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Abstract. A new method for the cooperative control of a system of multiple
mobile robots with time delay in the network communication is presented. The
network of mobile robots is modeled as a swarm of particles performing a di-
rected random walk where the motion of the swarm is controlled by a central unit
such as a robot leader. The collective motion of the robots is modeled by a sys-
tem of stochastic delay-difference equations where the best solution found by the
swarm is used as the network cooperative control signal. The method is applied
to the solution of two problems. In the first problem, a group of autonomous un-
derwater vehicles (AUVs) searches for the maximum depth in a two-dimensional
domain. In the second problem, the group of AUVs searches for the minimum
temperature in a three-dimensional domain. It is found that the search proceeds
along Levy flights followed by sticking short random walks in the vicinity of the
extremum points and that the cooperative control method is robust to time delays
in network communication.

1 Introduction

In the past, robots have been used in many practical applications such as industrial ro-
bots in manufacturing, spacecraft and rover robots for space exploration and unmanned
air vehicles (UAVs) for reconnaissance, surveillance and tactical military missions.
Other possible applications include underwater missions by autonomous underwater
vehicles (AUVs) such as formation control and rendezvous, search and rescue missions
and exploration and mapping of unknown environments. At the beginning, single ro-
bots were employed in the performance of any given task. It has been recognized for
some time, however, that the use of collaborating multiple mobile robots can have sig-
nificant advantages in achieving complex tasks and missions which otherwise might
not be achievable with single robots. Consequently, in recent years, researchers started
treating remarkable problems related to the cooperative control of networked collabo-
rating mobile robots with distributed resources such as sensors, computing power and
communications [1], [2] and [3].

The present paper represents a step in that direction. Consider a specific implemen-
tation of a group of mobile robots in the form of a group of auto-nomous underwater
vehicles, assigned with the collective task of exploring a limited domain of a body
of water such as a lake, sea or a limited part of the ocean. Let's consider a specific
task where the robots have to collectively find the extremum of an otherwise unknown
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function using a given experimental method where they caasone a property of the
environment such as water depth or temperature at any eghpoint, see for exam-
ple [4] and [5]. The simplest such test problem is for the grofirobots to collectively

search the maximum depth in a limited area; for example guyodw0 robots searching
an area of 1 km by 1 km and measuring the depths using a depé#h fiedice. Another

problem might be to find the minimum temperature or maximunceatration of some
chemical compound or density of plankton in a three dimeraidomain, say a body
of water of 1 km by 1 km by 100 m deep.

In developing the present method of cooperative contra§ @ssumed that each
autonomous vehicle has a low level control system that catra@lathe motion of the
robot and bring it from one point in the domain to the next & tlght speed and
orientation. Itis also assumed that each autonomous esbkieljuipped with a collision
and obstacle avoidance control system for preventingsiofis with other robots and
obstacles. The robots network architecture is in the forra lefader robot acting as a
server and communicating with the other robots as cliertis. grinciple of control of
the network of robots is the robot swarm cooperative contrethod described in the
next section. Each robot has a microprocessor computingeen board, which is
capable of running the robot swarm algorithm.

We propose to use the paradigm of a modified particle swarimigattion algo-
rithm as a top level discrete event controller for the coatres control of the group of
mobile robots. Each robot sends the best solution foundyagizen time to the leader
or other central processing station through its commuigicathannel. The leader in
turn computes the global best solution and transmits thdtras a control signal to
the network. The Particle Swarm Optimization (PSO) is alsstic population based
method that belongs to the class of biologically inspiregbeathms. It is based on the
paradigm of a swarm of insects performing a collaboratigk tuch as ants or bees for-
aging for food using chemical or some other type of commuitnasee for example
[6] and [7]. The method was originally developed by [8] antktadescribed in great
detail as a Swarm Intelligence method in [9]. An overviewtdf method as extensively
applied to various function optimization problems of irasing difficulty, has recently
been given by [10]. To the best of our knowledge, this is th& fime that the PSO
method has been modified and adapted for use as a top levedtdisvent cooperative
control method for a swarm of autonomous robots. It is aledfitlst time that the ef-
fect of information delay on the performance of the swarmMgen studied in a PSO
context.

In the next section we develop the robot swarm optimizatigorithm with com-
munication delay and we explain how it can be applied to sthledwo problems men-
tioned previously. In the first problem, a group of robotdexdively searches for the
maximum depth in a limited 2-D domain. In the second probldma,group of robots
searches for the minimum temperature in a 3-D domain.

2 Cooperative Control Of The Robot Swarm

The Robot Swarm cooperative control method is derived ftoerRarticle Swarm Opti-
mization algorithm. Two major modifications are made in otdemplement the search



method by actual mobile robots such as autonomous undervetieles or AUVsS. The
first modification imposes a limitation on the speed of theislehor equivalently, a
limit on the distanceA X, it can move in a time step\t. The second modification
takes into account the effect of imperfect communicatiomveen the group of robots.
At any given time, communication with one or more robots carcompletely cut off
or otherwise attenuated or corrupted by noise due to thé haaderwater environment.
Therefore, rather than assuming that the global minimurvdgable to the swarm at all
times as in the case of perfect communication, we introduceedelay in communi-
cating the global minimum to all members of the swarm. To thet bf our knowledge,
the effect of a time delay on the performance of the swarm babeen treated so far
in the literature. The particle swarm optimization aldomit with no speed constraints
and with perfect communication consists of minimizing adtion of several variables

minimize f(X), where

XecR'andf: 2—R

subject to the side constraints

Xnmln S X S Xmaa"

using a directed random walk process described by the foitpaystem of stochas-
tic difference equations:

Xik+1)=X'(k)+Vik+1)At (2.1)
Vilk +1) = wVi(k) + ciri (P'(k) — X'(k))/At+

+eory (PI(k) — X (k))/At (2.2)

Herew, c; andc, are real constants: andri are random variables uniformly dis-
tributed between 0 and 1. The superscript indelenotes robot numbere [1, Ng]
where Ny is the number of robots in the swarm ahds a discrete event counter. The
velocity vector/(k) has the same dimensianas the space position vectdr (k) and
At is a typical time segment used to increment the motion ofweer® of robots in the
domain{2. Here Pi(k) is the best solution found by robogt timet = k and P9 (k) is
the global minimum at time = k.

This system of equations describes a directed random wadafth particle in the
swarm, similar to a Brownian motion of a tracer particle intadl Whereas Brownian
motion is an undirected random motion, the motion of a plartic the swarm will
have a velocity that will start as a random motion, but wileetually decay as the
particle approaches a poifti(k) in the domain where the function reaches a local
minimum and as the swarm as a whole approaches a poi(t) of the domain where
the function reaches a global minimum, that is,

Pi(k) = argminf (X" (k))



P9(k) = argminf (P'(k)), i € [1, Ng] (2.3)

The following initial conditions are needed in order to sthe solution of the sys-
tem of difference equations

XZ(O) = Xmin + T'iAXmam (24)
1% (0) = Vinin + riAXmaw/At (2.5)
AXmam = (Xmaz - szn)/NX (26)

Ny is a typical number of grid segments along each coordinatgpooent of the
position vectorX. For example, if the domain consists of a two dimensionabsgu
domain of 1000 m by 1000 m, then witNxy = 40, we can use a typical distance
segment ofAX,,,... = 1000 m/Ny = 25 m. If we take a typical speed of an autonomous
underwater robot ak. = 1 m/s, then the typical time will bé. = AX,,,.../V. = 25
s.We can now measut¥ in units of AX,,.., V in units of V, and At in units of
t.. The equations will then have exactly the same form in nonedisional variables.
We now modify the above algorithm such that it can be phylidaiplemented by a
group of cooperative underwater mobile robots. Beforethicing the robot speed and
communication constraints, we eliminate the time from theva equations by writing

AXi(k+1) = Vi(k +1)At (2.7)

Then upon placing a limit on the magnitude of the velocity poment of the ro-
bot in any given direction for a given time step , we can impasmnstraint on the
magnitude of the distance components in any given direetson

|AX (k4 1)| < [Vinas| At = AX e (2.8)

We introduce a time delay in the availability of the global minimun®9(k — )
at any given timek. The time delay will be on the order of 10 time steps or more.
For example, this can be used to simulate imperfect comratioitbetween the robots
in the group and a leader robot who receive§k) from all the robots in the group,
computes the cooperative control sigi#af (k) and sends the information back to the
network. This can also simulate a communication failurevieen the leader and a small
subgroup of robots for several time steps. We also make tbeitsedecayw (k) factor
time dependent to improve the search process when the gtobihum is approached
and smaller motion steps are needed for better resolutiodekthese assumptions, the
equations of motion of the swarm become:

Xi(k+1) = X' (k) + sign(AX"(k + 1))

(min[] AX* (k + 1)|, AX ppaz]) (2.9)



AXH(E+1) = wk) X (k) + crri (PY(E) — X (k))+

+eory (PI(k — 1) — X'(K)) (2.10)
subject to the side constraint

X’min < Xl(k + 1) < Xmaa: (211)

The signum function ternsign(AX*(k + 1)) is added in order to keep the original
direction of the motion while reducing the magnitude of tkeps Suppose we would
like to iterate the difference equations fot time steps, starting at a time = 7 +
1 . In this case the initial function is needed for the time imék & € [0, 7]. One
possible method to simulate the delayed process is to $i@ritdration without any
communication between the robots. This is a worst case goeaad if it works, this
will show that the swarm algorithm with delay is robust withspect to time delay in
network communication. In this case the process can bedthyt replacing the global
minimum P9 (k) by the local minimum for each robdt’(k) in Eq.(2.10), i.e., there is
no cooperative control and no communication over the iritize periodk € [0, 7].

XUk +1) = XU (k) + sign(AX*(k + 1))
(min[] AX'(k +1)], AXnaa)) (2.12)
AX (k+1) = wk) X (k) + ciri (PY(k) — X' (k))+
+eors (Pi(k) — X (k)) (2.13)
for k € [0, 7], with the initial condition:

X'(0) = Xpmin + 7" AXomag (2.14)

This will generateP ¢ (k) for the initial time segment € [0, 7]. As the communica-
tion starts at timé: = 7 4 1, we can obtairP?(k — 7) from the best solution obtained
at timek = 7:

PI(k — 1) = argminf(P(1)) (2.15)
for i € [1, Ng]. We can then iterate the equations of motion with delay fertime
intervalk € [T + 1, N].

X' (k+1) = X'(k) + sign(AX*(k + 1))
(min]|AX (k + 1)|, AX yac]) (2.16)

AXH(E+1) =wk) X (k) + crri (PY(E) — X(k))+



+earhy(PI(k — 1) — XU(K)) (2.17)

for the time intervak € [r + 1, N].

3 Collaborative Search In A 2-D Domain

In this section the cooperative control method developdtémprevious section is ap-
plied to the problem of experimentally finding the minimunmacgcalar function of two
real variables. In the context of a group of underwater uehkj¢he problem consists of
finding the minimum of a scalar quantity such as depth, teatpeg, or the concentra-
tion of a chemical or biological species, through the mesrp@nt of the scalar quantity
by the autonomous robots as they perform a search procelss gotnain. We would
like to keep the robots resources to a minimum, so we limititmaber of robots to 10,
although we were able to minimize 2-D functions with asditils 6 robots.

Let's select a two-dimensional test function for which ihist easy to find the min-
imum, such as the banana function that has a curved valley.

F(X1, X5) = 10(X1 /d)* — 20(X; /d)*(Xa/d)+

+10(Xo/d)?* + (X1/d)? — 2(X1/d) + 5 (3.1)
whered = 200 m. Consider a two dimensional domain of 2000 m by 1000m,
defined by the coordinates:

Xl € [leinalea:c] == [*500,500]

X2 S [XQminyXQmax] = [_5007500] (32)

We choose the number of grid segmentsvas= 40, so that the maximum distance
traveled by any robot in any directioli;or X5 in one time step is 25 m, which we
choose as one distance unit or 1 DU. The equivalent time uhiisTthe time to travel
along 1 DU at a typical speed of 1 m/s, i.e. 25 s.

At =1TU = 25s

Alea;c = AXQmaa: =
= (le,ar - lezn)/Nx = 2bm = 1DU

‘V1|maa: = |Vv2‘max < Alea:r/At =
— 1DU/1TU = 25m/1TU = 1m/s (3.3)

The following results are for = 20 TU= 500 s. The number of autonomous
robots is Np = 10. The other parameters appearing in the equations of mot®n a



¢1 = 1.5 andcy = 2.5. w(k) decreases from an initial value ef, = 0.8 to a final
value ofwy = 0.2 after N steps:

w(k) =wy + (wo —wy)(N —k)/N (3.4)

The results of a simulation of the 10 robots as they searchh®minimum of
the banana function are given in Figs. 1-3. The 10 robots weread randomly over
the domain at the start of the simulation, which was run over N0 steps. At the
end of the simulation the trajectory of the robot that canusest to the location of
the minimum at the pointX;, X5)=(200,200) was chosen for display. The velocity
components are shown in Fig.1, with the limitation on theotiie values of the velocity
components shown along some segments of the motion. Tleetway in parametric
form, i.e., with the event counter k as a parameter, is giveRig.2. Notice the long
segments of motion, known as “Levy flights” with maximum speéong straight lines
and segments where the robot performs a random walk abosgthe location. The
trajectory is shown in Fig.3. The long Levy flights along &jtd lines are noticeable in
the figures. Levy flights and anomalous diffusion occur indflilows, see for example
[11], [12], [13], [14] and in other physical phenomena [15].
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Fig. 1. Velocity components Yand \; in the X; and X directions. The constraint on the maxi-
mum speed is apparent.
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Fig. 2. Coordinates of the best trajectory Xand X as a function of the event counter k. Levy
flights are followed by sticking random walks.

4 Collaborative Search In A 3-D Domain

Here we consider a more difficult search problem, in whichstliarm of robots is per-
forming a search for the minimum of a scalar function of tinesd variables. In the con-
text of autonomous underwater vehicles, the task here isda@afminimum temperature
or maximum concentration of a chemical or biological spediea three-dimensional
domain. The number of robots is limited to 10. We select a @ddfunction taken from

the literature, for example the Levy No.8 function [10]. Gafer a three-dimensional
body of water with sides 1000 m by 1000 m by 1000 m deep. Séiearigin of a carte-

sian system of coordinates in the center of this cube, suathtiie domain is defined
by:

Xl E [leinaleaw] - [_5007500]
Xo € [Xomin, Xomaz] = [—500, 500]
X3 € [Xgmin,Xgmaz] = [—5007500] (41)

The Levy No.8 function is defined by

f(X1, X, X3) = sin®(my1) + f1(y1,y2)+
+f2(y2,y3) + (ys — 1) (4.2)

Silyr,y2) = (y1 — 1)*(1 + 10sin?(y2))
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Fig. 3. Same trajectory as in Fig.2 with the starting point at the lower right cormeitfzen end
point at the minimum (200,200). Notice the Levy flights along straight ligerssts and random
short walks around the minimum.

f2(y2,y3) = (y2 — 1)*(1 + 10sin®(wys)) (4.3)
y1 =1+ (z1—-1)/4
Yo =1+ (z2—-1)/4

ys =1+ (x5 —1)/4 (4.4)
and the coordinates, , zo, x3 are scaled by a length= 50 m:

%1:X1/d7 1’2:X2/d, $3:X3/d (45)

The results are for a delay of = 20TU= 500s and the number of autonomous
robot vehicles iSVr = 10. The other parameters appearing in the equations of motion
are the same as in the previous case of a 2-D function. Thésedua simulation of
the group of robots collaboratively searching for the mimimof the function of three
variables are given in Figs. 4-6. The three velocity compt@are shown in Fig.4.
The constraint on the absolute values of the velocity coraptmis active along some
segments of the motion. The three coordinates as a functitre@vent counter k are
given in Fig.5. Again there are segments of long Levy flight:iaximum speed along
straight lines and segments where the robot performs a namehdk in a limited area.
The trajectory is shown in Fig.6 together with a contour mibthe projection of the
f(X1,X2,X3) function on the plane ¥=50. The minimum is located at (50,50,50). In
the trajectory projection, it can be seen that segmentsnof leevy flights are followed
by sticking random walks in the vicinity of the minimum.
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Fig. 4. Velocity components V, V2 and Vs in the X;, X2 and X%; directions. The constraint on
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Fig. 5. Coordinates of the best trajectory XX» and X; as a function of the event counter k. Long
Levy flights are followed by sticking random walks in the vicinity of the minimum.
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Fig. 6. Contour plot of the projection of f(XX2,X3) on the plane X=50, with the trajectory of
one robot. The minimum is located at (50,50,50).

5 Conclusion

A method for the cooperative control of a group of robots Hasea stochastic model
of swarm intelligen ce has been developed. The network ofilmotbots is modeled
by a particle swarm moving randomly in the search domain with global motion
of the swarm directed and controlled by a central unit whiah be a leader robot
or a central server. The method takes into account time géfathe robots network
communications. The motion of each robot in the swarm is gmaby a system of two
delay-difference equations. The best solution found ctillely by the swarm serves as
the control signal for the network of robots. The controhsibcan be time delayed due
to communication failure with a subset of the robots in thaswor due to noise or
attenuation in any of the communication channels. The nakttes used to solve the
basic problem of collaborative search and optimization2rizand in a 3-D domain. It
was found that the swarm can find the optimum despite long diefeys in the network
communications.

An unexpected result that was obtained is that the robgectaies exhibit anom-
alous diffusion, performing long distance Levy flights ajastraight lines, followed by
sticking random walks in a limited area of the domain, esgigcivhen the motion of
the swarm starts converging to the location of the optimum.
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