. Wooldrige and N. Jennings. Intelligent agents: Theory and peackite Knowledge En-
gineering Review, 1995.

3. M. Wooldridge and P. Ciancarini. Agent-oriented software engingeTihe state of the art.
In: Agent-Oriented Software Engineering. Springer-Verlag, Berld912

4. J. Altman, F. Gruber, L. Klug, W. Stockner, and E. Weippl, "Usinghil® Agents in Real
World: A Survey and Evaluation of Agent Platforms,” Proceedings ef2hd International

o

10.

11.

12.

13.

Workshop on Infrastructure for Agents, MAS, and Scalable MAS atSthelnternational
Conference on Autonomous Agents, pp. 33-39, Montreal, Canddlisl, gress, June 2001.

. F. Bellifemine, A. Poggi and G. Rimassa, "JADE- A FIPA-compliargeftt Framework”,

CSELT internal technical report. Part of this report has been alslisped in Proceedings
of PAAM’99, London, April 1999, pp.97-108.

. FIPA - Foundation for Intelligent Physical Agents, http://www.fipa.ofgpril, 2005.
. Lucia Vacariu, B. P. Csaba, I. A. Letia, G. A. Fodor, O. Cret, "AlNMAgent Cooperative

Mobile Robotics Approach for Search and Rescue Missions”, IFAC#®gim on Intelli-
gent Autonomous Vehicles, 5-7 July, Lisbon, Portugal, 2004.

. |. Infantino, M. Cossentino, A. Chella - "An Agent Based MultilevekAitecture for robot-

ics vision systems” - The 2002 International Conference on Atrtifici@lligence (IC-AI'02)
-June 24 - 27, 2002 - Las Vegas (NV), USA.

. S. Mostefaoui and M. Courant, "Collective Adaptation of a Heteregae Communicating

Multi-Robot System”, In Proceedings of the International Arab Cafee on Information

Technology, AICT'02, P. University of Qatar, Doha-Qatar, 16 - ¥rBmber 2002. pp. 1038-
1044.

J. Eze, H. Ghenniwa, and W. Shen, "Distributed Control ArchitedturCollaborative Phys-
ical Robot Agents”, In 2003 IEEE International Conference on 3gst&lan & Cybernetics,

Washington DC, 2977-2982. 2003.

Y. Cao, A. Fukunaga, and A. Kahng, "Cooperative Mobile Roso##mtecedents and Di-
rections”, Autonomous Robots, 4, 1-23, Kluwer Academic PublisH&87.

J. Eze, H. Ghenniwa, and W. Shen, "Integration Framework édaBorative Remote Physi-
cal Agents” in proceedings of the 3rd International Symposium on Reband Automation,

ISRA'2002, Toluca, Mexico, 2002.

iRobot Corporation - http://www.irobot.com/ , April, 2005.

