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Abstract. Classifier combination constitutes an interesting approach when solv-
ing multiclass classification problems. We review standard methods used to de-
code the decomposition generated by a one-against-one approach. New decoding
methods are proposed and are compared to standard methods. A stacking decod-
ing is also proposed and consists in replacing the whole decoding by a trainable
classifier to arbiter among the conflicting predictions of the binary classifiers.
Substantial gain is obtained on all datasets used in the experiments.

1 Introduction

Since the advent of data mining in information management systems, the applications
of multiclass pattern recognition has covered a very wide range including image or text
categorization, object classification, speech recognition. Multiclass pattern recognition
aims at building a functiorf’ that maps the input feature space to an output space
of more than two classes. Each examfiey) consists of an instance € X and a
labely € {1,..., K} whereX is the feature vector input space ahtthe number

of classes to be discriminated. A general classifier can be considered as a mépping
from instances to labelg’ : X — {1,..., K'}. There are two ways for a classifier to
solve multiclass problems: (1) consider all the data in one optimization problem, (2)
construct several binary classifiers and combine them. The first approach formulates
the multiclass problem into one single optimization problem (all-at-once). However
the number of samples is the main factor that contributes to the time complexity for
training the classifier, therefore algorithms of the first category are significantly slower
that the ones that include several binary classifiers where each classifier classifies only
a small portion of the data [1-4]. Moreover, muticlass classification is intrinsically
harder than binary classification because the classification algorithm has to learn to
construct a high number of separation boundaries whereas binary classifiers have to
determine only one appropriate decision function. Currently, a common approach to
construct a multiclass classifier relies in decomposing the multiclass problem into a set
of binary ones and then combining their outputs to make a final multi-class prediction
[2, 5]. The basic idea behind combining binary classifiers is to decompose the multiclass
problem into a set of easier and more accessible binary problems. The main advantage
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in this divide-and-conquer strategy is that any binary sifation algorithm can be
used. A binary classifier having to face with the classif@anf data using examples
as positive ones and the others as negative ones, there @schemes to construct
several binary classifiers for multiclask {class) problems [6]. The most traditional
scheme (the standard method) [7] builddifferent classifiers. A separate concept is
modeled by each classifier by defining a separate learnirtggmofor each class. The
original problem is split into a series of binary problemsddor each class) where
the i*" classifier is trained while labeling all the samples in ifeclass as positive
and the rest as negative. This technique is called onestgalinsince each classifier
separates one class from all the others. The drawbacksafgroach is that each
binary classifier has to see all the training database and rextuced version of it and
the training data can be unbalanced which can distort eacmbclassifier. The second
scheme constuct® x (K — 1)/2 classifiers using all the pairwise combinations of
the K classes [4,8,9]. This technique is called one-against-the latter approach
is very interesting since the binary decision not only confawer training examples
but the decision function of each binary problem can be cwmably simpler than in
the case of one-against-all binarization since the clasaes less overlap [1,2]. The
major advantage of this approach is that it provides reducydahich can lead to better
generalization abilities.

Beside choosing the way to decompose the problem, one aéstsrie devise a
strategy for combining the binary classifiers and provideal forediction, namely how
to combine the outputs provided by all the binary classifi€hss is of importance to
define a multiclass classifier from several binary ones. Whatine used decomposi-
tion (one-against-all and one-against-one) if a simpléngostrategy is used, there can
be inconsistent regions [9] (less for one-against-onetilutesmain). For one-against-
all the classifiers might all consider the input as not beihipeir class or several ones
can conclude that it is of their class. For one-against-alh#e classifiers can disagree.
The problem of combining binary classifiers has therefoentextensively studied and
a lot of combining scheme have been proposed but many réseameported opposing
views to which scheme is better in terms of accuracy and s{ée#, 6-16]. Speed
issues depend primarily on the different implementatidnthe basic binary classifier
and accuracy issues depend on the nature of the basic lefimeata set and how the
basic classifiers are well tuned to achieve maximum perfooma[7]. The litterature
being inconclusive, the best method for combining binaagsifiers is an important re-
search issue which remains open. In this paper we proposeripare several classical
combining schemes using multi layer perceptrons as theleas®er, moreover we also
propose new combining schemes which outperform the chssites. We consider
only the one-against-one formulation to proceed to the tcoaton of binary neural
networks. In section 2 we present the binary neural netwarksised and in section
3 we discuss how to combine binary neural networks. In sectiave demonstrate the
effectiveness of the proposed combining methods by compyfreriments.
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2 Binary Neural Networks

Since we consider the one-against-one decomposition sHena classification prob-
lem with K classes, a set of networks is built, each one being in chafrgema-
rating elements from two distinct classes. The set of differclasses is denoted by
C ={C,Cy,...,Cx}and|C]| = K. ForK classes, that leads to ha\l§ x (K —1))/2
neural networks being used for classification (denoted aB Kok Multi Layer Percep-
trons). The set of Binary Neural Networks (BNN) is givenby (rc, ¢, i Rep . 0p )
The difficulty in separatinds classes all-at-once is simplified by the specialization of
each network, because a network is interested only in tharagpn of two classes.
When one of these neural networks learns how to differentiadeclasses, only the ob-
jects belonging to these two classes are presented to tal metwork. This implies,
on the one hand to simplify the training (since the set of tatse learned is restricted)
and on the other hand, to make easier the discriminationdeetithese two classes since
the network learnt how to recognize only those [17]. The gldkaining dataset con-
taining patterns of all the different classes is denotedy.,;,. The latter is divided
in several subsets for each neural netwdpk...;,, (C;, C;) is the dataset which corre-
sponds to the neural network which differenciates the elsSs andC; and contains
patterns of only those two classes. The initial trainingad@rqi»(C;, Cj)) associ-
ated to each neural network is split into two subsets: a iegrset O rcqrn(Ci, C;))
and a validation setlfy ,;;4(C;, C;)). The learning of a neural network is performed
0N Dr.earnCi, C;) and theDy 4;,4(C;, C;) validation set is used to evaluate the classi-
fication rate of the network during the training. Therefdre validation set is not used
to learn the weights of neural networks, only to tune the hyaeameters (number of
neurons, number of iterations, ...). The structure of theadenetworks used is the fol-
lowing one: a layer of inputs containing as many neurons asitimber of attributes
associated with the object to be classified, a hidden layetagting a variable number
of neurons and one output neuron. The value of the outputneisrin the interval

] —1, 1]. According to the sign of the result associated with thiglemeuron, an object
is classified in one of the two classes that the network stgmrahe neural networks
used by our architecture are very simple (only one hiddearJagnly one neuron of
output). This has several advantages [3, 10, 18]. The siihphf the task associated
to each neural network simplifies the convergence of thaitrgias well as the search
for a simple structure. The generalization of their streettan be made in a dynamic
way very easily. Therefore, an automatic method is used tbtfia number of hidden
neurons that gives the best classification rate [3, 19, 268.dutput value provided by
a BNN when a sample datahas to be classified is denoted &Yz, R¢; ¢c;). From
this output,z can be classified aS; or C'; according to the sign of the output:is
considered as of clags; if O(x, R¢,,c,) > 0 andC; otherwise. The output can there-
fore be directly used as an estimate for the class membsrdHiwever it might be
more suitable to have pairwise class probability estimatdsh can be obtained by [4]
rij(x) = (O(z,Re,,c;) +1)/2 andrj(z) = 1 — ry5(x). ri;(x) gives the pairwise
posterior probability of the input vectarto belong to the classandrj;(x) to the class

J (according to the single BNR ¢, ¢, ).
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3 Combining binary classifiers

Constructing multiclass classifiers from a pairwise decositpn consists in combin-
ing the B = (K x (K — 1)/2) pairwise classifiers outputs. Each binary classifier is
a mappingf, : X — Rwith b € {1,...,B}. A vector f(z) = (f1(x),..., fB(z))

is constructed from the outputs of the binary classifiers.ofnination ruleg can
then be applied to combine all the outpyis) = (f1(z), ..., fe(x)) using a function

¢ : RP — R¥ which couples the estimates of each binary classifier inraaebtain
class membership estimates (which can be probabilitiesthto multi-class problem.
Once the class membershipsave been estimated f(z)) = g(f1(z), ..., fB(x)) =
(u(C1lx), ..., u(Ck|x)), a final selection scheme is used to choose the winner class.
This is done as a mapping : RX — {1,..., K}. The whole K-ary classifier com-
bining all the binary classifiers scores (obtained by paenxecomposition) is denoted
by F(z) = h(g(f(z))) whereh is the selection scheme function applied to select the
winner class ang the combination rulek o g defines the complete decoding scheme
needed to perform multiclass classification from binarywisie classifiers.

3.1 Standard Decoding

To obtain class membership estimates from the BNN outputsyrbination ruley is
needed to perform the decoding. This rule associates arveE®NN outputs f ()
with a vector of class membership estimatgég(z)) = (u(Cilx), ..., u(Cklx)). In
this section we review the classical combination rules thatbe used to that aim and
propose new ones.

Majority vote The most commonly used combination rule is probably the Kigjo
Vote (MV) one. With this combination rule [21], each classeiwes votes from in-
dividual classifiers. The membership estimates correspmitidle number of votes re-
ceived by each clasg.(C;|z) = X;V (r;;(x) > 0.5) with V(z) = 1if z is true and)
otherwise. The chosen class is the one which receives thestanumber of votes) and
h = argmaz.

Hastie A way to obtain class membership estimates from the pairpriskability esti-
matesr;; (x) has been proposed by Hastie [8]. To combine all the estino&itte BNNs
we would like to obtain a set of class membership probagdljij (z) = P(C;|x). The

r;; are related to the; according tor;;(z) = %. In order to find the best
K VAN
approximationr}; = #% the algorithm starts withu;(z) = %’_f)@ and

computes the corresponding; (). The u;(x) are obtained by minimizing the aver-
age Kullback-Leibler distance betweep(x) andr;; (). At convergence we have the
class membership estimates wijthC;|x) = u;(z). The winner class is considered as
the most likely one and = argmax.

Price Another approach for estimating the class memberships &éas proposed by
Price [4]. It is based on the fact that neural networks trite minimize a MSE
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cost function estimate posterior probabilities. A BNN witlymoidal transfer func-
tion can compute the posterior probabilities for the twossts (previously denoted
by r;;(x) andr;;(x)). One can then obtain the final expression of the class member

ship by: u(Cj|z) = +————1————. As for the Hastie combination rule, we have
o — )

h = argmaz.

ECOC Another interesting combination rule is based on Error €ding Output
Codes (ECOC) [11,22]. It has been introduced to combine titputs of binary
Support Vector Machines. For a problem wiith classes, it creates a matri¥ <
{—1,0,1}%B A column in the matrix}/ corresponds to a binary classifigs ; and

a row corresponds to a class. For instance the first colummesmonds to the classi-
fier R and it learns to recognize the clasdeand?2 (respectively thet-1 and —1
coefficients of the column, the other coefficients are sét since the classifier does
not differentiate the other classes). Combining all thehjrclassifiers to estimate the
class memberships consists in comparing the matrix rows thé classifiers outputs
expressed by u(Cklz) = Zszl L(M(k,b).fy(x)). This provides the distortion be-
tween the vector of the BNN outpufgz) and the rowM (k, -). For this combination
rule the outputs of the binary classifigp§z, R ;) are directly used and not the; ().
We used Loss Based decoding and havelde) = exp(—z). For ECOC decoding
schemes, = argmin since this leads to find the row being the most similar to the
classifiers outputs [23, 24].

Min-Max For all the previous decoding schemes, the probabilityregés of the clas-
sifiers obtained by the combination ruj@re used to assign to an input pattern the class
with the maximal output. Combining all the pairwise clagsgican lead to bad results
since if the inputz is of classC;, there are only K — 1) relevant classifiers among the
(K x (K —1))/2 which have seen the clag$ and the remaining(K —1) x (K —2))/2
irrelevant classifiers have never seen inputs from dgs$Vhile classifying an input
one whishes that relevant classifiers will provide coheirgformations to cope with all
the irrelevant ones. To try to alleviate this problem, wepmse to get the minimum

K-1
value ofr;;(z) for each clas€’;: p(C;|z) = minr;;(x). Finally we select the class
J

which maximizes this minimum valuéi = argmax. The principle of this method
consist in choosing the candidate class whose probalslityss bad than that for all
other candidate classes. The intuitive idea behind is &g a high pairwise proba-
bility for a particular pair of classes does not imply a sgg@ecision towards this class
because of irrelevant classifiers. However it can be rejattae probability is low.

3.2 Elimination Decoding

Another decoding scheme is the elimination decoding onés dacoder was origi-
nally described by Kressel [5] and reintroduced by Platt ] jiBere it was called
Directed Acyclic Graph (DAG). One strong argument for uddA&G is that it resolves
the problem of unclassifiable regions for pairwise classion. The elimination decod-
ing is nothing more than a decision-tree based pairwissiication. Two sets are used
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where|.| stands forC'ard(.). The set of binary classifietdy = {R1,2,..., Rk—-1,K}
(with | Ag| = B) contains all the binary classifiers and the Bgt= {C1, ..., Ck } (with
|Ey| = K) contains all the candidate winner classes. Eliminatiocodeng operates
iteratively. At each iteration = {1, ..., K — 1}, the size ofE; is decreased by one (one
classC}, is eliminated) and all the classifiers discriminatifig in .4, are eliminated
[24]: Appn = A, —{Ri; : i = Cp vV j = Cy}. The setAx_, contains only one
binary classifier which determines the winner class. Séyeablems occur however
when using DAGs. First of all the choice of the winner clasgeadals on the sequence
of binary classifiers in nodes which affects the reliabitifythe algorithm. Moreover
the correct class to be predicted is more or less advantamedding to its distance to
the root node (higher risk of being rejected in the nodes tiesaroot). Secondly since
there are a lot of classifiers which are irrelevant for a giglssification, using these
classifiers can cause severe defects. To overcome thisepmplkveral authors have
proposed to use an adaptative DAG by optimizing its strestbowever the general-
ization ability still depends on the structure of the treé, 118, 25-27]. We propose a
new elimination decoding which takes into account all thgpots of the binary clas-
sifiers. When using a classical decoding scheme without mdititin, one selects the
class with the largest probability. (= argmaz). In the case of elimination, we want
to eliminate the least credible class and this comes backinonate the class hav-
ing the minimum of probability. The class to be eliminatediésluced from the class
membership estimates”y, = h(g(f(x))). g can be anyone of the previous combina-
tion rules (MV, Price, Hastie, Max) and since the method iglates the least probable
class at each iteration, we hake= argmin. At the iterationt, the number of candi-
date classes iZ;| = (K — t) and the number of binary classifiers to be combined is
|A:| = (K —t)(K —t—1)/2. This new elimination decoding is different of the Direct
Acyclic Graph [12] since at each iteration, all the outputsamdidate binary classifiers
are combined to determine the class to be eliminated. Wharigas DAG, only one
classifier output is used for eliminating a class at eachtitem.

3.3 Staking Decoding

The combination of the class membership estimates can ffermed via a separate
trainable classifier [23, 28]. This classifier is seen as aaMHassifier fed by the out-
put vectorf(z) of all the binary classifiers. This method is also referredgetacking
[29]. This approach seems more suitable than all the previmes for the following
reason. As said before, combining classifiers which havemseen instances from
one same class during the training phase results in congpififferent information
sources. The combination of these ignorant classifiersn@yiclassifier has seen only
two classes among() with respect to the others can therefore result in almast ra
dom classification. Indeed decoding methods such as vaig@n the assumption that
the relevant classifiers mainly predict the correct clags@ovide more votes to the
true class than the irrelevant classifiers to any other cl@aever if some of the rele-
vant classifiers predict wrong classes, the final clasdificatan be also wrong. Since
we cannot predict the behavior of irrelevant classifiersyerspphisticated decoding
schemes are needed. To that aim, a trainable classifierdsxifeas training input the
output vectorf(x) of all the binary classifiers. Each feature vecter(i = 1,..,N)
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of the training setDr,..;» IS used to feed all the binary classifiers. A new example
(f(z:),y:)) is then obtained. Such a process can be repeated so that aaiewgt
setDl,..in = {(f(x1),31), -, (f(zn),yn)} IS generated. The new training data set is
used to train a Meta Classifier which predicts the final clgsBfx) = h(g(f(x))). The
functionh o g designs the Meta Classifier to be used. Thg, .., database generated
by all the binary classifiers provides valuable informatiirout the possible mislead-
ing predictions caused by the irrelevant classifiers. Ther@l gain of stacking for
decoding is evident and it can lead to correct predictionsrevlother methods would
fail [28, 30].

4 Experimental results

This section presents an experimental comparison of the teagombine binary neural
networks according to the different combining rules. Th&abases for which results
will be presented here are data bases coming from the Matkiming Data Repos-
itory of the University of California at Irvine (UCI) [31].8ble 1 describes the dif-
ferent databases showing the variety of training data ges4iDr4i»|), the number

of classes k), the number of neural network®} and the dimensionality of the data
input (z|). The tests are performed on a data 92+{;) independent of the training
set. Table 2 presents all the classification rates obtaine®g.; for the different

Table 1.Data bases used for the tests.

Database K |D7rain| |Drest| || B

Iris 3 120 30 4 3
Wine 3 144 3413 3
Vehicle 4 679 167 18 6
PageBlocks 5 4382 1091 10 10
Satimage 6 4435 2000 36 15
Shuttle 7 43500 14500 9 21
PenDigits 10 7494 3498 16 45
OptDigits 10 3065 760 64 45
Serous 18 3870 1967 46 153
Letter 26 16000 4000 16 325

combining rules (best rates bold faced for each decodirggfamhily). For the standard
decoding, the results are homogeneous, except for Hastiergee methods which per-
form significantly worse on several datasets. As expectam fthe litterature, ECOC
decoding performs very well and provides results alwaytebétan the Majority Vote.
One thing to point out with ECOC is that it can be a robust carinlgf method as long
as the errors of the binary classifiers are not correlated 1H]3 For this purpose all
the dichotomies must be as dictinct as possible, usingtwe#d binary classifiers does
the matter and explains why ECOC works well in our study. Wh@OE is not best
combining method, best results are obtained with the prgbbdin-Max method which
confirms the intuitive idea that in some cases the irrelestassifiers have strong influ-
ence on the final decision. Another advantage of the Min-Mathad is its simplicity.
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Table 2. Classification rates of the different decoding methods.

| Iris] Wine]VehiclegPageBlockESatimagéShuttidPendigitsOptdigitg Letter
all-at-once
MLP [70.04 97.06 66.67 84.80 80.04 79.15 83.84 90.3962.45
one-against-one standard decoding
Majority vote|70.0Q 97.06§ 69.46 88.27 77.90 95.7Q 89.17 91.7078.37

Hastie 63.33 97.06 68.26 42.35 80.1Q 95.01 82.19 81.6965.50
Price 63.33 97.0§ 70.06 46.29 79.90 95.18 88.42 87.6371.57
Ecoc 70.00 97.0§ 69.44 88.43 80.1Q 95.82 89.05 90.9178.52

Min-Max 70.00 97.06 69.46 88.36 78.35 95,57 89.22 91.8377.72
one-against-one elimination decoding
Majority vote|70.0Q 97.06 68.26 88.36 77.85 95.66 89.19 91.0478.44

Hastie 70.00 97.06 68.84 88.3§ 78.2Q0 95.63 89.14 91.1777.54
Price 70.0Q 97.06 68.86 88.45 78.1Q 95.62 89.1] 91.17177.64
Ecoc 70.0Q 97.06 68.86 88.45 78.20 95.7q 89.17 91.1778.47

Max-Min 70.00 97.06 69.46 88.3§ 78.35 95.59 89.28 91.7Q77.67
Stacking decoding
C4.5 [90.0Q100.0Q 75.4q 92.3q 85.1q 99.8q 93.1q 93.0481.00

One can therefore say that even if the results are very miweristandard decoding
schemes can be retained as the best ones : ECOC and the prdfiosilax method.

If we have a look now to the results obtained with the propasedination decod-
ing method, the first interesting thing is that the resultklomuch more homogeneous
between the different combining rules. As it was noted bytRlih DAGSs, using an
iterative elimination method reduces the error bound [Iijesit avoids the problem
of irrelevant regions of classification. However the eliation method we propose per-
forms in general better than classical DAGs [14], provingtthsing an elimination
method based on combining rules is a more robust method theuwhased on a deci-
sion tree of binary classifiers, whitout the problem of ofitimg the structure of the
tree. This is all the more interesting since our eliminatigeoding reduces the error
bound whatever the combining rule. As for the standard degasiethod the two best
combining rules are ECOC and Max-Min (since we perform amigiation we do not
have Min-Max : at each iteration the class minimizing thehleigt pairwise probability
is eliminated). Finally we analyze the results of the pra&gbstacking decoding. First
of all one has to note that using a meta-classifier for stacknplies to cope with quite
large problems. For example for the 26-class Letter datésste are26 x 25 = 650
predictions for each of 16000 examples. We have used dadigies (C4.5 [32]) meta-
classifiers to perform stacking. The stacking meta-class#gifed with the input vector
f(z) of all the predictions provided by the binary classifiers. @irdatasets a 10-fold
cross validation is performed. It can be seen that stackéagding always give the best
results on all the datasets. For several of them very sigmifionprovements over all
the other decoding methods are obtained. As compared todheimwSavicky [28], the
use of posterior probabilities instead of hard class dewessof the binary classifiers to
feed the stacking meta classifier enables substantial g#eirecognition rate. Simple
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meta-classifier such as decision tree which are linearifikxsare sufficient to obtain
better results than with a classical all-at-once MLP apghaes seen in Table 2. Using
binary classifiers is therefore very interesting since it ba viewed as an ensemble
method which performs a simplification of the problem by deposing it, the latter
results been easier to classify by stacking than the irgtiak all-at-once.

5 Conclusion

In this paper we reviewed and evaluated classical methadadtiiclass classification
based on binary neural networks according to the one-agaiesformalism. We have
also introduced a new standard decoding method (Min-Maxg) aamew elimination
decoding which are both as suitable as the classical metitedented in the litterature
as proved by the experiments. We also evaluated a technijng stacking decoding
where the basic idea is to replace the combining and setentles by a single meta-
classifier that combines all the predictions of the binagssifiers. The training set
of the meta-classifier consists of all the predictions of iiveary classifiers for each
training sample. Using stacking decoding leads to sulisteguin in the recognition
rate. Future work will concern the use of the set of one-againe classifiers as a new
input sample generator [30] to increase the size of theibgidataset of the meta
classifier when the latter is unbalanced, preliminary tesuhving also shown a new
gain in the recognition rate.
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