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Abstract. This paper introduces a genetic tuner implemented for optimizing the 
image scene analysis prior to the grasping of the objects, to realize a concrete 
working robot named COERSU1. Firstly, different architectures of the adaptive 
neuro-fuzzy inference system, multi-layer perceptron and K-nearest 
neighborhood classifiers are compared to perform scene analysis and object 
recognition. Following on, the MLP classifier is chosen due to its accuracy and 
flexibility to be tuned by genetic algorithm. The real-time experiments (after 
tuning) show that the performance of the genetically tuned MLP classifier is 
improved in terms of accuracy due to this hybridization. Finally, snapshots of 
the experimental results from COERSU in a table-top scenario to manipulate 
some soft objects (e.g. fruit/egg) are provided to validate the methods.  

1   Introduction 

The context of the present research is a bigger effort to devise a multi-paradigm 
model for robotic perception and manipulation. The major core is to integrate 
different intelligent concepts to perform robotic eye-to-hand coordination and to 
produce a working system, COERSU. How to make the robot decide based upon 
information coming from different sensors, how to handle the feedback coming from 
the dynamically changing environment and how to speed up the multi-paradigm 
model of intelligence, are some of the high level questions that are attempted to be 
answered during this research (Figure 1). Enabling COERSU to perceive, recognise 
and manipulate soft objects on the table in a similar way to its human counterpart is 
the most important part of this project. 

The process of visual understanding includes image acquisition, segmentation 
into coherent components, the recognition and pose determination of these 
components and, potentially, an action plan related to the analysed environment. The 
goal of image segmentation is to partition an image into meaningful homogeneous 
regions [2, 6, 13]. The present research was based upon the critical assumption of 
separating off-line tuning from the speed demanding real-time execution. Before, 
during and after the scene analysis, different processes need to be performed, such as: 
smoothing, registration, normalization and pseudo-colouring and segmentation. 

                                                           
1 An acronym for the Latin expression, “Cogito ergo sum” which means “I think 

therefore I am”. 
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Fig. 1. Block diagram of the working system. 

For further details, refer to [9]. 
In this paper, Section 2 briefly explains scene analysis and compares different 

methods for object recognition suitable for COERSU. The genetic tuner to optimize 
the classifier is explained in Section 3. Snapshots of the video-clips are also shown at 
the end to demonstrate the effectiveness of the methodologies. 

2   Scene analysis 

The major goal of scene analysis is to be able to determine what and where the 
objects are in the scene, and the possible interrelationship between the objects in 
order to manipulate them by a robot. There have been numerous studies of object 
recognition in a robotic manipulation context. [3] developed an intelligent cruise 
control (ICC). Object recognition based on sensor data was part of their intelligent 
system and they made great contributions but mainly on car tracking systems, which 
were far from our research problems. [4] proposed SENROB which detects and 
manipulates objects within the working place of their robot, MANUTEC r2; however, 
the camera is mounted in the robot’s hand which is quite different from our platform.  

In our scene classification problem, the process was performed after the 
segmentation and prior to the manipulation of the target object so that the robot arm 
could not influence and disturb the classification of the objects. A five-nearest 
neighbourhood classifier [7] was firstly considered because of its simplicity. 
However, different neural network based methods were implemented to verify and 
compare with the result of K-NN. We trained our system with fifty different known 
object-pose cases. These consisted of five samples for each of ten prototype objects. 
These objects were some foodstuffs such as, a banana, a cucumber, an egg, a kiwi 
fruit, an eggplant, a capsicum and some other kitchen utensil: a mug, a plate, a spoon, 
and a knife. Objects were chosen based on their simplicity for manipulation by a 
robot hand with two fingers. For each of the objects we considered five different 
samples/poses on the table in order to extract enough feature variations. 

2.1   Classification features 

The best combination of features will produce the greatest difference in the feature 
values of significantly different shapes and the least difference for similar shapes. 
The features used in our classification methods were chosen based on trial and error 
and consisted of seven features for each segment found in the image after the 
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segmentation process: Perimeter, Area, Shape features A and B described below [7] 
and Colour components (Red, Green, Blue). 

The following two moment invariants are computed to achieve two goals: 
primarily to get some shape descriptors, and secondly, to obtain scale, translation, and 
rotation invariant features for the objects of interest. 
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Where M,N: boundaries of the object rectangle ),( yxf binary representation of the 
object in the segmented image. 

In order to have a measure of similarity between an unknown object and the 
prototypes for K-NN classification, a weighted Euclidean distance metric was used 
(1). Since the Euclidean distance function treats every dimension equally, it was 
necessary to normalize the data. By analyzing all of the training data in a pre-
processing stage, we determined the range of every attribute and transformed the 
entire dataset appropriately within the range of 0 and 1. Table 1 shows a typical 
feature vector based on the image frame, its segmentation and edge detection for an 
eggplant in a particular pose. Due to shape similarity between some of the objects 
such as, banana, cucumber and eggplant, colour features discriminate better than 
shape descriptors A and B,  (2),(3).  

Table 1. A typical feature vector for one pose of an eggplant. 
No. Feature Name Feature values before 

normalization 
Normalized 

feature value 
3 Average RED 

component 
49.242537 0.193108 

4 Average GREEN 
component 

52.514925 0.205941 

5 Average BLUE 
component 

58.029851 0.227568 

1 Shape descriptor A 0.326715 0.326715 
2 Shape descriptor B 0.264920 0.264920 
6 Area 268.000000 0.13958 
7 Perimeter 89.000000 0.4635 
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2.2   Comparisons 

Two types of each of the classifications were implemented: Two multi-layer 
perceptron (MLP), K-NN (with K=1, K=5) and two ANFIS networks [12] were 
implemented to compare the classification results. To keep the uniformity condition 
and based on trial and error, all of the classifiers were trained with 50 known object-
pose cases, uniformly distributed between the samples, and tested with different 40 
samples (4 samples for each of the ten classes of objects). 

The first MLP classifier had a 7-5-1 structure where seven features, extracted 
from the unknown object, were fed into the network as the inputs, a 5-neuron hidden 
layer and one output with (0-9) values representing ten different classes of objects 
(0.0 for the first class, 1.0 for the second… and 9.0 for the tenth class). However, in 
the second network configuration, 10 different output neurons were considered based 
on the idea that for each class of objects, only one output fires on (‘1’) and the other 9 
output neurons present ‘0’s.  In practice, the ideal (‘0’, ‘1’) outputs cannot be 
obtained so we pick the maximum value of the ten outputs and its corresponding class 
will be the predicted object. Both MLP’s were trained using error back-propagation 
algorithm and a conventional sigmoid activation function was applied [11].  

The parameters related to the ANFIS classifier are described as follows (Figure 
2): A Takagi-Sugeno-Kang fuzzy rule-based system [15, 10] is equivalent to the 
ANFIS network shown in Figure 2. Seven features of the unknown object are fed into 
the network as the input layer. The output ranges from 0 to 9 and represents different 
classes of the input. (e.g. class 0 represents mug, class 1 represents cucumber and so 
on) and thirteen  Sugeno type fuzzy rules were generated. 

The confusion matrices [1] which contain information about actual and predicted 
classifications were prepared for all of the classifiers using test cases.  

As an example (Table 2), after running the 5-NN algorithm, it classified the 
objects in the scene correctly in 95% of the cases (38 samples). The accuracy was 
calculated as the proportion of the total number of predictions that were correct. In 
5% of the cases (2 samples), the system misclassified the ‘actual’ eggplant as a 
‘predicted’ cucumber (Table 2). This is due to the similarity of the shapes of these 
prototype objects in some poses and ‘outlier’ samples in the training set, addressed in 
Section 3.  

The result of the accuracy measurements for different methods, off-line training 
time and on-line classification time for the image frames are provided in Table 3. The 
on-line execution time is calculated as the time taken to analyze the whole image 
frame (640 * 480 pixels). It can be observed in the comparison table (Table 3) that 
there is a general trade-off between the execution time and the learning time for 
different methods[8]. In other words, K-NN takes more time for real-time execution 
but MLP and ANFIS perform faster for an unknown image and take more time for 
the off-line training stage.  
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Table 2. Confusion matrix describing the performance of K-NN classifier. Correctly classified: 
38 samples out of 40. Overall accuracy: 95%. 
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1 Banana 4 0 0 0 0 0 0 0 0 0 
2 Plate 0 4 0 0 0 0 0 0 0 0 
3 Spoon 0 0 4 0 0 0 0 0 0 0 
4 Knife 0 0 0 4 0 0 0 0 0 0 
5 Mug 0 0 0 0 4 0 0 0 0 0 
6 Cucumber 0 0 0 0 0 4 2 0 0 0 
7 Eggplant 0 0 0 0 0 0 2 0 0 0 
8 Egg 0 0 0 0 0 0 0 4 0 0 
9 Kiwifruit 0 0 0 0 0 0 0 0 4 0 
10 Capsicum 0 0 0 0 0 0 0 0 0 4 

The 7-5-10 MLP showed a better performance than 7-5-1 MLP in terms of 
classifying the noisy inputs. This can be attributed to the fact that the distribution of 
the classification results was across a wider range of output neurons (10 instead of 1). 

Table 3. Comparison between different methods 

No.  
Method 

Learning 
time (approx. 

Sec.) 

Accuracy 
(%) 

Execution 
time (approx. 

Sec.) 

1 Nearest neighbourhood (1-
NN) 

0 87.5% 15 

2 5-nearest neighbourhood (5-
NN) 

0 95% 20 

3 Multi-layer perceptron (one 
output) 7-5-1 layer structure

13 92.5% 10 

4 Multi-layer perceptron (ten 
output) 7-5-10 layer 

structure 

15 95% 12 

5 ANFIS (7 inputs, one output) 5 90% 15 

6 Ten ANFIS (7 inputs, one 
output) 

28 92.5% 25 

 

 
Fig. 2. ANFIS (7 inputs, 1 output) classifier. 
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3   Genetic tuner for MLP classifier 

Since the supervised classifiers are highly dependent to the training sets, an 
inaccurate measurement of the features of the training samples could result in a 
misclassification. As discussed earlier in Section 2.1, seven essential features were 
measured in order to extract the training samples. However, some features were 
measured inaccurately and disturbed the classifier by appearing as severe outliers 
which were inaccurate.  

In contrast, according to Widrow’s rule of thumb [5] and trial and error, the noisy 
training samples can help the classifier to have a better generalization [12]. However, 
in this case the incorrect outliers were not genuine features of the training objects and 
the classifier should not be generalized based on the incorrect information. These 
wrong training samples were contributing to the error of the classification, especially 
in the real-time mode, and needed to be removed from the training samples. The 
consequence is that to get the best possible output from the classifier, it is necessary 
to provide the system with significantly large number of non-conflicting training data. 
The challenge is to distinguish between the correctly measured outliers among the 
training samples (acceptable) and the incorrectly measured ones (not acceptable). The 
incorrect training samples may only have one wrong feature value and the rest correct 
but that one incorrect feature may drastically contribute to the error. The exhaustive 
search for the selection of a suitable subset among the training samples could be quite 
time-consuming, for example, using 50 samples will result in 250 different subsets.  

In the literature, [14] utilized neural networks as outlier detector by suggesting a 
rule to identify the “noise related” neurons. He further argues that little effort has 
been reported in eliminating outliers prior to the training phase which affects the 
results. However, his regression neural network could not be easily applied to the 
classifier neural network. Current procedures for outlier detection such as using 
Mahalanobis distance suffers from masking effect [14]. 

A Genetic algorithm was utilized in this paper to detect these incorrect outliers 
and produce a subset of training samples that is suitable for the purpose of training 
the classifier. Since all of the seven features were essential, the feature selection was 
not included in the genetic tuner although it could be potentially performed. 
Collaboration between GA and neural networks has been reported in the literature 
before. [16] devised genetic neural networks for classification of remotely sensed 
images. The architecture of the neural network was designed using GA which makes 
it different from our problem.  

3.1   Implementation details of the MLP genetic tuner  

The aim of this genetic tuner was to optimize the neural network classifier by 
selecting a suitable subset of the training samples and removing the dubious values to 
train the network. The importance of the tuning is that the final correct subset of the 
training samples can be applied to other classification methods as well and it 
decreases the computation time of the real-time execution (for K-NN methods) or the 
learning time (for neural network based methods) by removing the dubious values. 
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Therefore, the mapping between the samples space and genetic space was generated 
by considering the chromosome to have the same number of genes as the training 
samples, in this case 50.  

The genes were holding a binary value showing whether the corresponding 
training sample exists in the subset (“1”) or not (“0”). Therefore the conventional 
genetic functions could be applied plus a trivial constraint. The minimum allowable 
number of training samples for each object was considered as a threshold so that at 
least one training sample exists for each of the object classes.  

It was decided, based on trial and error, that the genetic algorithm have a 
population size of 20 chromosomes for each generation and a maximum number of 
200 generations for evolution at each run to guarantee the optimum solution. The 
roulette selection of the parent was considered for the replication and the mutation 
probability of 0.1 and cross-over probability of 0.5 were chosen. Elitism in choosing 
the offspring generation was considered as well. 

3.1.1 Chromosome fitness evaluation 

For the MLP genetic tuner, the goal is to evolve the chromosomes to maximize the 
following Fitness(i): 
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Where i is the chromosome, f1 is the fitness measured related to the mean squared 
error (MSE) between the actual and the desired output in the training data, MSE(i), is 
the mean-squared error for chromosome i; T, number of test samples, N, number of 
objects, w1and w2, weights assigned to partial fitness f1 and f2, , M, number of 
training samples, k, the neuron in the output layer, ),,( tki

desiredo , the desired output for 

neuron k for a particular training sample t, in chromosome i, ),,( tki
actualo , the actual 

output of the classifier, f2, the fitness measured related to the misclassification of an 
accurate test sample, ‘+1’ avoids divide by zero in the fitness equations. 

In order to obtain a balance between two criteria for the fitness measurments, we 
decided to utilize such a weighted averaging fitness. The fitness function was a 
compromised estimation between the error in misclassification of the test samples and 
the mean squared error between the actual output and the ideal one for the training 
data. 

The test samples were gathered based on unseen objects different from the 
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training samples in terms of both the physical shape and pose of the object on the 
table. For each fitness measurement, MLP classifier is trained using the conventional 
error-backpropagation algorithm.  

3.2   Experimental results 

After running the genetic algorithm up to 200 generations a few times, and assuming 
the following parameters in the equations (7-11): M=50, N=10, T=40, w1 = 1, w2 = 4 
(based on trial and error), Figure 3 shows the elite chromosome fitness (highest 
fitness) and average fitness for each generation. It can be observed that the average 
fitness gradually converges to the maximum fitness found. 
Also, fitness of start population versus end population for 200 generations is shown 
in Figure 4. It is observed that the end population has much fitter chromosomes than 
the start population. 

The elapsed time to complete the whole process of tuning the classification with 
the above configuration was 3896 Sec. (65 minutes) on an ordinary 1.60 GHZ PC. 
This is acceptable, especially because the process was performed off-line prior to the 
production mode. 

 
Fig. 3. Highest and average fitness for 200 generations 

 
Fig. 4. Fitness of start and end populations for 200 generations. 
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3.3   Final Configuration of the Real-Time Pattern Classifier (Combination 
Strategy) 

In order to make a more powerful classifier, compensate the deficiencies of each one 
and increase the performance of the whole system in terms of reliability, combination 
of different classifiers is preferred.  

In practice, the problem with a fixed test set is that the classifier becomes rigid 
by tuning itself based on a fixed set of test samples. Therefore, it was decided to take 
an odd number of correct test sets (for our case we chose 3 sets) and use each of them 
to extract the corresponding suitable training subset and consequent classifier. 
Therefore, each of the MLP classifiers was slightly different from the others. During 
the production mode, in order to find a compromised solution between the decisions 
of the different classifiers, the voting mechanism was implemented so that the class 
of object which had the majority of approval was selected as the final result, as 
shown in Figure 5. (If three of the classifiers predicted differently, the object would 
remain unknown, however, this case did not happen in our experiments). 

Finally, Figures 6, 7 show the snapshots of the integration of the processes, from 
the on-line observation to the grasping of an egg. 

 
Fig. 5. Result of online scene analysis (from left to right): (a) original image frame (b) result of 
edge detection (c) segmentation based on the genetically tuned parameters (d) genetically 
tuned object classification. 

 
Fig. 6. An egg is grasped and picked up by COERSU in a table-top scenario. 
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Fig. 7. On-line result in response to the command: ‘Grasp the egg’ (column-wise from left) 
a) Frame No.1-initial scene, objects are recognized b) Frame No.2- first positioning of the 
tooltip c) Frame No.8- alignment with the centroid of the target d) Frame No.9- 3D x, y 
adjustments e) Frame No.10- target verification f) Frame No.11- opening the tooltip g) 
Frame No. 12- wrist tilt and grasping the egg h) Frame No. 13- final grasping, tilt back the 
wrist i) Frame No. 14- ready for the next command. (row-wise from top) i) original image 
ii) result of edge detection iii) tuned segmentation. 

4   Conclusions 

The result of the scene analysis and classification using different architectures of the 
classifiers (Multi-layer Perceptron, ANFIS and K-NN classifiers) were compared. A 
genetic tuner for optimizing the multi-layer perceptron classifier was explained to 
support image scene analysis for our robotic platform, COERSU. Although using the 
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tuner makes the system more complicated, it is preferable to apply it to obtain higher 
degrees of precision and real-time execution. 
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