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Abstract. The results presented are related to the prediction of the specific 
grinding force components. The main problems associated with the prediction 
capability of empirical models developed using the design of experiment (DOE) 
method are given. In this study an approach suggesting the combination of 
DOE method and artificial neural network (ANN) is developed. The inputs of 
the developed ANNs were selected among the factors and interaction between 
factors of the DOE depending on their significance at different confidence 
levels expressed by the value of α%. Results have shown particularly, the 
existence of a critical input set which improves the learning ability of the 
constructed ANNs. The built ANNs using these critical sets have shown low 
deviation from the training data and an acceptable deviation from the testing 
data. A high prediction accuracy of these ANNs was tested between models 
constructed using the developed approach and models developed by previous 
investigations. 

1   Introduction  

Because of the importance of the grinding forces regarding to the process outputs 
including wheel wear and surface integrity, many attempts were made to model its 
normal and tangential specific components. However, analyses of the obtained 
models have shown that the theoretical modeling [1] exhibits shortcomings from a 
quantitative aspect because the permanent changes on shapes and on density of the 
cutting edges cannot be clearly taken into account by these models. This suggests the 
use of simplifying hypotheses affecting the reliability of these models and limiting 
their employment to off-line prediction tasks. In contrast, empirical models, such as 
the regression analysis model [2, 3, 4], the fuzzy logic model [5, 6] and the neural 
network model [7-11] have, generally, shown satisfactory prediction accuracy, 
particularly useful for the on-line response evaluation and control. In many cases, data 
from design of experiment (DoE) were used to establish the regression models or to 
develop the fuzzy rule sets or to train the neural networks. Indeed, the DoE method 
offers the possibility to study the effects of several factors at one time and to 
investigate the inter-relationships between these factors, while conducting a relatively 
limited number of experiments [12].  
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However, this method has to be used with awareness, especially when it is applied for 
response minimization tasks. In fact, it was remarked that in many cases, the 
regression analysis models established by using the DoE were unable to predict an 
appropriate minimal response value [13].  
This constitutes serious limitation of this method, particularly, for on-line process 
control, where the predicted optimal values have to be determined with high accuracy 
as they are continuously compared to targets to maintain the desired level of the 
outputs. 
These inconveniences give rise to the need to develop improved methods with 
enhanced prediction capability. In this paper, feed forward neural networks using the 
Bayesian regularization were developed. The goal was to train ANNs to include the 
most important factors and interactions between factors affecting the surface 
roughness in order to make accurate and consistent predictions for new combinations 
of values for these factors. This was made by considering the extrapolation beyond 
the training data. The developed ANNs were trained using an experimental data set of 
a 48 runs factorial design and the best set of variables inputs, the number of neurons 
and the ANNs structures selection criteria were discussed. The performance of the 
developed ANNs on predicting the specific cutting force components F’n and F’t 
within the range of the factors levels fixed by the factorial design was compared to the 
statistical multiple regression models obtained directly using the design of experiment 
method. Here F’n and F’t are respectively the normal and the tangential specific 
components of the grinding force. 

2   ANN approach 

Even though several learning methods have been developed [7-11, 14-19], the back 
propagation method has been proven to be successful in applications related to 
surface integrity prediction [7, 8, 10, 18]. However, the effect of the neural network 
inputs selection was not elucidated sufficiently. Indeed, even though it is known that 
the selected inputs of the ANNs is an important parameter controlling the outputs 
prediction accuracy [8, 16 19], previous studies which have used the DoE data to train 
the ANNs, have also used the independent variables of the DoE as inputs of the 
developed ANNs. On the other hand the major problem encountered in the use of 
ANNs is over fitting [20]. A neural network can predict correctly the trained data set 
but it is unable to generalize for other input data. Consequently, the training error 
function E is modified to include not just the sum of square errors Ea but also the sum 
of squares of the network weights and biases Ew. This approach is called the weight 
decay regularization [20]. This modification forces the network to have smaller 
weights and biases and decrease the tendency of a model to over fit the training data. 
The modified error function to be minimized is: 

wa EEE )1( θθ −+=    (1) 
where θ is the weight decay parameter. The difficulty with regularization is in 
assigning an optimum value of θ. If the selected weight decay parameter is too large, 
so that overfitting may accrues. On the other hand if it is too small the network will 
not adequately fit the training data. Finding the optimum value for the weight decay 
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parameter that is appropriate for the training data is therefore an important task. In 
this investigation, the weight decay parameter was determined by the Bayesian 
framework. In this case all weight and biases of the network are assumed to be 
random variables with Gaussian distribution. The weight decay parameters are related 
to the unknown variances associated with these distributions.  
In this study, a 48 runs DoE rotatable central composite design was developed. The 
data of this experimental design were utilized to train a one hidden layer back 
propagation neural network. In fact, previous investigations have proven that this 
architecture is enough for the majority of applications [7-11, 16-19]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Algorithm for ANN Training and selection 

As for the inputs selection, it was discussed based on the statistical significance of the 
independent variables or interactions between these variables obtained from the 
quadratic regression models developed using the data of the 48 runs DoE according to 
the algorithm shown in figure 1. The point in this algorithm is that the ANN will be 
also trained for learning the factors interactions effects. In fact, the effects of 
interaction between factors can be in some cases, more significant than the effects of 
the factors. M. Thomas et al [3] have shown in their study related to the prediction of 
the surface roughness generated by the cutting process that the effect of the 
interaction between the feed rate f and the depth of cut (a) is more significant than the 
effect of the individual factors. On the other hand, as good generalization of the 
developed ANNs requires that their inputs contain sufficient information pertaining to 
the output, so that an accurate mathematical function relating the outputs to the inputs 
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can be established [21], using the interactions between factors as additional inputs for 
the ANNs improves this accuracy. Moreover, as the Multilayer perceptron (MLP) 
architectures are good at ignoring both redundant and irrelevant inputs [19], non-
pertaining interactions, which are used as inputs for the developed ANNs will not be 
considered automatically. Nevertheless, as the training time of the developed ANNs is 
widely affected by the number of inputs, therefore, it is important to distinguish the 
significant interactions and to use them as additional inputs. This fact is well 
considered by the algorithm of figure 1. 
The number of epochs was set to 200 and the ANN performances were evaluated by 
the training error MSE, training time (s), percentage of deviation from training data, 
percentage of deviation from testing data, and the values of the optimal outputs and 
the corresponding inputs combinations. 

3   Experimental Set-up and design  

All the grinding tests were realized in down cut plunge surface grinding mode using a 
Teknoscuola RT600 grinding machine. Grinding wheels were dressed using a single 
point diamond dresser with a constant gross feed (0.2 mm/rev). The workpieces 
dimension was 100Lx30Hx15W mm. The grinding force components were measured 
using a piezo-electric transducer based type dynamometer (kistler 9257A). Three 
workpiece materials having different structures and mechanical properties were 
selected, 42CrMo4, 90MnCrV8 and X160CrMoV12. Chemical composition and 
hardness of these materials are given in table 1. The selection was made based on the 
wide industrial application of these materials.  

Table 1. Chemical composition of the used material 

material C Si Mn Cr Mo P S Hardness HRC 

42CrMo4 0.41 0.28 0.77 1.02 0.25 0.02 0.03 36 

90MnCrV8 0.9 _ 2.0 0.4 0.7 _ _ 60 

X160CrMoV12 1.55 _ _ 12.0 0.7 _ _ 63 

 
Concerning the grinding parameters, table speed (vw), depth of cut (a), grinding wheel 
grain mesh size (#), dressing depth (ad) and the number of passes (Np) were selected. 
The selected values of the process parameters, given in table 2, cover conditions 
related to both coarse and fine grinding. For experiments a 48 runs DoE rotatable 
central composite design was selected and experiments were conducted in a random 
order. Three factorial experimental designs using the L27 [35] standard table were used 
for testing the prediction performances of the regression models and the different 
ANN structures selected in this study. Here, the material was not considered as an 
independent factor and the 27 testing experiments were repeated for each material 
type.  
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Table 2. Process parameters and values 

Factor Level 
 1 2 3 

Material 
vw (m/min) 
a (mm) 
Np 
ad (mm) 
# 

42CrMo4 
1 

0.050 
2 

0.010 
46 

90MnCrV8 
5.5 

0.100 
11 

0.020 
60 

X160CrMoV12 
10 

0.150 
20 

0.030 
80 

4   Results and discussions 

4.1   Statistical results 

Table 3 summarizes the statistical performances of the regression models developed 
for F’n and F’t. This table shows, particularly, an important average percentage of 
deviation from the testing data calculated for the three kinds of materials. Moreover, 
negative optimal values of F’n and F’t are calculated. It can be notice that the 
regression model of F’n and F’t established using the DoE presents low capability to 
predict the optimal output value rather than the corresponding factors level. Indeed, 
the combinations corresponding to the optimal values for F’n and F’t are in good 
correlation with the results of previous studies [22,23]. This constitutes a serious 
limitation of the prediction performances of the regression models established in this 
study. 

Table 3. Summary of the statistical performances of the DoE multiple regression models. 

Results Model for F’n Model for F’t 
Percentage 
deviation of 
the training 
data 51,58% 44,95% 
Percentage 
deviation of 
the testing 
data: 
• 42CrMo4 
• 90MnCrV8 
• X160CrMo

V12 

 
 

24,1% 
28,01% 

28,032% 

 
 

23,31% 
37,05% 
35,62% 

Vw a Np ad # F’n min Vw a Np ad # F’t 

min 
1 50 2 30 46 -1,273 1 50 2 30 46 -

0,74
4 

1 50 2 28 46 -1,341 1 50 2 30 46 -
0,55
8 

Grinding 
conditions for 
the minimal 
value: 
• 42CrMo4 
• 90MnCrV8 
• X160CrMo

V12 
1 50 2 30 46 -0,045 1 50 2 10 46 0,06

8 
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4.2   ANN results 

4.2.1   6-n-1 structure 

At first, the common method for establishing ANN’s architecture was used. This was 
realized by selecting the same inputs for the developed ANN as those selected for the 
DoE. Hence, a 6-n-1 structure was constructed; with n is the number of neurons in the 
hidden layer. The value of n was varied from 2 to 40 and the average MSE  error of 
the 39 constructed artificial neural networks was 0.023 in the case of F’n and 0.0037 
in the case of F’t. When considering the structure 6-5-1 for which the lowest training 
error MSE (MSE=1.04e-03) and deviations from testing data were computed, the 
calculated deviations from the training data were 0.84% for F’n and 0.47% for F’t. 
However, the percentages of deviations from the testing data for F’n were 26.82% for 
42CrMo4, 22.71% for 90MnCrV8 and 23.17% for X160CrMoV12. Concerning the 
specific tangential force F’t, the calculated deviations from the testing data were 
19.42% for 42CrMo4, 20.87 for 90MnCrV8 and 23.34% for X160CrMoV12. These 
high deviations express poor generalization capability of the ANN structures with 6 
inputs. Therefore, more training data are needed to improve the prediction efficiency 
of this neural network architecture when extrapolation beyond the training data is 
considered. 

4.2.2 x-n-1 structure  

For improving the prediction capability of the ANNs, the number of inputs was 
varied. Therefore, instead of selecting the same inputs as the DoE, the factors and the 
second order interactions between factors were selected as inputs. Figure 2, show the 
relation between the averages MSE  error for the 39 artificial neural networks 
structures constructed using the significant factors and interactions at different 
confidence levels for F’n et F’t. A clear improvement of the learning capability of the 
constructed artificial neural networks can be seen from this figure as an important 
reduction of the average MSE  error could be realized. Moreover, these figures put in 
evidence the existence of a threshold value of α% for which no significant learning 
improvement can be realized by increasing the number of inputs. Here a threshold 
value about 50% was observed for F’n and F’t.  
On the other hand, as in this work we are particularly interested on the grinding force 
minimization, extrapolation beyond the training data have to be considered. Hence, 
calculation of a global error (Eg) expressing the deviation of the predicted values 
using the developed neural networks from the testing data sets is required to valid the 
results of this investigation.  
This error is composed of two terms: the bias which measures the extent to which the 
average predicted output, over all testing data sets, of the network function differs 
from the experimental values and the variance which measures the extent to which 
the network function is sensitive to particular choice of data set [18]. As in this 
investigation 27 testing experiments were conducted for each material (n=81) and 39 
different networks (m=39) were trained for each input set, the expressions of the bias 
and the variance can be written in the following forms [20]:  
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Here F represents F’n or F’t depending on the considered output and X and Xk are the 
input sets.  
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Fig. 2. Relation between the average MSE  errors of the 39 ANN structures and α%: (a) F’n 
and (b) F’t 

Figure 3 gives the relation between the average error Eg for F’n and F’t respectively at 
different confidence levels. It can be seen from these figures that for the testing data 
sets selected in this investigation, the minimum average error Eg occurs at α  around 
50% for the specific normal component F’n and 40% for F’t. However, the input set 
which have to be selected for the developed ANNs is the set that offers, 
simultaneously, high leaning performance of the training data characterised by low 
MSE and good generalisation characterized by low value of Eg. Therefore, inputs sets 
corresponding to α=50% have to be retained for the ANNs related to F’n and F’t.  
Therefore, the corresponding inputs are used to train the artificial neural networks and 
the best structure offering the lowest deviation from the training and testing data were 
16-18-1 for F’n and 19-11-1 for F’t. The full performances of these structures are 
given in table 4. This table shows particularly positive values for the predicted 
minimal cutting force parameters F’n and F’t. Here 0% and 0.028% deviations from 
the training data were calculated respectively for F’n and F’t. The percentages of 
deviations from the testing data for F’n were 7.6% for 42CrMo4, 8.55% for 
90MnCrV8 and 7.46% for X160CrMoV12. These deviations are clearly lower than 
those calculated using the 6-5-1 structure. Concerning the specific tangential force F’t, 
the calculated deviations from the testing data were 7.32% for 42CrMo4, 8.58% for 
90MnCrV8 and 7.11% for X160CrMoV12.According to these findings, it can be 
concluded that a factor or an interaction between factors, which is statically not 
significant in the case of the DoE, can be a significant input for the ANN. 
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Fig. 3. (a) Relation between the confidence level α% and the average error Eg : (a) F’n and (b) 
F’t  

Table 4. Summary of the selected ANN performances 

5   Conclusions 

In this paper an approach combining the application of the design of experiment 
(DoE) and the neural network methods was developed to establish accurate models 
for specific grinding forces prediction. This approach uses data of the DoE to train 
artificial neural network for which the input set is composed of significant factors and 
interaction between the factors of the DoE. The significance was evaluated based on 

Results Model for F’n (16-18-1) Model for F’t (19-11-1) 
Number of inputs 16 19 

Hidden nodes 18 11 

Mean Square Error  1.956e-05 5.58e-12 

Sum Square Error  8.804e-04 2.51e-10 

Running time* (s) 18 34 

Training cycles 200 200 

Percentage deviation 
of the training data  
Percentage deviation 
of the testing data 
for: 
• 42CrMo4 
• 90MnCrV8 
• X160CrMoV12 

 
0% 

 
7.6% 

8.55% 
7.46% 

 
0.028% 

 
7.32% 
8.58% 
7.11% 

Vw a Np ad # F'n mini Vw a Np ad # F't mini 

1 50 2 30 46 0,0757 1 50 2 30 46 0,0551 
1 50 2 30 46 0,1371 1 50 2 20 46 0,0753 

Grinding conditions 
for the minimal value  
• 42CrMo4 
• 90MnCrV8 
• X160CrMoV12 1 50 6 10 46 0,3956 1 50 2 10 46 0,0889 
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the Fisher test at different values of the confidence levels α%. When this level 
increases, the number of significant factors and interactions increased, and thus the 
number of inputs of the ANN increases. Average learning MSE which express the 
average error between the training data and the corresponding predicted values and 
the generalization error Eg which express the deviation from the testing data have 
shown the existence of a critical set of inputs offering the highest prediction capability 
of the developed ANNs. By using this approach, substantial improvements of the 
prediction capability of the ANNs could be realized comparatively with the prediction 
ability of the quadratic models developed using the DoE. On the other hand the 
developed ANNs have shown better capability comparatively with the commonly 
used structures, which use the DoE factors as inputs. 
It was also remarked that the developed ANNs present higher sensibility to the input 
variations than the DOE as they can distinguish between particular phenomena 
occurring at low and high work speeds. At last, problems related to the minimal 
negative predicted value, calculated by using models established with DOE method 
could be solved as ANNs respects the output sign. 
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